A minimalistic programming language written in C89.
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

1497 行
39 KiB

6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
  1. #include "ink.h"
  2. #ifndef NOSTDLIB
  3. #include <stdio.h>
  4. #include <stdlib.h>
  5. #include <string.h>
  6. #include <ctype.h>
  7. #ifdef INSTRUMENTATION
  8. #include <time.h>
  9. #endif
  10. #endif
  11. #define INK_RESERVED (-1)
  12. #define INK_FUNCTION_KW (-2)
  13. #define INK_DO_KW (-3)
  14. #define INK_END_KW (-4)
  15. #define INK_LABEL (-5)
  16. #define INK_RETURN (-6)
  17. #define _KEYWORD_INK_FUNCTION "fn"
  18. #define _KEYWORD_INK_DO "do"
  19. #define _KEYWORD_INK_END "end"
  20. #define _KEYWORD_INK_RETURN "return"
  21. #define min(x, y) ((x) > (y) ? (y) : (x))
  22. #define max(x, y) ((x) < (y) ? (y) : (x))
  23. struct label {
  24. int active;
  25. int dest;
  26. char* name;
  27. };
  28. #ifdef NOSTDLIB
  29. static size_t strlen(const char* c) {
  30. size_t j;
  31. j = 0;
  32. while(*(c++)) {
  33. j++;
  34. }
  35. return j;
  36. }
  37. static void* memcpy(void* _dest, const void* _src, size_t sz) {
  38. char* dest;
  39. const char* src;
  40. dest = _dest;
  41. src = _src;
  42. while(sz--) {
  43. *(dest++) = *(src++);
  44. }
  45. return dest;
  46. }
  47. static int strcmp(const char* dest, const char* src) {
  48. while(*dest != 0 && *src != 0) {
  49. if(*(dest++) != *(src++)) {
  50. return 1;
  51. }
  52. }
  53. return 0;
  54. }
  55. static void* memmove(void* _dest, const void* _src, size_t sz) {
  56. char* dest;
  57. const char* src;
  58. dest = _dest;
  59. src = _src;
  60. if (src < dest) {
  61. src += sz;
  62. dest += sz;
  63. while (sz-- > 0) {
  64. *--dest = *--src;
  65. }
  66. } else {
  67. while (sz-- > 0) {
  68. *dest++ = *src++;
  69. }
  70. }
  71. return dest;
  72. }
  73. static void* memset(void* _dest, int src, size_t sz) {
  74. char* dest;
  75. dest = _dest;
  76. while(sz--) {
  77. *(dest++) = src++;
  78. }
  79. return dest;
  80. }
  81. static int isspace(int d) {
  82. return d == ' ' || d == '\t' || d == '\n';
  83. }
  84. static int isdigit(int d) {
  85. return '0' <= d && d <= '9';
  86. }
  87. static int atoi(const char* c) {
  88. int ret;
  89. ret = 0;
  90. while(*c) {
  91. ret *= 10;
  92. ret += *c - '0';
  93. ++c;
  94. }
  95. return ret;
  96. }
  97. #endif
  98. int ink_add_native(struct context* ctx, const char* name, void(*value)(struct context*)) {
  99. int len;
  100. char* copy;
  101. if(ctx->native_words == NULL) {
  102. ctx->native_words = ctx->inner_malloc(sizeof(struct native_fn) * 8);
  103. ctx->native_words_top = 0;
  104. ctx->native_words_capacity = 8;
  105. } else if(ctx->native_words_top == ctx->native_words_capacity) {
  106. int new_count;
  107. void* renewed;
  108. new_count = (ctx->native_words_capacity + ctx->native_words_capacity/2);
  109. renewed = ctx->inner_realloc(ctx->native_words, sizeof(struct native_fn) * new_count);
  110. if(renewed == NULL) {
  111. return -3;
  112. } else {
  113. ctx->native_words = renewed;
  114. ctx->native_words_capacity = new_count;
  115. }
  116. }
  117. len = strlen(name);
  118. copy = ctx->inner_malloc(len+1);
  119. if(copy == NULL) {
  120. return -4;
  121. }
  122. memcpy(copy, name, len);
  123. copy[len] = 0;
  124. ctx->native_words[ctx->native_words_top].value = value;
  125. ctx->native_words[ctx->native_words_top].name = copy;
  126. ctx->native_words_top++;
  127. return 0;
  128. }
  129. static int ink_add_indigenous(struct context* ctx, const char* name, struct elem* m, size_t count) {
  130. int len, i;
  131. char* copy;
  132. if(ctx->words == NULL) {
  133. ctx->words = ctx->malloc(sizeof(struct fn) * 8);
  134. ctx->words_top = 0;
  135. ctx->words_capacity = 8;
  136. } else if(ctx->words_top == ctx->words_capacity) {
  137. int new_count;
  138. void* renewed;
  139. new_count = (ctx->words_capacity + ctx->words_capacity/2);
  140. renewed = ctx->realloc(ctx->words, sizeof(struct native_fn) * new_count);
  141. if(renewed == NULL) {
  142. return -1;
  143. } else {
  144. ctx->words = renewed;
  145. ctx->words_capacity = new_count;
  146. }
  147. }
  148. for(i = 0; i < ctx->words_top; ++i) {
  149. if(strcmp(name, ctx->words[i].name) == 0) {
  150. ctx->free(ctx->words[i].things);
  151. ctx->words[i].things = ctx->malloc(sizeof(struct elem) * count);
  152. memcpy(ctx->words[i].things, m, sizeof(struct elem) * count);
  153. ctx->words[i].size = count;
  154. return i;
  155. }
  156. }
  157. len = strlen(name);
  158. copy = ctx->malloc(len+1);
  159. if(copy == NULL) {
  160. return -2;
  161. }
  162. memcpy(copy, name, len);
  163. copy[len] = 0;
  164. ctx->words[ctx->words_top].things = ctx->malloc(sizeof(struct elem) * count);
  165. memcpy(ctx->words[ctx->words_top].things, m, sizeof(struct elem) * count);
  166. ctx->words[ctx->words_top].size = count;
  167. ctx->words[ctx->words_top].name = copy;
  168. return ctx->words_top++;
  169. }
  170. /**
  171. *
  172. * @param ctx The context
  173. * @param name The name to add
  174. * @internal add a lexed string to the parser
  175. * @return the id of the string in the list
  176. */
  177. static int ink_add_lex_string(struct context* ctx, const char* name) {
  178. int i;
  179. if(ctx->lex_reserved_words == NULL) {
  180. ctx->lex_reserved_words = ctx->inner_malloc(sizeof(char*) * 8);
  181. ctx->lex_reserved_words_top = 0;
  182. ctx->lex_reserved_words_capacity = 8;
  183. } else if(ctx->lex_reserved_words_top == ctx->lex_reserved_words_capacity) {
  184. int new_count;
  185. new_count = (ctx->lex_reserved_words_capacity + ctx->lex_reserved_words_capacity/2);
  186. void* renewed;
  187. renewed = ctx->inner_realloc(ctx->lex_reserved_words, sizeof(struct native_fn) * new_count);
  188. if(renewed == NULL) {
  189. return -5;
  190. } else {
  191. ctx->lex_reserved_words = renewed;
  192. ctx->lex_reserved_words_capacity = new_count;
  193. }
  194. }
  195. for(i = 0; i < ctx->lex_reserved_words_top; i++) {
  196. if(strcmp(ctx->lex_reserved_words[i], name) == 0) {
  197. return i;
  198. }
  199. }
  200. int len;
  201. len = strlen(name);
  202. i = ctx->lex_reserved_words_top;
  203. ctx->lex_reserved_words[i] = ctx->malloc(len+1);
  204. memcpy(ctx->lex_reserved_words[i], name, len);
  205. ctx->lex_reserved_words[i][len] = 0;
  206. ctx->lex_reserved_words_top++;
  207. return i;
  208. }
  209. int ink_push(struct context* ctx, struct elem value) {
  210. struct ink_routine* current;
  211. if(ctx->routine_current >= ctx->routines_top) return -65;
  212. current = ctx->routines + ctx->routine_current;
  213. if(current->stack == NULL) {
  214. current->stack = ctx->malloc(sizeof(struct elem) * 8);
  215. current->top = 0;
  216. current->capacity = 8;
  217. } else if(current->top == current->capacity) {
  218. int new_count;
  219. void* renewed;
  220. new_count = (current->capacity + current->capacity/2);
  221. renewed = ctx->realloc(current->stack, sizeof(struct elem) * new_count);
  222. if(renewed == NULL) {
  223. return -18;
  224. } else {
  225. current->stack = renewed;
  226. current->capacity = new_count;
  227. }
  228. }
  229. current->stack[current->top] = value;
  230. current->top++;
  231. return 0;
  232. }
  233. int ink_push_fn(struct context* ctx, struct stack_frame value) {
  234. struct ink_routine* current;
  235. if(ctx->routine_current >= ctx->routines_top) return -55;
  236. current = ctx->routines + ctx->routine_current;
  237. if(current->panic) return -56;
  238. if(current->function_stack == NULL) {
  239. current->function_stack = ctx->malloc(sizeof(struct stack_frame) * 8);
  240. current->function_stack_top = 0;
  241. current->function_stack_capacity = 8;
  242. } else if(current->function_stack_top == current->function_stack_capacity) {
  243. int new_count;
  244. void* renewed;
  245. new_count = (current->function_stack_capacity + current->function_stack_capacity/2);
  246. renewed = ctx->realloc(current->function_stack, sizeof(struct stack_frame) * new_count);
  247. if(renewed == NULL) {
  248. return -9;
  249. } else {
  250. current->function_stack = renewed;
  251. current->function_stack_capacity = new_count;
  252. }
  253. }
  254. current->function_stack[current->function_stack_top] = value;
  255. current->function_stack_top++;
  256. return 0;
  257. }
  258. void ink_pop_fn(struct context* ctx) {
  259. if(ctx->routine_current >= ctx->routines_top) return;
  260. if(ctx->routines[ctx->routine_current].panic) return;
  261. if(ctx->routines[ctx->routine_current].function_stack == NULL) return;
  262. if(ctx->routines[ctx->routine_current].function_stack_top == 0) return;
  263. ctx->routines[ctx->routine_current].function_stack_top--;
  264. }
  265. void ink_pop(struct context* ctx) {
  266. if(ctx->routine_current >= ctx->routines_top) return;
  267. if(ctx->routines[ctx->routine_current].panic) return;
  268. if(ctx->routines[ctx->routine_current].stack == NULL) return;
  269. if(ctx->routines[ctx->routine_current].top == 0) return;
  270. ctx->routines[ctx->routine_current].top--;
  271. }
  272. struct context* ink_make_context(void*(*malloc)(size_t), void*(*realloc)(void*, size_t), void(*free)(void*), int(*putchar)(int)) {
  273. struct context* ctx;
  274. ctx = (struct context*)malloc(sizeof(struct context));
  275. ctx->malloc = malloc;
  276. ctx->realloc = realloc;
  277. ctx->free = free;
  278. ctx->inner_malloc = malloc;
  279. ctx->inner_realloc = realloc;
  280. ctx->inner_free = free;
  281. ctx->putchar = putchar;
  282. ctx->panic = 0;
  283. ctx->routines = NULL;
  284. ctx->routines_capacity = 0;
  285. ctx->routines_top = 0;
  286. ctx->types = NULL;
  287. ctx->types_capacity = 0;
  288. ctx->types_top = 0;
  289. ctx->native_words = NULL;
  290. ctx->native_words_capacity = 0;
  291. ctx->native_words_top = 0;
  292. ctx->words = NULL;
  293. ctx->words_capacity = 0;
  294. ctx->words_top = 0;
  295. ctx->lex_reserved_words = NULL;
  296. ctx->lex_reserved_words_capacity = 0;
  297. ctx->lex_reserved_words_top = 0;
  298. ctx->collections = 0;
  299. ctx->steps = 0;
  300. return ctx;
  301. }
  302. /**
  303. * Allocates a string that contains the integer
  304. * @param _ context (used to allocate)
  305. * @param cpy the value
  306. * @return the allocated string, needs to be freed by ctx->free
  307. * @internal this function is slightly cursed
  308. */
  309. static char* ink_itoa(struct context* _, int cpy) {
  310. char* n = _->malloc(16);
  311. n[15] = 0;
  312. char* it = n+15;
  313. do {
  314. it--;
  315. *it = (cpy % 10) + '0';
  316. cpy = cpy / 10;
  317. } while(cpy);
  318. memmove(n, it, 16 - (it-n));
  319. return n;
  320. }
  321. #ifndef NOSTDLIB
  322. struct context* ink_make_default_context() {
  323. struct context* ctx;
  324. ctx = ink_make_context(malloc, realloc, free, putchar);
  325. ink_std_library(ctx);
  326. return ctx;
  327. }
  328. #endif
  329. static int ink_consume_one(int* end, struct context* pContext, char** buffer, char* r) {
  330. int i;
  331. int done;
  332. struct elem value;
  333. if(*end == 0) {
  334. return 0;
  335. }
  336. r[*end] = 0;
  337. done = 0;
  338. if (strcmp(r, _KEYWORD_INK_FUNCTION) == 0) {
  339. value.value = 0;
  340. value.type = INK_FUNCTION_KW;
  341. done = 1;
  342. }
  343. if (!done && strcmp(r, _KEYWORD_INK_DO) == 0) {
  344. value.value = 0;
  345. value.type = INK_DO_KW;
  346. done = 1;
  347. }
  348. if (!done && strcmp(r, _KEYWORD_INK_END) == 0) {
  349. value.value = 0;
  350. value.type = INK_END_KW;
  351. done = 1;
  352. }
  353. if (!done && strcmp(r, _KEYWORD_INK_RETURN) == 0) {
  354. value.value = 0;
  355. value.type = INK_RETURN;
  356. done = 1;
  357. }
  358. if(done) {
  359. int err;
  360. err = ink_push(pContext, value);
  361. if(err < 0) {
  362. return -19;
  363. }
  364. }
  365. if (!done) {
  366. for (i = 0; i < pContext->words_top; ++i) {
  367. if (strcmp(r, pContext->words[i].name) == 0) {
  368. value.value = i;
  369. value.type = INK_FUNCTION;
  370. int err;
  371. err = ink_push(pContext, value);
  372. if(err < 0) {
  373. return -20;
  374. }
  375. done = 1;
  376. break;
  377. }
  378. }
  379. }
  380. if (!done) {
  381. for (i = 0; i < pContext->native_words_top; ++i) {
  382. if (strcmp(r, pContext->native_words[i].name) == 0) {
  383. value.value = i;
  384. value.type = INK_NATIVE_FUNCTION;
  385. int err;
  386. err = ink_push(pContext, value);
  387. if(err < 0) {
  388. return -21;
  389. }
  390. done = 1;
  391. break;
  392. }
  393. }
  394. }
  395. if (!done) {
  396. for(i = (r[0] == '-'); i < *end; i++) {
  397. if(!isdigit(r[i])){
  398. goto not_an_int;
  399. }
  400. }
  401. value.value = atoi(r);
  402. value.type = INK_INTEGER;
  403. int err;
  404. err = ink_push(pContext, value);
  405. if(err < 0) {
  406. return -22;
  407. }
  408. done = 1;
  409. }
  410. not_an_int:
  411. if (!done) {
  412. i = ink_add_lex_string(pContext, r);
  413. if(i < 0) {
  414. pContext->panic = 1;
  415. return -7;
  416. }
  417. value.value = i;
  418. if(r[strlen(r) - 1] == ':') {
  419. value.type = INK_LABEL;
  420. } else {
  421. value.type = INK_RESERVED;
  422. }
  423. int err;
  424. err = ink_push(pContext, value);
  425. if(err < 0) {
  426. return -23;
  427. }
  428. }
  429. *end = 0;
  430. return 0;
  431. }
  432. static int ink_lex(struct context *pContext, char* buffer) {
  433. int i;
  434. // Limits the token size to 127 chars
  435. char r[128];
  436. int end;
  437. int err;
  438. end = 0;
  439. while(*buffer != 0) {
  440. if(isspace(*buffer)) {
  441. err = ink_consume_one(&end, pContext, &buffer, r);
  442. if(err < 0) {
  443. pContext->panic = 1;
  444. return -8;
  445. }
  446. } else {
  447. r[end] = *buffer;
  448. ++end;
  449. }
  450. ++buffer;
  451. }
  452. err = ink_consume_one(&end, pContext, &buffer, r);
  453. if(err < 0) {
  454. pContext->panic = 1;
  455. return -9;
  456. }
  457. return 0;
  458. }
  459. static int lblcmp(const char* label, const char* other, size_t label_sz) {
  460. while (label_sz != 1) {
  461. if(*other == 0) return 1;
  462. if(*label != *other) return 1;
  463. ++label;
  464. ++other;
  465. label_sz--;
  466. }
  467. return 0;
  468. }
  469. int ink_make_routine(struct context* ctx) {
  470. struct ink_routine* it;
  471. struct ink_routine* end;
  472. // Allocate space if needed
  473. if(ctx->routines == NULL) {
  474. ctx->routines = ctx->inner_malloc(sizeof(struct ink_routine) * 8);
  475. ctx->routines_top = 0;
  476. ctx->routines_capacity = 8;
  477. it = ctx->routines;
  478. end = ctx->routines + 8;
  479. for(;it != end;++it) {
  480. it->stack = NULL;
  481. it->function_stack = NULL;
  482. it->panic = INK_ROUTINE_CAN_REUSE;
  483. }
  484. } else if(ctx->routines_top == ctx->routines_capacity) {
  485. int new_count;
  486. void* renewed;
  487. new_count = (ctx->routines_capacity + ctx->routines_capacity/2);
  488. renewed = ctx->inner_realloc(ctx->routines, sizeof(struct stack_frame) * new_count);
  489. if(renewed == NULL) {
  490. return -99;
  491. } else {
  492. ctx->routines = renewed;
  493. it = ctx->routines + ctx->routines_capacity;
  494. end = ctx->routines + new_count;
  495. for(;it != end;++it) {
  496. it->panic = INK_ROUTINE_CAN_REUSE;
  497. }
  498. ctx->routines_capacity = new_count;
  499. }
  500. }
  501. it = ctx->routines;
  502. end = ctx->routines + ctx->routines_capacity;
  503. // Looks for a reusable routine space then uses it
  504. for(;it != end;++it) {
  505. if(it->panic == INK_ROUTINE_CAN_REUSE) {
  506. int idx;
  507. it->panic = 0;
  508. it->stack = NULL;
  509. it->top = 0;
  510. it->capacity = 0;
  511. it->function_stack = NULL;
  512. it->function_stack_top = 0;
  513. it->function_stack_capacity = 0;
  514. idx = it - ctx->routines;
  515. if(idx >= ctx->routines_top) {
  516. ctx->routines_top = idx + 1;
  517. }
  518. return idx;
  519. }
  520. }
  521. }
  522. int ink_kill_routine(struct context* ctx, int routine){
  523. struct ink_routine* curr;
  524. if(routine < 0 || routine >= ctx->routines_top) {
  525. return 0;
  526. }
  527. curr = ctx->routines + routine;
  528. if(curr->panic == INK_ROUTINE_CAN_REUSE) {
  529. return 0;
  530. }
  531. if(curr->stack != NULL) {
  532. ctx->free(curr->stack);
  533. curr->stack = NULL;
  534. }
  535. if(curr->function_stack != NULL) {
  536. ctx->free(curr->function_stack);
  537. curr->function_stack = NULL;
  538. }
  539. curr->panic = INK_ROUTINE_CAN_REUSE;
  540. return 1;
  541. }
  542. /**
  543. *
  544. * @param pContext
  545. * @param executable_buffer
  546. * @param executable_buffer_top
  547. * @internal Loop from hell
  548. */
  549. static int ink_parse(struct context* pContext, struct elem* executable_buffer, int* executable_buffer_top) {
  550. struct ink_routine* currentRoutine;
  551. int i, function_buffer_top, function_name, mode;
  552. #define LABEL_BUFFER 128
  553. #define FUNCTION_BUFFER 256
  554. struct label labels[LABEL_BUFFER];
  555. struct elem function_buffer[FUNCTION_BUFFER];
  556. currentRoutine = pContext->routines + pContext->routine_current;
  557. function_buffer_top = 0;
  558. function_name = -1;
  559. #define MODE_EXECUTABLE 0
  560. #define MODE_FUNCTION 1
  561. #define MODE_DO 2
  562. mode = MODE_EXECUTABLE;
  563. memset(labels, 0, sizeof(struct label)*LABEL_BUFFER);
  564. // Loop from hell, good luck, pro-tip: leave the parser alone
  565. for(i = 0; i < currentRoutine->top; ++i) {
  566. struct elem current;
  567. current = currentRoutine->stack[i];
  568. switch (mode) {
  569. case MODE_EXECUTABLE:
  570. switch(current.type) {
  571. case INK_FUNCTION_KW:
  572. mode = MODE_FUNCTION;
  573. function_name = -1;
  574. goto next_token;
  575. case INK_DO_KW:
  576. case INK_END_KW:
  577. return -26;
  578. default:
  579. executable_buffer[*executable_buffer_top] = current;
  580. *executable_buffer_top += 1;
  581. }
  582. break;
  583. case MODE_FUNCTION:
  584. if(current.type == INK_DO_KW) {
  585. if(function_name == -1) {
  586. return -27;
  587. } else {
  588. mode = MODE_DO;
  589. memset(labels, 0, sizeof(struct label)*128);
  590. goto next_token;
  591. }
  592. }
  593. if(function_name != -1) {
  594. return -28;
  595. }
  596. if(current.type != INK_RESERVED) {
  597. return -29;
  598. }
  599. function_name = current.value;
  600. break;
  601. case MODE_DO:
  602. if(current.type == INK_END_KW) {
  603. int j;
  604. for(j = 0; j < function_buffer_top; j++) {
  605. struct elem pt;
  606. pt = function_buffer[j];
  607. if(pt.type == INK_LABEL) {
  608. int k;
  609. for(k = 0; k < LABEL_BUFFER; k++) {
  610. if(labels[k].active) {
  611. if(strcmp(labels[k].name, pContext->lex_reserved_words[pt.value]) == 0) {
  612. labels[k].dest = j;
  613. return -30;
  614. break;
  615. }
  616. } else {
  617. labels[k].active = 1;
  618. labels[k].name = pContext->lex_reserved_words[pt.value];
  619. labels[k].dest = j;
  620. memcpy(function_buffer+j, function_buffer+j+1, sizeof(struct elem)*(function_buffer_top-j-1));
  621. function_buffer_top--;
  622. j--;
  623. break;
  624. }
  625. }
  626. }
  627. }
  628. for(j = 0; j < function_buffer_top; j++) {
  629. struct elem pt;
  630. pt = function_buffer[j];
  631. if(pt.type == INK_RESERVED) {
  632. const char* str = pContext->lex_reserved_words[pt.value];
  633. int k;
  634. for(k = 0; k < LABEL_BUFFER; k++) {
  635. if(labels[k].active) {
  636. int label_sz;
  637. const char* lbl;
  638. lbl = labels[k].name;
  639. label_sz = strlen(lbl);
  640. if(lblcmp(labels[k].name, pContext->lex_reserved_words[pt.value], label_sz) == 0) {
  641. function_buffer[j].type = INK_INTEGER;
  642. function_buffer[j].value = labels[k].dest - j;
  643. break;
  644. }
  645. } else break;
  646. }
  647. }
  648. }
  649. int err;
  650. err = ink_add_indigenous(pContext, pContext->lex_reserved_words[function_name], function_buffer, function_buffer_top);
  651. if(err < 0) {
  652. pContext->panic = 1;
  653. return -33;
  654. }
  655. function_buffer_top = 0;
  656. mode = MODE_EXECUTABLE;
  657. goto next_token;
  658. }
  659. function_buffer[function_buffer_top] = current;
  660. function_buffer_top += 1;
  661. break;
  662. }
  663. next_token: i=i;
  664. }
  665. if(mode == MODE_FUNCTION || mode == MODE_DO) {
  666. return -32;
  667. }
  668. return 0;
  669. #undef MODE_EXECUTABLE
  670. #undef MODE_FUNCTION
  671. #undef MODE_DO
  672. #undef LABEL_BUFFER
  673. #undef FUNCTION_BUFFER
  674. }
  675. int ink_step(struct context *pContext) {
  676. struct ink_routine* currentRoutine;
  677. struct stack_frame frame;
  678. struct stack_frame* top;
  679. struct elem next;
  680. int t;
  681. currentRoutine = pContext->routines + pContext->routine_current;
  682. pContext->steps++;
  683. if(currentRoutine->function_stack_top == 0) return 0;
  684. if(pContext->panic) {
  685. return -1;
  686. }
  687. top = &currentRoutine->function_stack[currentRoutine->function_stack_top-1];
  688. t = top->executing.type;
  689. switch(t) {
  690. case INK_NATIVE_FUNCTION:
  691. if(top->index != 0) {
  692. ink_pop_fn(pContext);
  693. } else {
  694. top->index++;
  695. if(pContext->native_words_top <= top->executing.value) {
  696. pContext->panic = 1;
  697. return -1;
  698. }
  699. pContext->native_words[top->executing.value].value(pContext);
  700. }
  701. break;
  702. case INK_FUNCTION:
  703. if(pContext->words_top <= top->executing.value) {
  704. pContext->panic = 1;
  705. return -1;
  706. }
  707. if(top->index >= pContext->words[top->executing.value].size) {
  708. ink_pop_fn(pContext);
  709. } else {
  710. next = pContext->words[top->executing.value].things[top->index];
  711. if(next.type == INK_RETURN) {
  712. ink_pop_fn(pContext);
  713. return 1;
  714. }
  715. frame.executing = next;
  716. frame.index = 0;
  717. t = ink_push_fn(pContext, frame);
  718. if(t < 0) {
  719. pContext->panic = 1;
  720. return -11;
  721. }
  722. top->index++;
  723. }
  724. break;
  725. default:
  726. t = ink_push(pContext, top->executing);
  727. if(t < 0) {
  728. pContext->panic = 1;
  729. return -25;
  730. }
  731. ink_pop_fn(pContext);
  732. break;
  733. }
  734. return 1;
  735. }
  736. void ink_compile(struct context *pContext, char* buffer) {
  737. int routine, saved, i, executable_buffer_top;
  738. // Main function has a size limit of 256 (need to know that for REPL
  739. struct elem executable_buffer[256];
  740. routine = ink_make_routine(pContext);
  741. saved = pContext->routine_current;
  742. pContext->routine_current = routine;
  743. struct ink_routine* currentRoutine = pContext->routines + routine;
  744. currentRoutine->stack = NULL;
  745. currentRoutine->top = 0;
  746. currentRoutine->capacity = 0;
  747. int err;
  748. err = ink_lex(pContext, buffer);
  749. if(err < 0) {
  750. pContext->panic = 1;
  751. return;
  752. }
  753. i = 0;
  754. executable_buffer_top = 0;
  755. err = ink_parse(pContext, executable_buffer, &executable_buffer_top);
  756. if(err < 0) {
  757. pContext->panic = 1;
  758. return;
  759. }
  760. struct stack_frame frame;
  761. char main_fn[32] = "__-MAIN-__";
  762. char* integer = ink_itoa(pContext, routine);
  763. size_t integer_size = strlen(integer);
  764. memcpy(main_fn+10, integer, integer_size);
  765. pContext->free(integer);
  766. main_fn[10+integer_size] = 0;
  767. frame.executing.value = ink_add_indigenous(pContext, main_fn, executable_buffer, executable_buffer_top);
  768. if(frame.executing.value < 0) {
  769. pContext->panic = 1;
  770. return;
  771. }
  772. frame.executing.type = INK_FUNCTION;
  773. frame.index = 0;
  774. err = ink_push_fn(pContext, frame);
  775. if(err < 0) {
  776. pContext->panic = 1;
  777. return;
  778. }
  779. pContext->routine_current = saved;
  780. return;
  781. }
  782. int ink_can_run(struct context* pContext) {
  783. int it;
  784. for(it = 0; it < pContext->routines_top; ++it) {
  785. if(pContext->routines[it].panic == 0) {
  786. return 1;
  787. }
  788. }
  789. return 0;
  790. }
  791. int ink_step_everyone(struct context* pContext) {
  792. int out;
  793. pContext->routine_current = -1;
  794. for(;;) {
  795. // Increment to next runnable routine
  796. do{
  797. ++(pContext->routine_current);
  798. } while(pContext->routine_current < pContext->routines_top && pContext->routines[pContext->routine_current].panic != 0);
  799. // Exit condition
  800. if(pContext->routine_current >= pContext->routines_top) break;
  801. // Kill?
  802. if(pContext->routines[pContext->routine_current].panic == INK_ROUTINE_SUCCESS) {
  803. ink_kill_routine(pContext, pContext->routine_current);
  804. }
  805. //Step!
  806. out = ink_step(pContext);
  807. if(out == 0) {
  808. pContext->routines[pContext->routine_current].panic = INK_ROUTINE_SUCCESS;
  809. } else if(out < 0) {
  810. pContext->routines[pContext->routine_current].panic = out;
  811. }
  812. }
  813. return 0;
  814. }
  815. int ink_new_type(
  816. struct context* ctx,
  817. const char* type_name,
  818. int size,
  819. void (*collect)(struct context*,void*),
  820. struct ink_collection_list (*gc)(struct context*,void*)
  821. ) {
  822. if(ctx->panic) return -128;
  823. // Resize for push
  824. if(ctx->types == NULL) {
  825. ctx->types = ctx->inner_malloc(sizeof(struct ink_type) * 8);
  826. ctx->types_top = 0;
  827. ctx->types_capacity = 8;
  828. } else if(ctx->types_top == ctx->types_capacity) {
  829. int new_count;
  830. void* renewed;
  831. new_count = (ctx->types_capacity + ctx->types_capacity/2);
  832. renewed = ctx->inner_realloc(ctx->types, sizeof(struct ink_type) * new_count);
  833. if(renewed == NULL) {
  834. return -129;
  835. } else {
  836. ctx->types = renewed;
  837. ctx->types_capacity = new_count;
  838. }
  839. }
  840. // Push
  841. ctx->types[ctx->types_top].name = type_name;
  842. ctx->types[ctx->types_top].element_size = size;
  843. ctx->types[ctx->types_top].elements = NULL;
  844. ctx->types[ctx->types_top].elements_top = 0;
  845. ctx->types[ctx->types_top].elements_capacity = 0;
  846. ctx->types[ctx->types_top].collect = collect;
  847. ctx->types[ctx->types_top].gc = gc;
  848. ctx->types_top++;
  849. // Satisfying the minimal value requirement
  850. return ctx->types_top - 1 + 16;
  851. }
  852. static struct element_slab* ink_get_value_link(struct context* ctx, struct elem ref) {
  853. int type_id;
  854. if(ref.type < 16) return NULL;
  855. type_id = ref.type - 16;
  856. if(type_id >= ctx->types_top) return NULL;
  857. if(ctx->types[type_id].element_size == 0) return NULL;
  858. if(ref.value < 0) return NULL;
  859. if(ref.value >= ctx->types[type_id].elements_top) return NULL;
  860. if(! ctx->types[type_id].elements[ref.value].in_use) return NULL;
  861. return ctx->types[type_id].elements + ref.value;
  862. }
  863. void* ink_get_value(struct context* ctx, struct elem ref) {
  864. struct element_slab* s;
  865. s = ink_get_value_link(ctx, ref);
  866. if(s == NULL) return NULL;
  867. return s->data;
  868. }
  869. struct elem ink_make_native(struct context* ctx, int type, void* ptr) {
  870. int type_id;
  871. struct elem ret;
  872. if(type < 16) {
  873. ret.type = 0;
  874. ret.value = -130;
  875. return ret;
  876. }
  877. // Apply invariant of the user defined types
  878. type_id = type - 16;
  879. if(type_id >= ctx->types_top) {
  880. ret.type = 0;
  881. ret.value = -129;
  882. return ret;
  883. }
  884. if(ctx->panic) {
  885. ret.type = 0;
  886. ret.value = -135;
  887. return ret;
  888. }
  889. // Resize for push of value in store
  890. if(ctx->types[type_id].elements == NULL) {
  891. ctx->types[type_id].elements = ctx->inner_malloc(sizeof(struct element_slab) * 8);
  892. ctx->types[type_id].elements_top = 0;
  893. ctx->types[type_id].elements_capacity = 8;
  894. memset(ctx->types[type_id].elements + ctx->types[type_id].elements_top, 0, sizeof(struct element_slab)*(ctx->types[type_id].elements_capacity - ctx->types[type_id].elements_top));
  895. } else if(ctx->types[type_id].elements_top == ctx->types[type_id].elements_capacity) {
  896. int new_count;
  897. void* renewed;
  898. new_count = (ctx->types[type_id].elements_capacity + ctx->types[type_id].elements_capacity/2);
  899. renewed = ctx->inner_realloc(ctx->types[type_id].elements, sizeof(struct element_slab) * new_count);
  900. if(renewed == NULL) {
  901. ret.type = 0;
  902. ret.value = -129;
  903. return ret;
  904. } else {
  905. ctx->types[type_id].elements = renewed;
  906. ctx->types[type_id].elements_capacity = new_count;
  907. memset(ctx->types[type_id].elements + ctx->types[type_id].elements_top, 0, sizeof(struct element_slab)*(ctx->types[type_id].elements_capacity - ctx->types[type_id].elements_top));
  908. }
  909. }
  910. // Push value in store
  911. int g, i;
  912. g = ctx->types[type_id].elements_capacity;
  913. for(i = 0; i < g; ++i) {
  914. if(! ctx->types[type_id].elements[i].in_use) {
  915. ctx->types[type_id].elements[i].in_use = 1;
  916. ctx->types[type_id].elements[i].uses = 1;
  917. if(ctx->types[type_id].element_size < 0) {
  918. ctx->types[type_id].elements[i].data = ptr;
  919. } else {
  920. void* new_ptr = ctx->malloc(ctx->types[type_id].element_size);
  921. if(new_ptr == NULL) {
  922. ret.type = 0;
  923. ret.value = -139;
  924. return ret;
  925. }
  926. memcpy(new_ptr, ptr, ctx->types[type_id].element_size);
  927. ctx->types[type_id].elements[i].data = new_ptr;
  928. }
  929. ctx->types[type_id].elements_top = max(ctx->types[type_id].elements_top, i+1);
  930. ret.type = type;
  931. ret.value = i;
  932. return ret;
  933. }
  934. }
  935. ret.type = 0;
  936. ret.value = -140;
  937. return ret;
  938. }
  939. void ink_gc(struct context* ctx) {
  940. int i, j, k;
  941. int marked;
  942. struct element_slab* v;
  943. for(i = 0; i < ctx->types_top; ++i) {
  944. for(j = 0; j < ctx->types[i].elements_top; ++j) {
  945. ctx->types[i].elements[j].uses = 0;
  946. }
  947. }
  948. // Start by marking the roots of the routines
  949. for(i = 0; i < ctx->routines_top; ++i) {
  950. for(j = 0; j < ctx->routines[i].top; ++j) {
  951. v = ink_get_value_link(ctx, ctx->routines[i].stack[j]);
  952. if(v != NULL) ++v->uses;
  953. }
  954. }
  955. // Mark the rest of the data
  956. do {
  957. marked = 0;
  958. for (i = 0; i < ctx->types_top; ++i) {
  959. for (j = 0; j < ctx->types[i].elements_top; ++j) {
  960. // Only mark from things that are active and detected as in use
  961. if (ctx->types[i].elements[j].in_use && ctx->types[i].elements[j].uses) {
  962. struct ink_collection_list c;
  963. c = ctx->types[i].gc(ctx, ctx->types[i].elements[j].data);
  964. for (k = 0; k < c.count; ++k) {
  965. struct element_slab *v;
  966. v = ink_get_value_link(ctx, c.elements[k]);
  967. // Never mark twice to avoid infinite loops with e.g. arrays that contain themselves
  968. if (v != NULL && !v->uses) {
  969. ++v->uses;
  970. marked = 1;
  971. }
  972. }
  973. if (c.elements != NULL) ctx->inner_free(c.elements);
  974. }
  975. }
  976. }
  977. } while(marked);
  978. // Sweep phase: explore any allocated data and sweep the unused away
  979. for(i = 0; i < ctx->types_top; ++i) {
  980. for(j = 0; j < ctx->types[i].elements_top; ++j) {
  981. if(ctx->types[i].elements[j].uses == 0 && ctx->types[i].elements[j].in_use) {
  982. ctx->collections++;
  983. ctx->types[i].collect(ctx, ctx->types[i].elements[j].data);
  984. if(ctx->types[i].element_size > 0) {
  985. ctx->free(ctx->types[i].elements[j].data);
  986. }
  987. ctx->types[i].elements[j].data = NULL;
  988. ctx->types[i].elements[j].uses = 0;
  989. ctx->types[i].elements[j].in_use = 0;
  990. }
  991. }
  992. }
  993. }
  994. /**********************************************************************************************************************/
  995. static void print_stacktrace(struct context* _) {
  996. int i;
  997. struct ink_routine* currentRoutine;
  998. currentRoutine = _->routines + _->routine_current;
  999. for(i = 0; i < currentRoutine->function_stack_top; ++i) {
  1000. struct elem thing;
  1001. char *n;
  1002. thing = currentRoutine->function_stack[i].executing;
  1003. switch(thing.type) {
  1004. case INK_NATIVE_FUNCTION: {
  1005. n = _->native_words[thing.value].name;
  1006. while (*n) {
  1007. _->putchar(*n);
  1008. ++n;
  1009. }
  1010. _->putchar(10);
  1011. break;
  1012. }
  1013. case INK_FUNCTION:{
  1014. n = _->native_words[thing.value].name;
  1015. while (*n) {
  1016. _->putchar(*n);
  1017. ++n;
  1018. }
  1019. _->putchar(':');
  1020. n = ink_itoa(_, currentRoutine->function_stack[i].index);
  1021. while (*n) {
  1022. _->putchar(*n);
  1023. ++n;
  1024. }
  1025. _->free(n);
  1026. _->putchar(10);
  1027. break;
  1028. }
  1029. default:
  1030. break;
  1031. }
  1032. }
  1033. }
  1034. static void add_int(struct context* ctx) {
  1035. struct ink_routine* currentRoutine;
  1036. struct elem a;
  1037. struct elem b;
  1038. currentRoutine = ctx->routines + ctx->routine_current;
  1039. if(currentRoutine->top < 2) {
  1040. currentRoutine->panic = 1;
  1041. return;
  1042. }
  1043. a = currentRoutine->stack[currentRoutine->top-1];
  1044. b = currentRoutine->stack[currentRoutine->top-2];
  1045. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1046. ctx->panic = 1;
  1047. return;
  1048. }
  1049. ink_pop(ctx);
  1050. currentRoutine->stack[currentRoutine->top-1].value = a.value + b.value;
  1051. }
  1052. static void sub_int(struct context* ctx) {
  1053. struct ink_routine* currentRoutine;
  1054. struct elem a;
  1055. struct elem b;
  1056. currentRoutine = ctx->routines + ctx->routine_current;
  1057. if(currentRoutine->top < 2) {
  1058. currentRoutine->panic = 1;
  1059. return;
  1060. }
  1061. a = currentRoutine->stack[currentRoutine->top-1];
  1062. b = currentRoutine->stack[currentRoutine->top-2];
  1063. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1064. currentRoutine->panic = 1;
  1065. return;
  1066. }
  1067. ink_pop(ctx);
  1068. currentRoutine->stack[currentRoutine->top-1].value = b.value - a.value;
  1069. }
  1070. static void mult_int(struct context* ctx) {
  1071. struct ink_routine* currentRoutine;
  1072. struct elem a;
  1073. struct elem b;
  1074. currentRoutine = ctx->routines + ctx->routine_current;
  1075. if(currentRoutine->top < 2) {
  1076. currentRoutine->panic = 1;
  1077. return;
  1078. }
  1079. a = currentRoutine->stack[currentRoutine->top-1];
  1080. b = currentRoutine->stack[currentRoutine->top-2];
  1081. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1082. currentRoutine->panic = 1;
  1083. return;
  1084. }
  1085. ink_pop(ctx);
  1086. currentRoutine->stack[currentRoutine->top-1].value = b.value * a.value;
  1087. }
  1088. static void div_int(struct context* ctx) {
  1089. struct ink_routine* currentRoutine;
  1090. struct elem a;
  1091. struct elem b;
  1092. currentRoutine = ctx->routines + ctx->routine_current;
  1093. if(currentRoutine->top < 2) {
  1094. currentRoutine->panic = 1;
  1095. return;
  1096. }
  1097. a = currentRoutine->stack[currentRoutine->top-1];
  1098. b = currentRoutine->stack[currentRoutine->top-2];
  1099. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1100. currentRoutine->panic = 1;
  1101. return;
  1102. }
  1103. ink_pop(ctx);
  1104. currentRoutine->stack[currentRoutine->top-1].value = b.value / a.value;
  1105. }
  1106. static void rem_int(struct context* ctx) {
  1107. struct ink_routine* currentRoutine;
  1108. struct elem a;
  1109. struct elem b;
  1110. currentRoutine = ctx->routines + ctx->routine_current;
  1111. if(currentRoutine->top < 2) {
  1112. currentRoutine->panic = 1;
  1113. return;
  1114. }
  1115. a = currentRoutine->stack[currentRoutine->top-1];
  1116. b = currentRoutine->stack[currentRoutine->top-2];
  1117. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1118. currentRoutine->panic = 1;
  1119. return;
  1120. }
  1121. ink_pop(ctx);
  1122. currentRoutine->stack[currentRoutine->top-1].value = b.value % a.value;
  1123. }
  1124. static void dupe_elem(struct context* ctx) {
  1125. struct ink_routine* currentRoutine;
  1126. struct elem a;
  1127. int err;
  1128. currentRoutine = ctx->routines + ctx->routine_current;
  1129. if(currentRoutine->top < 1) {
  1130. ctx->panic = 1;
  1131. return;
  1132. }
  1133. a = currentRoutine->stack[currentRoutine->top-1];
  1134. err = ink_push(ctx, a);
  1135. if(err < 0) ctx->panic;
  1136. }
  1137. static void drop_elem(struct context* ctx) {
  1138. struct ink_routine* currentRoutine;
  1139. currentRoutine = ctx->routines + ctx->routine_current;
  1140. if(currentRoutine->top < 1) {
  1141. ctx->panic = 1;
  1142. return;
  1143. }
  1144. ink_pop(ctx);
  1145. }
  1146. static void pluck_elem(struct context* ctx) {
  1147. struct ink_routine* currentRoutine;
  1148. struct elem a;
  1149. int position, err;
  1150. currentRoutine = ctx->routines + ctx->routine_current;
  1151. if(currentRoutine->top < 1) {
  1152. currentRoutine->panic = 1;
  1153. return;
  1154. }
  1155. a = currentRoutine->stack[currentRoutine->top-1];
  1156. if(a.type != INK_INTEGER) {
  1157. ctx->panic = 1;
  1158. return;
  1159. }
  1160. position = currentRoutine->top - (a.value + 1);
  1161. if(position >= currentRoutine->top || position < 0) {
  1162. ctx->panic = 1;
  1163. return;
  1164. }
  1165. ink_pop(ctx);
  1166. err = ink_push(ctx, currentRoutine->stack[position]);
  1167. if(err < 0) ctx->panic;
  1168. }
  1169. static void swap_elem(struct context* ctx) {
  1170. struct ink_routine* currentRoutine;
  1171. struct elem a;
  1172. struct elem b;
  1173. currentRoutine = ctx->routines + ctx->routine_current;
  1174. if(currentRoutine->top < 2) {
  1175. currentRoutine->panic = 1;
  1176. return;
  1177. }
  1178. a = currentRoutine->stack[currentRoutine->top-1];
  1179. b = currentRoutine->stack[currentRoutine->top-2];
  1180. currentRoutine->stack[currentRoutine->top-2] = a;
  1181. currentRoutine->stack[currentRoutine->top-1] = b;
  1182. }
  1183. static void return_if(struct context* ctx) {
  1184. struct ink_routine* currentRoutine;
  1185. struct elem a;
  1186. currentRoutine = ctx->routines + ctx->routine_current;
  1187. if(currentRoutine->top < 1) {
  1188. ctx->panic = 1;
  1189. return;
  1190. }
  1191. a = currentRoutine->stack[currentRoutine->top-1];
  1192. if(a.type != INK_INTEGER) {
  1193. ctx->panic = 1;
  1194. return;
  1195. }
  1196. if(a.value) {
  1197. ink_pop_fn(ctx);
  1198. ink_pop_fn(ctx);
  1199. }
  1200. ink_pop(ctx);
  1201. return;
  1202. }
  1203. static void jump_if(struct context* ctx) {
  1204. struct ink_routine* currentRoutine;
  1205. struct elem a;
  1206. currentRoutine = ctx->routines + ctx->routine_current;
  1207. if(currentRoutine->top < 1) {
  1208. ctx->panic = 1;
  1209. return;
  1210. }
  1211. a = currentRoutine->stack[currentRoutine->top-1];
  1212. if(a.type != INK_INTEGER) {
  1213. ctx->panic = 1;
  1214. return;
  1215. }
  1216. ink_pop(ctx);
  1217. if(a.value) {
  1218. ink_pop_fn(ctx);
  1219. a = currentRoutine->stack[currentRoutine->top-1];
  1220. currentRoutine->function_stack[currentRoutine->function_stack_top - 1].index += a.value - 3;
  1221. }
  1222. ink_pop(ctx);
  1223. return;
  1224. }
  1225. static void print_int(struct context* ctx) {
  1226. struct ink_routine* currentRoutine;
  1227. struct elem a;
  1228. char* n;
  1229. char* str;
  1230. currentRoutine = ctx->routines + ctx->routine_current;
  1231. if(currentRoutine->top < 1 || currentRoutine->stack[currentRoutine->top-1].type != INK_INTEGER) {
  1232. currentRoutine->panic = 1;
  1233. return;
  1234. }
  1235. a = currentRoutine->stack[currentRoutine->top-1];
  1236. ink_pop(ctx);
  1237. n = ink_itoa(ctx, a.value);
  1238. str = n;
  1239. while (*str) {
  1240. ctx->putchar(*str);
  1241. ++str;
  1242. }
  1243. ctx->free(n);
  1244. }
  1245. static void print_as_utf8(struct context* ctx) {
  1246. struct ink_routine* currentRoutine;
  1247. struct elem a;
  1248. currentRoutine = ctx->routines + ctx->routine_current;
  1249. if(currentRoutine->top < 1 || currentRoutine->stack[currentRoutine->top-1].type != INK_INTEGER) {
  1250. ctx->panic = 1;
  1251. return;
  1252. }
  1253. a = currentRoutine->stack[currentRoutine->top-1];
  1254. if(a.value <= 0x7F) {
  1255. ctx->putchar(a.value);
  1256. } else if(a.value <= 0x7FF) {
  1257. ctx->putchar(((a.value & 0xFC0) >> 6) | 192);
  1258. ctx->putchar((a.value & 0x3F) | 128);
  1259. } else if(a.value <= 0xFFFF) {
  1260. ctx->putchar(((a.value & 0x3F000) >> 12) | 224);
  1261. ctx->putchar(((a.value & 0xFC0) >> 6) | 128);
  1262. ctx->putchar((a.value & 0x3F) | 128);
  1263. } else if(a.value <= 0x10FFFF) {
  1264. ctx->putchar(((a.value & 0x3C0000) >> 18) | 240);
  1265. ctx->putchar(((a.value & 0x3F000) >> 12) | 128);
  1266. ctx->putchar(((a.value & 0xFC0) >> 6) | 128);
  1267. ctx->putchar((a.value & 0x3F) | 128);
  1268. } else {
  1269. ctx->panic = 1;
  1270. return;
  1271. }
  1272. ink_pop(ctx);
  1273. }
  1274. struct ink_array {
  1275. int top;
  1276. int capacity;
  1277. struct elem* elements;
  1278. };
  1279. static int get_type_by_name(struct context* ctx, const char* name) {
  1280. int i;
  1281. for(i = 0; i < ctx->types_top; ++i) {
  1282. if(strcmp(ctx->types[i].name, name) == 0) {
  1283. return i + 16;
  1284. }
  1285. }
  1286. return -1;
  1287. }
  1288. static void collect_array(struct context* ctx, void* array) {
  1289. struct ink_array* ary;
  1290. ary = array;
  1291. if(ary->elements != NULL) ctx->free(ary->elements);
  1292. }
  1293. static struct ink_collection_list gc_array(struct context* ctx, void* array) {
  1294. struct ink_array* ary;
  1295. struct ink_collection_list c;
  1296. ary = array;
  1297. c.elements = ctx->inner_malloc(sizeof(struct elem)*ary->top);
  1298. c.count = ary->top;
  1299. memcpy(c.elements, ary->elements, sizeof(struct elem)*ary->top);
  1300. return c;
  1301. }
  1302. static void new_array(struct context* ctx) {
  1303. int tid;
  1304. struct elem e;
  1305. struct ink_array ary;
  1306. tid = get_type_by_name(ctx, "array");
  1307. ary.elements = NULL;
  1308. ary.top = 0;
  1309. ary.capacity = 0;
  1310. e = ink_make_native(ctx, tid, &ary);
  1311. ink_push(ctx, e);
  1312. }
  1313. static void push_array(struct context* ctx) {
  1314. int tid;
  1315. struct elem a;
  1316. struct ink_routine* currentRoutine;
  1317. struct ink_array* ary;
  1318. tid = get_type_by_name(ctx, "array");
  1319. currentRoutine = ctx->routines + ctx->routine_current;
  1320. if(currentRoutine->top < 2 || currentRoutine->stack[currentRoutine->top-1].type != tid) {
  1321. currentRoutine->panic = 1;
  1322. return;
  1323. }
  1324. a = currentRoutine->stack[currentRoutine->top-1];
  1325. ary= ink_get_value(ctx, a);
  1326. if(ary == NULL) {
  1327. currentRoutine->panic = 1;
  1328. return;
  1329. }
  1330. ink_pop(ctx);
  1331. if(ary->elements == NULL) {
  1332. ary->elements = ctx->malloc(sizeof(struct elem) * 8);
  1333. ary->top = 0;
  1334. ary->capacity = 8;
  1335. } else if(ary->top == ary->capacity) {
  1336. int new_count;
  1337. void* renewed;
  1338. new_count = (ary->capacity + ary->capacity/2);
  1339. renewed = ctx->realloc(ary->elements, sizeof(struct elem) * new_count);
  1340. if(renewed == NULL) {
  1341. currentRoutine->panic = 1;
  1342. return;
  1343. } else {
  1344. ary->elements = renewed;
  1345. ary->capacity = new_count;
  1346. }
  1347. }
  1348. ary->elements[ary->top] = currentRoutine->stack[currentRoutine->top-1];
  1349. ary->top++;
  1350. ink_pop(ctx);
  1351. }
  1352. static void index_array(struct context* ctx) {
  1353. int tid;
  1354. struct ink_routine *currentRoutine;
  1355. struct elem a;
  1356. struct ink_array *ary;
  1357. struct elem idx;
  1358. tid = get_type_by_name(ctx, "array");
  1359. currentRoutine = ctx->routines + ctx->routine_current;
  1360. if (currentRoutine->top < 2 || currentRoutine->stack[currentRoutine->top - 1].type != tid || currentRoutine->stack[currentRoutine->top - 2].type != INK_INTEGER) {
  1361. currentRoutine->panic = 1;
  1362. return;
  1363. }
  1364. a = currentRoutine->stack[currentRoutine->top - 1];
  1365. ary = ink_get_value(ctx, a);
  1366. if (ary == NULL) {
  1367. currentRoutine->panic = 1;
  1368. return;
  1369. }
  1370. ink_pop(ctx);
  1371. idx = currentRoutine->stack[currentRoutine->top - 1];
  1372. ink_pop(ctx);
  1373. if(ary->top <= idx.value) {
  1374. currentRoutine->panic = 1;
  1375. return;
  1376. }
  1377. ink_push(ctx, ary->elements[idx.value]);
  1378. }
  1379. static void run_gc(struct context* ctx) {
  1380. ink_gc(ctx);
  1381. }
  1382. int ink_std_library(struct context* ctx) {
  1383. int v, array_t;
  1384. v = 0;
  1385. array_t = ink_new_type(ctx, "array", sizeof(struct ink_array), collect_array, gc_array);
  1386. v += ink_add_native(ctx, "array.new", new_array);
  1387. v += ink_add_native(ctx, "array.push", push_array);
  1388. v += ink_add_native(ctx, "array.index", index_array);
  1389. v += ink_add_native(ctx, "sys.trace", print_stacktrace);
  1390. v += ink_add_native(ctx, "sys.gc", run_gc);
  1391. v += ink_add_native(ctx, "print_int", print_int);
  1392. v += ink_add_native(ctx, "print_utf8", print_as_utf8);
  1393. v += ink_add_native(ctx, "+", add_int);
  1394. v += ink_add_native(ctx, "-", sub_int);
  1395. v += ink_add_native(ctx, "*", mult_int);
  1396. v += ink_add_native(ctx, "/", div_int);
  1397. v += ink_add_native(ctx, "%", rem_int);
  1398. v += ink_add_native(ctx, "swap", swap_elem);
  1399. v += ink_add_native(ctx, "dup", dupe_elem);
  1400. v += ink_add_native(ctx, "drop", drop_elem);
  1401. v += ink_add_native(ctx, "pluck", pluck_elem);
  1402. v += ink_add_native(ctx, "return_if", return_if);
  1403. v += ink_add_native(ctx, "jump_if", jump_if);
  1404. return v;
  1405. }