General Purpose library for Freestanding C++ and POSIX systems
Não pode escolher mais do que 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.
 
 

311 linhas
6.8 KiB

#pragma once
#include "gp_config.hpp"
#include "gp/buffer.hpp"
#include "gp/array.hpp"
#include "gp/math/integer_math.hpp"
#include <type_traits>
#include <gp/algorithm/tmp_manip.hpp>
#include <gp/algorithm/modifiers.hpp>
#include <gp/allocator/dummy.hpp>
namespace gp{
template<typename page_allocator = gp::dummy_allocator, size_t max_msb = 24, size_t align = 8>
class buddy{
struct twig {
bool used : 1;
bool used_children : 1;
twig(uint8_t src) {
used = 1 & src;
used_children = 2 & src;
}
operator uint8_t() {
return 1 * used + 2 * used_children;
}
};
struct bundle {
uint8_t a : 2;
uint8_t b : 2;
uint8_t c : 2;
uint8_t d : 2;
bundle() {
a = 0; b = 0; c = 0; d = 0;
}
};
page_allocator allocator;
gp::buffer<char> data;
const size_t max_depth;
const size_t twig_explore_length;
static constexpr size_t max_theoric_depth = max_msb - gp::math::msb(align);
static constexpr size_t required_twigs = (1 << (max_theoric_depth + 1)) - 1;
/**
* ((max allocatable size - min allocatable size) ** 2 - 1) / 4 twigs in a bundle
**/
static constexpr size_t span_size = required_twigs / 4 + (required_twigs % 4 != 0);
gp::array<bundle, span_size> stack;
/**
* This code has been manually hecked and will always return.
* If you find a case where it doesn't, please file an issue.
**/
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreturn-type"
twig get_twig(size_t idx) const {
auto far = idx / 4;
auto local = idx % 4;
switch(local) {
case 0:
return stack[far].a;
case 1:
return stack[far].b;
case 2:
return stack[far].c;
case 3:
return stack[far].d;
}
}
#pragma clang diagnostic pop
void set_twig(size_t idx, twig v) {
auto far = idx / 4;
auto local = idx % 4;
auto& group = stack[far];
switch(local) {
case 0:
group.a = v;
return;
case 1:
group.b = v;
return;
case 2:
group.c = v;
return;
case 3:
group.d = v;
return;
}
}
constexpr size_t size_to_depth(size_t sz) {
size_t pow2 = gp::math::msb(sz) - gp::math::msb(align);
return gp::clamp(
(size_t)0 ,
max_depth - pow2,
max_depth
);
}
constexpr size_t depth_to_size(size_t depth) {
return 1 << (max_depth - depth + gp::math::msb(align));
}
constexpr size_t get_left(size_t index) const {
return ((index + 1) << 1) - 1;
}
constexpr size_t get_right(size_t index) const {
return ((index + 1) << 1);
}
template<typename function>
void all_under(size_t index, function func) {
size_t left = get_left(index);
size_t right = get_right(index);
all_under(left, func);
all_under(right, func);
func(left);
func(right);
}
template<typename function>
void all_over(size_t index, function func) {
if(index != 0) {
size_t parent = ((index + 1) >> 1) - 1;
func(parent);
if(parent != 0)
all_over(parent, func);
}
}
template<typename function>
bool is_any_child(size_t index, function func) const {
size_t left = get_left(index);
size_t right = get_right(index);
if(left < twig_explore_length && right < twig_explore_length) {
if(func(left)) return true;
if(func(right)) return true;
if(is_any_child(left, func)) return true;
if(is_any_child(right, func)) return true;
}
return false;
}
static constexpr size_t no_twig = -1;
size_t find_free_twig(size_t depth, size_t root = 0, size_t explored = 0) const {
auto v = get_twig(root);
if(depth == explored) {
if(v.used || v.used_children)
{
return no_twig;
} else {
return root;
}
} else {
if(v.used)
{
return no_twig;
}
++explored;
auto ret = find_free_twig(depth, get_right(root), explored);
if(ret != no_twig)
{
return ret;
}
ret = find_free_twig(depth, get_left(root), explored);
if(ret != no_twig)
{
return ret;
}
}
return no_twig;
}
size_t find_used_twig(size_t offset, size_t root = 0, size_t explored = 0) {
auto v = get_twig(root);
if(v.used && offset == 0)
{
return root;
}
++explored;
if(explored > max_depth) return no_twig;
size_t cut = (1 << (max_depth + gp::math::log2(align))) >> explored;
if(offset >= cut)
{
return find_used_twig(offset-cut, get_right(root), explored);
} else {
return find_used_twig(offset, get_left(root), explored);
}
}
static bool empty_node(const buddy* me, size_t node) {
gp_config::assertion(node < me->twig_explore_length, "bad emptyness test");
auto p = me->get_twig(node);
return !(
p.used | p.used_children
);
}
public:
buddy()
: data(gp::buffer<char>(nullptr,nullptr))
, max_depth(0)
, twig_explore_length(1 << max_depth)
{}
buddy(size_t sz)
: data(nullptr,nullptr)
, max_depth(gp::math::msb(sz)-gp::math::msb(align))
, twig_explore_length(1 << max_depth)
{
if(sz!=0 && (sz & (sz - 1)) == 0)
{
auto v=allocator.allocate(sz);
if(v!=nullptr)
{
if((reinterpret_cast<intptr_t>(v) % align) ==0)
{
data=gp::buffer<char>(reinterpret_cast<char*>(v),reinterpret_cast<char*>(v)+sz);
}
else
{
allocator.deallocate(v);
}
}
}
}
buddy(char* pos, size_t sz)
: data(pos,pos+sz)
, max_depth(gp::math::msb(sz)-gp::math::msb(align))
, twig_explore_length(1 << max_depth)
{
}
void* allocate(size_t sz)
{
auto depth = size_to_depth(sz);
auto index = find_free_twig(depth);
if(index == no_twig)
{
return nullptr;
}
auto pot = reinterpret_cast<char*>(
(index - (1 << depth) + 1)*depth_to_size(depth)
+ reinterpret_cast<intptr_t>(&*data.begin())
);
if(!data.contains(pot)) {
return nullptr;
}
all_over(index, [&](size_t idx){
auto t = get_twig(idx);
t.used_children = true;
set_twig(idx, t);
});
auto t = get_twig(index);
t.used = true;
set_twig(index, t);
return pot;
}
constexpr bool try_reallocate(void*, size_t) {
return false;
}
bool deallocate(void* ptr)
{
if(data.contains((char*)ptr))
{
size_t integral_offset = reinterpret_cast<intptr_t>(ptr) - reinterpret_cast<intptr_t>(&*data.begin());
auto index = find_used_twig(integral_offset);
if(index == no_twig)
{
return false;
}
twig v = get_twig(index);
v.used = false;
v.used_children = false;
set_twig(index, v);
all_over(index, [&](size_t idx){
auto l = get_twig(get_left(idx));
auto r = get_twig(get_right(idx));
set_twig(idx, 2*(l.used | l.used_children | r.used | r.used_children));
});
return true;
}
return false;
}
bool empty() const {
buddy* addr = (buddy*)this;
auto prepred = not_fn(&buddy::empty_node);
auto pred = bind_front(prepred, addr);
return empty_node(addr, 0) && !is_any_child(0, pred);
}
~buddy()
{
allocator.deallocate(data.begin().data);
}
};
}