A minimalistic programming language written in C89.
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

787 рядки
19 KiB

4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
  1. #ifndef NOSTDLIB
  2. #include <stdio.h>
  3. #include <stdlib.h>
  4. #include <string.h>
  5. #include <ctype.h>
  6. #endif
  7. #include "ink.h"
  8. #define INK_RESERVED (-1)
  9. #define INK_FUNCTION_KW (-2)
  10. #define INK_DO_KW (-3)
  11. #define INK_END_KW (-4)
  12. #define INK_LABEL (-5)
  13. #define INK_RETURN (-6)
  14. #define _KEYWORD_INK_FUNCTION "fn"
  15. #define _KEYWORD_INK_DO "do"
  16. #define _KEYWORD_INK_END "end"
  17. #define _KEYWORD_INK_RETURN "return"
  18. struct label {
  19. int active;
  20. int dest;
  21. char* name;
  22. };
  23. #ifdef NOSTDLIB
  24. static size_t strlen(const char* c) {
  25. size_t j = 0;
  26. while(*(c++)) {
  27. j++;
  28. }
  29. return j;
  30. }
  31. static void* memcpy(void* _dest, const void* _src, size_t sz) {
  32. char* dest = _dest;
  33. const char* src = _src;
  34. while(sz--) {
  35. *(dest++) = *(src++);
  36. }
  37. return dest;
  38. }
  39. static int strcmp(const char* dest, const char* src) {
  40. while(*dest != 0 && *src != 0) {
  41. if(*(dest++) != *(src++)) {
  42. return 1;
  43. }
  44. }
  45. return 0;
  46. }
  47. static void* memmove(void* _dest, const void* _src, size_t sz) {
  48. char* dest = _dest;
  49. const char* src = _src;
  50. if (src < dest) {
  51. src += sz;
  52. dest += sz;
  53. while (sz-- > 0) {
  54. *--dest = *--src;
  55. }
  56. } else {
  57. while (sz-- > 0) {
  58. *dest++ = *src++;
  59. }
  60. }
  61. return dest;
  62. }
  63. static void* memset(void* _dest, int src, size_t sz) {
  64. char* dest = _dest;
  65. while(sz--) {
  66. *(dest++) = src++;
  67. }
  68. return dest;
  69. }
  70. static int isspace(int d) {
  71. return d == ' ' || d == '\t' || d == '\n';
  72. }
  73. static int isdigit(int d) {
  74. return '0' <= d && d <= '9';
  75. }
  76. static int atoi(const char* c) {
  77. int ret = 0;
  78. while(*c) {
  79. ret *= 10;
  80. ret += *c - '0';
  81. ++c;
  82. }
  83. return ret;
  84. }
  85. #endif
  86. void ink_add_native(struct context* ctx, const char* name, void(*value)(struct context*)) {
  87. if(ctx->native_words == NULL) {
  88. ctx->native_words = ctx->malloc(sizeof(struct native_fn) * 8);
  89. ctx->native_words_top = 0;
  90. ctx->native_words_capacity = 8;
  91. } else if(ctx->native_words_top == ctx->native_words_capacity) {
  92. int new_count = (ctx->native_words_capacity + ctx->native_words_capacity/2);
  93. void* renewed = ctx->realloc(ctx->native_words, sizeof(struct native_fn) * new_count);
  94. if(renewed == NULL) {
  95. // TODO: error
  96. } else {
  97. ctx->native_words = renewed;
  98. ctx->native_words_capacity = new_count;
  99. }
  100. }
  101. int len = strlen(name);
  102. char* copy = ctx->malloc(len+1);
  103. if(copy == NULL) {
  104. // TODO: error
  105. }
  106. memcpy(copy, name, len);
  107. copy[len] = 0;
  108. ctx->native_words[ctx->native_words_top].value = value;
  109. ctx->native_words[ctx->native_words_top].name = copy;
  110. ctx->native_words_top++;
  111. }
  112. static int ink_add_indigenous(struct context* ctx, const char* name, struct elem* m, size_t count) {
  113. if(ctx->words == NULL) {
  114. ctx->words = ctx->malloc(sizeof(struct fn) * 8);
  115. ctx->words_top = 0;
  116. ctx->words_capacity = 8;
  117. } else if(ctx->words_top == ctx->words_capacity) {
  118. int new_count = (ctx->words_capacity + ctx->words_capacity/2);
  119. void* renewed = ctx->realloc(ctx->words, sizeof(struct native_fn) * new_count);
  120. if(renewed == NULL) {
  121. // TODO: error
  122. } else {
  123. ctx->words = renewed;
  124. ctx->words_capacity = new_count;
  125. }
  126. }
  127. int i;
  128. for(i = 0; i < ctx->words_top; ++i) {
  129. if(strcmp(name, ctx->words[i].name) == 0) {
  130. ctx->free(ctx->words[i].things);
  131. ctx->words[i].things = ctx->malloc(sizeof(struct elem) * count);
  132. memcpy(ctx->words[i].things, m, sizeof(struct elem) * count);
  133. ctx->words[i].size = count;
  134. return i;
  135. }
  136. }
  137. int len = strlen(name);
  138. char* copy = ctx->malloc(len+1);
  139. if(copy == NULL) {
  140. // TODO: error
  141. }
  142. memcpy(copy, name, len);
  143. copy[len] = 0;
  144. ctx->words[ctx->words_top].things = ctx->malloc(sizeof(struct elem) * count);
  145. memcpy(ctx->words[ctx->words_top].things, m, sizeof(struct elem) * count);
  146. ctx->words[ctx->words_top].size = count;
  147. ctx->words[ctx->words_top].name = copy;
  148. return ctx->words_top++;
  149. }
  150. static int ink_add_lex_string(struct context* ctx, const char* name) {
  151. int i;
  152. if(ctx->lex_reserved_words == NULL) {
  153. ctx->lex_reserved_words = ctx->malloc(sizeof(char*) * 8);
  154. ctx->lex_reserved_words_top = 0;
  155. ctx->lex_reserved_words_capacity = 8;
  156. } else if(ctx->lex_reserved_words_top == ctx->lex_reserved_words_capacity) {
  157. int new_count = (ctx->lex_reserved_words_capacity + ctx->lex_reserved_words_capacity/2);
  158. void* renewed = ctx->realloc(ctx->lex_reserved_words, sizeof(struct native_fn) * new_count);
  159. if(renewed == NULL) {
  160. // TODO: error
  161. } else {
  162. ctx->lex_reserved_words = renewed;
  163. ctx->lex_reserved_words_capacity = new_count;
  164. }
  165. }
  166. for(i = 0; i < ctx->lex_reserved_words_top; i++) {
  167. if(strcmp(ctx->lex_reserved_words[i], name) == 0) {
  168. return i;
  169. }
  170. }
  171. int len = strlen(name);
  172. i = ctx->lex_reserved_words_top;
  173. ctx->lex_reserved_words[i] = ctx->malloc(len+1);
  174. memcpy(ctx->lex_reserved_words[i], name, len);
  175. ctx->lex_reserved_words[i][len] = 0;
  176. ctx->lex_reserved_words_top++;
  177. return i;
  178. }
  179. void ink_push(struct context* ctx, struct elem value) {
  180. if(ctx->stack == NULL) {
  181. ctx->stack = ctx->malloc(sizeof(struct elem) * 8);
  182. ctx->top = 0;
  183. ctx->capacity = 8;
  184. } else if(ctx->top == ctx->capacity) {
  185. int new_count = (ctx->capacity + ctx->capacity/2);
  186. void* renewed = ctx->realloc(ctx->stack, sizeof(struct elem) * new_count);
  187. if(renewed == NULL) {
  188. // TODO: error
  189. } else {
  190. ctx->stack = renewed;
  191. ctx->capacity = new_count;
  192. }
  193. }
  194. ctx->stack[ctx->top] = value;
  195. ctx->top++;
  196. }
  197. void ink_push_fn(struct context* ctx, struct stack_frame value) {
  198. if(ctx->function_stack == NULL) {
  199. ctx->function_stack = ctx->malloc(sizeof(struct stack_frame) * 8);
  200. ctx->function_stack_top = 0;
  201. ctx->function_stack_capacity = 8;
  202. } else if(ctx->function_stack_top == ctx->function_stack_capacity) {
  203. int new_count = (ctx->function_stack_capacity + ctx->function_stack_capacity/2);
  204. void* renewed = ctx->realloc(ctx->function_stack, sizeof(struct stack_frame) * new_count);
  205. if(renewed == NULL) {
  206. // TODO: error
  207. } else {
  208. ctx->function_stack = renewed;
  209. ctx->function_stack_capacity = new_count;
  210. }
  211. }
  212. ctx->function_stack[ctx->function_stack_top] = value;
  213. ctx->function_stack_top++;
  214. }
  215. static void ink_pop_fn(struct context* ctx) {
  216. if(ctx->function_stack == NULL) return;
  217. if(ctx->function_stack_top == 0) return;
  218. ctx->function_stack_top--;
  219. }
  220. static void ink_pop(struct context* ctx) {
  221. if(ctx->stack == NULL) return;
  222. if(ctx->top == 0) return;
  223. ctx->top--;
  224. }
  225. struct context* ink_make_context(void*(*malloc)(size_t), void*(*realloc)(void*, size_t), void(*free)(void*), int(*putchar)(int)) {
  226. struct context* ctx = (struct context*)malloc(sizeof(struct context));
  227. ctx->malloc = malloc;
  228. ctx->realloc = realloc;
  229. ctx->free = free;
  230. ctx->putchar = putchar;
  231. ctx->panic = 0;
  232. ctx->stack = NULL;
  233. ctx->capacity = 0;
  234. ctx->top = 0;
  235. ctx->function_stack = NULL;
  236. ctx->function_stack_capacity = 0;
  237. ctx->function_stack_top = 0;
  238. ctx->native_words = NULL;
  239. ctx->native_words_capacity = 0;
  240. ctx->native_words_top = 0;
  241. ctx->words = NULL;
  242. ctx->words_capacity = 0;
  243. ctx->words_top = 0;
  244. ctx->lex_reserved_words = NULL;
  245. ctx->lex_reserved_words_capacity = 0;
  246. ctx->lex_reserved_words_top = 0;
  247. return ctx;
  248. }
  249. /**
  250. * Allocates a string that contains the integer
  251. * @param _ context (used to allocate)
  252. * @param cpy the value
  253. * @return the allocated string, needs to be freed by ctx->free
  254. */
  255. static char* ink_itoa(struct context* _, int cpy) {
  256. char* n = _->malloc(16);
  257. n[15] = 0;
  258. char* it = n+15;
  259. do {
  260. it--;
  261. *it = (cpy % 10) + '0';
  262. cpy = cpy / 10;
  263. } while(cpy);
  264. memmove(n, it, 16 - (it-n));
  265. return n;
  266. }
  267. static void print_stacktrace(struct context* _) {
  268. int i = 0;
  269. for(; i < _->function_stack_top; ++i) {
  270. struct elem thing = _->function_stack[i].executing;
  271. switch(thing.type) {
  272. case INK_NATIVE_FUNCTION: {
  273. char *n = _->native_words[thing.value].name;
  274. while (*n) {
  275. _->putchar(*n);
  276. ++n;
  277. }
  278. _->putchar(10);
  279. break;
  280. }
  281. case INK_FUNCTION:{
  282. char *n = _->native_words[thing.value].name;
  283. while (*n) {
  284. _->putchar(*n);
  285. ++n;
  286. }
  287. _->putchar(':');
  288. n = ink_itoa(_, _->function_stack[i].index);
  289. while (*n) {
  290. _->putchar(*n);
  291. ++n;
  292. }
  293. _->free(n);
  294. _->putchar(10);
  295. break;
  296. }
  297. default:
  298. break;
  299. }
  300. }
  301. }
  302. static void add_int(struct context* ctx) {
  303. if(ctx->top < 2) {
  304. ctx->panic = 1;
  305. return;
  306. }
  307. struct elem a = ctx->stack[ctx->top-1];
  308. struct elem b = ctx->stack[ctx->top-2];
  309. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  310. ctx->panic = 1;
  311. return;
  312. }
  313. ink_pop(ctx);
  314. ctx->stack[ctx->top-1].value = a.value + b.value;
  315. }
  316. static void dupe_elem(struct context* ctx) {
  317. if(ctx->top < 1) {
  318. ctx->panic = 1;
  319. return;
  320. }
  321. struct elem a = ctx->stack[ctx->top-1];
  322. ink_push(ctx, a);
  323. }
  324. static void drop_elem(struct context* ctx) {
  325. if(ctx->top < 1) {
  326. ctx->panic = 1;
  327. return;
  328. }
  329. ink_pop(ctx);
  330. }
  331. static void pluck_elem(struct context* ctx) {
  332. if(ctx->top < 1) {
  333. ctx->panic = 1;
  334. return;
  335. }
  336. struct elem a = ctx->stack[ctx->top-1];
  337. if(a.type != INK_INTEGER) {
  338. ctx->panic = 1;
  339. return;
  340. }
  341. int position = ctx->top - (a.value + 1);
  342. if(position >= ctx->top || position < 0) {
  343. ctx->panic = 1;
  344. return;
  345. }
  346. ink_pop(ctx);
  347. ink_push(ctx, ctx->stack[position]);
  348. }
  349. static void swap_elem(struct context* ctx) {
  350. if(ctx->top < 2) {
  351. ctx->panic = 1;
  352. return;
  353. }
  354. struct elem a = ctx->stack[ctx->top-1];
  355. struct elem b = ctx->stack[ctx->top-2];
  356. ctx->stack[ctx->top-2] = a;
  357. ctx->stack[ctx->top-1] = b;
  358. }
  359. static void return_if(struct context* ctx) {
  360. if(ctx->top < 1) {
  361. ctx->panic = 1;
  362. return;
  363. }
  364. struct elem a = ctx->stack[ctx->top-1];
  365. if(a.type != INK_INTEGER) {
  366. ctx->panic = 1;
  367. return;
  368. }
  369. if(a.value) {
  370. ink_pop_fn(ctx);
  371. ink_pop_fn(ctx);
  372. }
  373. ink_pop(ctx);
  374. return;
  375. }
  376. static void jump_if(struct context* ctx) {
  377. if(ctx->top < 1) {
  378. ctx->panic = 1;
  379. return;
  380. }
  381. struct elem a = ctx->stack[ctx->top-1];
  382. if(a.type != INK_INTEGER) {
  383. ctx->panic = 1;
  384. return;
  385. }
  386. ink_pop(ctx);
  387. if(a.value) {
  388. ink_pop_fn(ctx);
  389. a = ctx->stack[ctx->top-1];
  390. ctx->function_stack[ctx->function_stack_top - 1].index += a.value - 3;
  391. ink_pop(ctx);
  392. //printf("\t*%d\n", ctx->function_stack[ctx->function_stack_top - 1].index);
  393. }
  394. return;
  395. }
  396. static void print_int(struct context* ctx) {
  397. if(ctx->top < 1 || ctx->stack[ctx->top-1].type != INK_INTEGER) {
  398. ctx->panic = 1;
  399. return;
  400. }
  401. struct elem a = ctx->stack[ctx->top-1];
  402. ink_pop(ctx);
  403. char* n = ink_itoa(ctx, a.value);
  404. char* str = n;
  405. while (*str) {
  406. ctx->putchar(*str);
  407. ++str;
  408. }
  409. ctx->free(n);
  410. }
  411. static void print_as_utf8(struct context* ctx) {
  412. if(ctx->top < 1 || ctx->stack[ctx->top-1].type != INK_INTEGER) {
  413. ctx->panic = 1;
  414. return;
  415. }
  416. struct elem a = ctx->stack[ctx->top-1];
  417. if(a.value <= 0x7F) {
  418. ctx->putchar(a.value);
  419. } else if(a.value <= 0x7FF) {
  420. ctx->putchar(((a.value & 0xFC0) >> 6) | 192);
  421. ctx->putchar((a.value & 0x3F) | 128);
  422. } else if(a.value <= 0xFFFF) {
  423. ctx->putchar(((a.value & 0x3F000) >> 12) | 224);
  424. ctx->putchar(((a.value & 0xFC0) >> 6) | 128);
  425. ctx->putchar((a.value & 0x3F) | 128);
  426. } else if(a.value <= 0x10FFFF) {
  427. ctx->putchar(((a.value & 0x3C0000) >> 18) | 240);
  428. ctx->putchar(((a.value & 0x3F000) >> 12) | 128);
  429. ctx->putchar(((a.value & 0xFC0) >> 6) | 128);
  430. ctx->putchar((a.value & 0x3F) | 128);
  431. } else {
  432. ctx->panic = 1;
  433. return;
  434. }
  435. ink_pop(ctx);
  436. }
  437. #ifndef NOSTDLIB
  438. struct context* ink_make_default_context() {
  439. struct context* ctx = ink_make_context(malloc, realloc, free, putchar);
  440. ink_add_native(ctx, "trace", print_stacktrace);
  441. ink_add_native(ctx, "print_int", print_int);
  442. ink_add_native(ctx, "print_utf8", print_as_utf8);
  443. ink_add_native(ctx, "+", add_int);
  444. ink_add_native(ctx, "swap", swap_elem);
  445. ink_add_native(ctx, "dup", dupe_elem);
  446. ink_add_native(ctx, "drop", drop_elem);
  447. ink_add_native(ctx, "pluck", pluck_elem);
  448. ink_add_native(ctx, "return_if", return_if);
  449. ink_add_native(ctx, "jump_if", jump_if);
  450. return ctx;
  451. }
  452. #endif
  453. static void ink_consume_one(int* end, struct context* pContext, char** buffer, char* r) {
  454. int i;
  455. if(*end == 0) {
  456. return;
  457. }
  458. r[*end] = 0;
  459. int done = 0;
  460. if (strcmp(r, _KEYWORD_INK_FUNCTION) == 0) {
  461. struct elem value;
  462. value.value = 0;
  463. value.type = INK_FUNCTION_KW;
  464. ink_push(pContext, value);
  465. done = 1;
  466. }
  467. if (!done && strcmp(r, _KEYWORD_INK_DO) == 0) {
  468. struct elem value;
  469. value.value = 0;
  470. value.type = INK_DO_KW;
  471. ink_push(pContext, value);
  472. done = 1;
  473. }
  474. if (!done && strcmp(r, _KEYWORD_INK_END) == 0) {
  475. struct elem value;
  476. value.value = 0;
  477. value.type = INK_END_KW;
  478. ink_push(pContext, value);
  479. done = 1;
  480. }
  481. if (!done && strcmp(r, _KEYWORD_INK_RETURN) == 0) {
  482. struct elem value;
  483. value.value = 0;
  484. value.type = INK_RETURN;
  485. ink_push(pContext, value);
  486. done = 1;
  487. }
  488. if (!done) {
  489. for (i = 0; i < pContext->words_top; ++i) {
  490. if (strcmp(r, pContext->words[i].name) == 0) {
  491. struct elem value;
  492. value.value = i;
  493. value.type = INK_FUNCTION;
  494. ink_push(pContext, value);
  495. done = 1;
  496. break;
  497. }
  498. }
  499. }
  500. if (!done) {
  501. for (i = 0; i < pContext->native_words_top; ++i) {
  502. if (strcmp(r, pContext->native_words[i].name) == 0) {
  503. struct elem value;
  504. value.value = i;
  505. value.type = INK_NATIVE_FUNCTION;
  506. ink_push(pContext, value);
  507. done = 1;
  508. break;
  509. }
  510. }
  511. }
  512. if (!done) {
  513. for(i = (r[0] == '-'); i < *end; i++) {
  514. if(!isdigit(r[i])){
  515. goto not_an_int;
  516. }
  517. }
  518. struct elem value;
  519. value.value = atoi(r);
  520. value.type = INK_INTEGER;
  521. ink_push(pContext, value);
  522. done = 1;
  523. }
  524. not_an_int: if (!done) {
  525. i = ink_add_lex_string(pContext, r);
  526. struct elem value;
  527. value.value = i;
  528. if(r[strlen(r) - 1] == ':') {
  529. value.type = INK_LABEL;
  530. } else {
  531. value.type = INK_RESERVED;
  532. }
  533. ink_push(pContext, value);
  534. }
  535. *end = 0;
  536. }
  537. static void ink_lex(struct context *pContext, char* buffer) {
  538. int i;
  539. char r[128];
  540. int end = 0;
  541. while(*buffer != 0) {
  542. if(isspace(*buffer)) {
  543. ink_consume_one(&end, pContext, &buffer, r);
  544. } else {
  545. r[end] = *buffer;
  546. ++end;
  547. }
  548. ++buffer;
  549. }
  550. ink_consume_one(&end, pContext, &buffer, r);
  551. }
  552. static int lblcmp(const char* label, const char* other, size_t label_sz) {
  553. while (label_sz != 1) {
  554. if(*other == 0) return 1;
  555. if(*label != *other) return 1;
  556. ++label;
  557. ++other;
  558. label_sz--;
  559. }
  560. return 0;
  561. }
  562. /**
  563. *
  564. * @param pContext
  565. * @param executable_buffer
  566. * @param executable_buffer_top
  567. * @internal Loop from hell
  568. */
  569. static void ink_parse(struct context* pContext, struct elem* executable_buffer, int* executable_buffer_top) {
  570. int i;
  571. #define LABEL_BUFFER 128
  572. #define FUNCTION_BUFFER 256
  573. struct label labels[LABEL_BUFFER];
  574. struct elem function_buffer[FUNCTION_BUFFER];
  575. int function_buffer_top = 0;
  576. int function_name = -1;
  577. #define MODE_EXECUTABLE 0
  578. #define MODE_FUNCTION 1
  579. #define MODE_DO 2
  580. int mode = 0;
  581. memset(labels, 0, sizeof(struct label)*LABEL_BUFFER);
  582. for(i = 0; i < pContext->top; ++i) {
  583. struct elem current = pContext->stack[i];
  584. switch (mode) {
  585. case MODE_EXECUTABLE:
  586. switch(current.type) {
  587. case INK_FUNCTION_KW:
  588. mode = MODE_FUNCTION;
  589. goto next_token;
  590. case INK_DO_KW:
  591. case INK_END_KW:
  592. // TODO: error
  593. default:
  594. executable_buffer[*executable_buffer_top] = current;
  595. *executable_buffer_top += 1;
  596. }
  597. break;
  598. case MODE_FUNCTION:
  599. if(current.type == INK_DO_KW) {
  600. if(function_name == -1) {
  601. // TODO: error (function name was not supplied)
  602. } else {
  603. mode = MODE_DO;
  604. memset(labels, 0, sizeof(struct label)*128);
  605. goto next_token;
  606. }
  607. }
  608. if(function_name != -1) {
  609. // TODO: error (function name supplied already)
  610. }
  611. if(current.type != INK_RESERVED) {
  612. // TODO: error
  613. }
  614. function_name = current.value;
  615. break;
  616. case MODE_DO:
  617. if(current.type == INK_END_KW) {
  618. int j;
  619. for(j = 0; j < function_buffer_top; j++) {
  620. struct elem pt = function_buffer[j];
  621. if(pt.type == INK_LABEL) {
  622. int k;
  623. for(k = 0; k < LABEL_BUFFER; k++) {
  624. if(labels[k].active) {
  625. if(strcmp(labels[k].name, pContext->lex_reserved_words[pt.value]) == 0) {
  626. labels[k].dest = j;
  627. // TODO: error
  628. break;
  629. }
  630. } else {
  631. labels[k].active = 1;
  632. labels[k].name = pContext->lex_reserved_words[pt.value];
  633. labels[k].dest = j;
  634. memcpy(function_buffer+j, function_buffer+j+1, sizeof(struct elem)*(function_buffer_top-j-1));
  635. function_buffer_top--;
  636. j--;
  637. break;
  638. }
  639. }
  640. }
  641. }
  642. for(j = 0; j < function_buffer_top; j++) {
  643. struct elem pt = function_buffer[j];
  644. if(pt.type == INK_RESERVED) {
  645. const char* str = pContext->lex_reserved_words[pt.value];
  646. int k;
  647. for(k = 0; k < LABEL_BUFFER; k++) {
  648. if(labels[k].active) {
  649. const char* lbl = labels[k].name;
  650. int label_sz = strlen(lbl);
  651. if(lblcmp(labels[k].name, pContext->lex_reserved_words[pt.value], label_sz) == 0) {
  652. function_buffer[j].type = INK_INTEGER;
  653. function_buffer[j].value = labels[k].dest - j;
  654. break;
  655. }
  656. } else break;
  657. }
  658. }
  659. }
  660. ink_add_indigenous(pContext, pContext->lex_reserved_words[function_name], function_buffer, function_buffer_top);
  661. function_buffer_top = 0;
  662. mode = MODE_EXECUTABLE;
  663. goto next_token;
  664. }
  665. function_buffer[function_buffer_top] = current;
  666. function_buffer_top += 1;
  667. break;
  668. }
  669. next_token: i=i;
  670. }
  671. if(mode == MODE_FUNCTION || mode == MODE_DO) {
  672. // error, missing an end
  673. }
  674. #undef MODE_EXECUTABLE
  675. #undef MODE_FUNCTION
  676. #undef MODE_DO
  677. #undef LABEL_BUFFER
  678. #undef FUNCTION_BUFFER
  679. }
  680. int ink_step(struct context *pContext) {
  681. if(pContext->function_stack_top == 0) return 0;
  682. if(pContext->panic) {
  683. return -1;
  684. }
  685. struct stack_frame* top = &pContext->function_stack[pContext->function_stack_top-1];
  686. switch(top->executing.type) {
  687. case INK_NATIVE_FUNCTION:
  688. if(top->index != 0) {
  689. ink_pop_fn(pContext);
  690. } else {
  691. top->index++;
  692. if(pContext->native_words_top <= top->executing.value) {
  693. pContext->panic = 1;
  694. return -1;
  695. }
  696. pContext->native_words[top->executing.value].value(pContext);
  697. }
  698. break;
  699. case INK_FUNCTION:
  700. if(pContext->words_top <= top->executing.value) {
  701. pContext->panic = 1;
  702. return -1;
  703. }
  704. if(top->index >= pContext->words[top->executing.value].size) {
  705. ink_pop_fn(pContext);
  706. } else {
  707. struct elem next = pContext->words[top->executing.value].things[top->index];
  708. if(next.type == INK_RETURN) {
  709. ink_pop_fn(pContext);
  710. return 1;
  711. }
  712. struct stack_frame frame;
  713. frame.executing = next;
  714. frame.index = 0;
  715. ink_push_fn(pContext, frame);
  716. top->index++;
  717. }
  718. break;
  719. default:
  720. ink_push(pContext, top->executing);
  721. ink_pop_fn(pContext);
  722. break;
  723. }
  724. return 1;
  725. }
  726. void ink_run(struct context *pContext, char* buffer) {
  727. pContext->free(pContext->stack);
  728. pContext->stack = NULL;
  729. pContext->top = 0;
  730. pContext->capacity = 0;
  731. ink_lex(pContext, buffer);
  732. int i = 0;
  733. struct elem executable_buffer[256];
  734. int executable_buffer_top = 0;
  735. ink_parse(pContext, executable_buffer, &executable_buffer_top);
  736. struct stack_frame frame;
  737. frame.executing.value = ink_add_indigenous(pContext, "__-MAIN-__", executable_buffer, executable_buffer_top);
  738. frame.executing.type = INK_FUNCTION;
  739. frame.index = 0;
  740. ink_push_fn(pContext, frame);
  741. int out;
  742. do {
  743. out = ink_step(pContext);
  744. } while(out > 0);
  745. }