#pragma once #include #include #include #include template size_t lg(word_t v); /** Sean Eron Anderson seander@cs.stanford.edu **/ template<> size_t lg(uint32_t v) { static const int MultiplyDeBruijnBitPosition[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; return MultiplyDeBruijnBitPosition[(uint32_t)(v * 0x07C4ACDDU) >> 27]; } template<> size_t lg(uint64_t v) { static const int MultiplyDeBruijnBitPosition[64] = { 0, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54, 33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62, 57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31, 35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5, 63 }; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v |= v >> 32; return MultiplyDeBruijnBitPosition[(uint64_t)(v * 0x03f6eaf2cd271461) >> 58]; } template class RC6 { static constexpr size_t word_size = 8*sizeof(word_t); constexpr static word_t r_l(const word_t& w, size_t v) { return (w << v) | ( w >> (word_size-v)); } constexpr static word_t r_r(const word_t& w, size_t v) { return (w >> v) | ( w << (word_size-v)); } class RC6_KeySched { using sched_t = std::array; public: static constexpr size_t c = (b+word_size-1)/word_size; static constexpr size_t v_3 = std::max(c, 2*r+4); static constexpr size_t v = v_3*3; private: sched_t S; public: constexpr RC6_KeySched(std::array L) { assert(r_l(r_r(13,13),13) == 13); auto it = S.begin(); *(it++) = P; for(; it != S.end(); ++it) { *it = *(it-1) + Q; } word_t A = 0; word_t B = 0; word_t i = 0; word_t j = 0; for(size_t s = 0; s < v; ++s) { A = S[i] = r_l( S[i] + A + B, 3 ); B = L[j] = r_l( L[j] + A + B, (A + B)%(word_size)); i = s % S.size(); j = s % L.size(); } } const word_t& operator[](const size_t pos) { return S[pos]; } const auto cbegin() { return S.cbegin(); } const auto cend() { return S.cend(); } const auto crbegin() { return S.crbegin(); } const auto crend() { return S.crend(); } }; RC6_KeySched S; public: typedef std::array key_type; typedef std::array block_type; constexpr RC6(const key_type& key) : S(key) {} constexpr const block_type encrypt(block_type plaintext) { auto& A = plaintext[0]; auto& B = plaintext[1]; auto& C = plaintext[2]; auto& D = plaintext[3]; auto it = S.cbegin(); B += *(it++); D += *(it++); for(size_t i = 0; i < r; ++i) { auto u = r_l( D * ( 2 * D + 1 ), 5); auto t = r_l( B * ( 2 * B + 1 ), 5); A = r_l((A ^ t), u % word_size) + *(it++); C = r_l((C ^ u), t % word_size) + *(it++); std::rotate(plaintext.begin(), plaintext.begin()+1, plaintext.end()); } A += *(it++); C += *(it++); assert(it == S.cend()); return plaintext; } constexpr const block_type decrypt(block_type plaintext) { auto& A = plaintext[0]; auto& B = plaintext[1]; auto& C = plaintext[2]; auto& D = plaintext[3]; auto it = S.crbegin(); C -= *(it++); A -= *(it++); for(size_t i = 0; i < r; ++i) { std::rotate(plaintext.begin(), plaintext.end()-1, plaintext.end()); auto u = r_l( D * ( 2 * D + 1 ), 5); auto t = r_l( B * ( 2 * B + 1 ), 5); C = r_r( (C - *(it++)) , t % word_size) ^ u ; A = r_r( (A - *(it++)) , u % word_size) ^ t ; } D -= *(it++); B -= *(it++); assert(it == S.crend()); return plaintext; } };