A minimalistic programming language written in C89.
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

951 行
22 KiB

6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
6ヶ月前
  1. #include "ink.h"
  2. #ifndef NOSTDLIB
  3. #include <stdio.h>
  4. #include <stdlib.h>
  5. #include <string.h>
  6. #include <ctype.h>
  7. #endif
  8. #define INK_RESERVED (-1)
  9. #define INK_FUNCTION_KW (-2)
  10. #define INK_DO_KW (-3)
  11. #define INK_END_KW (-4)
  12. #define INK_LABEL (-5)
  13. #define INK_RETURN (-6)
  14. #define _KEYWORD_INK_FUNCTION "fn"
  15. #define _KEYWORD_INK_DO "do"
  16. #define _KEYWORD_INK_END "end"
  17. #define _KEYWORD_INK_RETURN "return"
  18. struct label {
  19. int active;
  20. int dest;
  21. char* name;
  22. };
  23. #ifdef NOSTDLIB
  24. static size_t strlen(const char* c) {
  25. size_t j = 0;
  26. while(*(c++)) {
  27. j++;
  28. }
  29. return j;
  30. }
  31. static void* memcpy(void* _dest, const void* _src, size_t sz) {
  32. char* dest = _dest;
  33. const char* src = _src;
  34. while(sz--) {
  35. *(dest++) = *(src++);
  36. }
  37. return dest;
  38. }
  39. static int strcmp(const char* dest, const char* src) {
  40. while(*dest != 0 && *src != 0) {
  41. if(*(dest++) != *(src++)) {
  42. return 1;
  43. }
  44. }
  45. return 0;
  46. }
  47. static void* memmove(void* _dest, const void* _src, size_t sz) {
  48. char* dest = _dest;
  49. const char* src = _src;
  50. if (src < dest) {
  51. src += sz;
  52. dest += sz;
  53. while (sz-- > 0) {
  54. *--dest = *--src;
  55. }
  56. } else {
  57. while (sz-- > 0) {
  58. *dest++ = *src++;
  59. }
  60. }
  61. return dest;
  62. }
  63. static void* memset(void* _dest, int src, size_t sz) {
  64. char* dest = _dest;
  65. while(sz--) {
  66. *(dest++) = src++;
  67. }
  68. return dest;
  69. }
  70. static int isspace(int d) {
  71. return d == ' ' || d == '\t' || d == '\n';
  72. }
  73. static int isdigit(int d) {
  74. return '0' <= d && d <= '9';
  75. }
  76. static int atoi(const char* c) {
  77. int ret = 0;
  78. while(*c) {
  79. ret *= 10;
  80. ret += *c - '0';
  81. ++c;
  82. }
  83. return ret;
  84. }
  85. #endif
  86. int ink_add_native(struct context* ctx, const char* name, void(*value)(struct context*)) {
  87. if(ctx->native_words == NULL) {
  88. ctx->native_words = ctx->malloc(sizeof(struct native_fn) * 8);
  89. ctx->native_words_top = 0;
  90. ctx->native_words_capacity = 8;
  91. } else if(ctx->native_words_top == ctx->native_words_capacity) {
  92. int new_count = (ctx->native_words_capacity + ctx->native_words_capacity/2);
  93. void* renewed = ctx->realloc(ctx->native_words, sizeof(struct native_fn) * new_count);
  94. if(renewed == NULL) {
  95. return -3;
  96. } else {
  97. ctx->native_words = renewed;
  98. ctx->native_words_capacity = new_count;
  99. }
  100. }
  101. int len = strlen(name);
  102. char* copy = ctx->malloc(len+1);
  103. if(copy == NULL) {
  104. return -4;
  105. }
  106. memcpy(copy, name, len);
  107. copy[len] = 0;
  108. ctx->native_words[ctx->native_words_top].value = value;
  109. ctx->native_words[ctx->native_words_top].name = copy;
  110. ctx->native_words_top++;
  111. return 0;
  112. }
  113. static int ink_add_indigenous(struct context* ctx, const char* name, struct elem* m, size_t count) {
  114. if(ctx->words == NULL) {
  115. ctx->words = ctx->malloc(sizeof(struct fn) * 8);
  116. ctx->words_top = 0;
  117. ctx->words_capacity = 8;
  118. } else if(ctx->words_top == ctx->words_capacity) {
  119. int new_count = (ctx->words_capacity + ctx->words_capacity/2);
  120. void* renewed = ctx->realloc(ctx->words, sizeof(struct native_fn) * new_count);
  121. if(renewed == NULL) {
  122. return -1;
  123. } else {
  124. ctx->words = renewed;
  125. ctx->words_capacity = new_count;
  126. }
  127. }
  128. int i;
  129. for(i = 0; i < ctx->words_top; ++i) {
  130. if(strcmp(name, ctx->words[i].name) == 0) {
  131. ctx->free(ctx->words[i].things);
  132. ctx->words[i].things = ctx->malloc(sizeof(struct elem) * count);
  133. memcpy(ctx->words[i].things, m, sizeof(struct elem) * count);
  134. ctx->words[i].size = count;
  135. return i;
  136. }
  137. }
  138. int len = strlen(name);
  139. char* copy = ctx->malloc(len+1);
  140. if(copy == NULL) {
  141. return -2;
  142. }
  143. memcpy(copy, name, len);
  144. copy[len] = 0;
  145. ctx->words[ctx->words_top].things = ctx->malloc(sizeof(struct elem) * count);
  146. memcpy(ctx->words[ctx->words_top].things, m, sizeof(struct elem) * count);
  147. ctx->words[ctx->words_top].size = count;
  148. ctx->words[ctx->words_top].name = copy;
  149. return ctx->words_top++;
  150. }
  151. static int ink_add_lex_string(struct context* ctx, const char* name) {
  152. int i;
  153. if(ctx->lex_reserved_words == NULL) {
  154. ctx->lex_reserved_words = ctx->malloc(sizeof(char*) * 8);
  155. ctx->lex_reserved_words_top = 0;
  156. ctx->lex_reserved_words_capacity = 8;
  157. } else if(ctx->lex_reserved_words_top == ctx->lex_reserved_words_capacity) {
  158. int new_count = (ctx->lex_reserved_words_capacity + ctx->lex_reserved_words_capacity/2);
  159. void* renewed = ctx->realloc(ctx->lex_reserved_words, sizeof(struct native_fn) * new_count);
  160. if(renewed == NULL) {
  161. return -5;
  162. } else {
  163. ctx->lex_reserved_words = renewed;
  164. ctx->lex_reserved_words_capacity = new_count;
  165. }
  166. }
  167. for(i = 0; i < ctx->lex_reserved_words_top; i++) {
  168. if(strcmp(ctx->lex_reserved_words[i], name) == 0) {
  169. return i;
  170. }
  171. }
  172. int len = strlen(name);
  173. i = ctx->lex_reserved_words_top;
  174. ctx->lex_reserved_words[i] = ctx->malloc(len+1);
  175. memcpy(ctx->lex_reserved_words[i], name, len);
  176. ctx->lex_reserved_words[i][len] = 0;
  177. ctx->lex_reserved_words_top++;
  178. return i;
  179. }
  180. int ink_push(struct context* ctx, struct elem value) {
  181. if(ctx->stack == NULL) {
  182. ctx->stack = ctx->malloc(sizeof(struct elem) * 8);
  183. ctx->top = 0;
  184. ctx->capacity = 8;
  185. } else if(ctx->top == ctx->capacity) {
  186. int new_count = (ctx->capacity + ctx->capacity/2);
  187. void* renewed = ctx->realloc(ctx->stack, sizeof(struct elem) * new_count);
  188. if(renewed == NULL) {
  189. return -18;
  190. } else {
  191. ctx->stack = renewed;
  192. ctx->capacity = new_count;
  193. }
  194. }
  195. ctx->stack[ctx->top] = value;
  196. ctx->top++;
  197. return 0;
  198. }
  199. int ink_push_fn(struct context* ctx, struct stack_frame value) {
  200. if(ctx->function_stack == NULL) {
  201. ctx->function_stack = ctx->malloc(sizeof(struct stack_frame) * 8);
  202. ctx->function_stack_top = 0;
  203. ctx->function_stack_capacity = 8;
  204. } else if(ctx->function_stack_top == ctx->function_stack_capacity) {
  205. int new_count = (ctx->function_stack_capacity + ctx->function_stack_capacity/2);
  206. void* renewed = ctx->realloc(ctx->function_stack, sizeof(struct stack_frame) * new_count);
  207. if(renewed == NULL) {
  208. return -9;
  209. } else {
  210. ctx->function_stack = renewed;
  211. ctx->function_stack_capacity = new_count;
  212. }
  213. }
  214. ctx->function_stack[ctx->function_stack_top] = value;
  215. ctx->function_stack_top++;
  216. return 0;
  217. }
  218. static void ink_pop_fn(struct context* ctx) {
  219. if(ctx->function_stack == NULL) return;
  220. if(ctx->function_stack_top == 0) return;
  221. ctx->function_stack_top--;
  222. }
  223. static void ink_pop(struct context* ctx) {
  224. if(ctx->stack == NULL) return;
  225. if(ctx->top == 0) return;
  226. ctx->top--;
  227. }
  228. struct context* ink_make_context(void*(*malloc)(size_t), void*(*realloc)(void*, size_t), void(*free)(void*), int(*putchar)(int)) {
  229. struct context* ctx = (struct context*)malloc(sizeof(struct context));
  230. ctx->malloc = malloc;
  231. ctx->realloc = realloc;
  232. ctx->free = free;
  233. ctx->putchar = putchar;
  234. ctx->panic = 0;
  235. ctx->stack = NULL;
  236. ctx->capacity = 0;
  237. ctx->top = 0;
  238. ctx->function_stack = NULL;
  239. ctx->function_stack_capacity = 0;
  240. ctx->function_stack_top = 0;
  241. ctx->native_words = NULL;
  242. ctx->native_words_capacity = 0;
  243. ctx->native_words_top = 0;
  244. ctx->words = NULL;
  245. ctx->words_capacity = 0;
  246. ctx->words_top = 0;
  247. ctx->lex_reserved_words = NULL;
  248. ctx->lex_reserved_words_capacity = 0;
  249. ctx->lex_reserved_words_top = 0;
  250. return ctx;
  251. }
  252. /**
  253. * Allocates a string that contains the integer
  254. * @param _ context (used to allocate)
  255. * @param cpy the value
  256. * @return the allocated string, needs to be freed by ctx->free
  257. */
  258. static char* ink_itoa(struct context* _, int cpy) {
  259. char* n = _->malloc(16);
  260. n[15] = 0;
  261. char* it = n+15;
  262. do {
  263. it--;
  264. *it = (cpy % 10) + '0';
  265. cpy = cpy / 10;
  266. } while(cpy);
  267. memmove(n, it, 16 - (it-n));
  268. return n;
  269. }
  270. #ifndef NOSTDLIB
  271. struct context* ink_make_default_context() {
  272. struct context* ctx = ink_make_context(malloc, realloc, free, putchar);
  273. ink_std_library(ctx);
  274. return ctx;
  275. }
  276. #endif
  277. static int ink_consume_one(int* end, struct context* pContext, char** buffer, char* r) {
  278. int i;
  279. if(*end == 0) {
  280. return 0;
  281. }
  282. r[*end] = 0;
  283. int done = 0;
  284. struct elem value;
  285. if (strcmp(r, _KEYWORD_INK_FUNCTION) == 0) {
  286. value.value = 0;
  287. value.type = INK_FUNCTION_KW;
  288. done = 1;
  289. }
  290. if (!done && strcmp(r, _KEYWORD_INK_DO) == 0) {
  291. value.value = 0;
  292. value.type = INK_DO_KW;
  293. done = 1;
  294. }
  295. if (!done && strcmp(r, _KEYWORD_INK_END) == 0) {
  296. value.value = 0;
  297. value.type = INK_END_KW;
  298. done = 1;
  299. }
  300. if (!done && strcmp(r, _KEYWORD_INK_RETURN) == 0) {
  301. value.value = 0;
  302. value.type = INK_RETURN;
  303. done = 1;
  304. }
  305. if(done) {
  306. int err;
  307. err = ink_push(pContext, value);
  308. if(err < 0) {
  309. return -19;
  310. }
  311. }
  312. if (!done) {
  313. for (i = 0; i < pContext->words_top; ++i) {
  314. if (strcmp(r, pContext->words[i].name) == 0) {
  315. value.value = i;
  316. value.type = INK_FUNCTION;
  317. int err;
  318. err = ink_push(pContext, value);
  319. if(err < 0) {
  320. return -20;
  321. }
  322. done = 1;
  323. break;
  324. }
  325. }
  326. }
  327. if (!done) {
  328. for (i = 0; i < pContext->native_words_top; ++i) {
  329. if (strcmp(r, pContext->native_words[i].name) == 0) {
  330. value.value = i;
  331. value.type = INK_NATIVE_FUNCTION;
  332. int err;
  333. err = ink_push(pContext, value);
  334. if(err < 0) {
  335. return -21;
  336. }
  337. done = 1;
  338. break;
  339. }
  340. }
  341. }
  342. if (!done) {
  343. for(i = (r[0] == '-'); i < *end; i++) {
  344. if(!isdigit(r[i])){
  345. goto not_an_int;
  346. }
  347. }
  348. value.value = atoi(r);
  349. value.type = INK_INTEGER;
  350. int err;
  351. err = ink_push(pContext, value);
  352. if(err < 0) {
  353. return -22;
  354. }
  355. done = 1;
  356. }
  357. not_an_int:
  358. if (!done) {
  359. i = ink_add_lex_string(pContext, r);
  360. if(i < 0) {
  361. pContext->panic = 1;
  362. return -7;
  363. }
  364. value.value = i;
  365. if(r[strlen(r) - 1] == ':') {
  366. value.type = INK_LABEL;
  367. } else {
  368. value.type = INK_RESERVED;
  369. }
  370. int err;
  371. err = ink_push(pContext, value);
  372. if(err < 0) {
  373. return -23;
  374. }
  375. }
  376. *end = 0;
  377. return 0;
  378. }
  379. static int ink_lex(struct context *pContext, char* buffer) {
  380. int i;
  381. char r[128];
  382. int end = 0;
  383. int err;
  384. while(*buffer != 0) {
  385. if(isspace(*buffer)) {
  386. err = ink_consume_one(&end, pContext, &buffer, r);
  387. if(err < 0) {
  388. pContext->panic = 1;
  389. return -8;
  390. }
  391. } else {
  392. r[end] = *buffer;
  393. ++end;
  394. }
  395. ++buffer;
  396. }
  397. err = ink_consume_one(&end, pContext, &buffer, r);
  398. if(err < 0) {
  399. pContext->panic = 1;
  400. return -9;
  401. }
  402. return 0;
  403. }
  404. static int lblcmp(const char* label, const char* other, size_t label_sz) {
  405. while (label_sz != 1) {
  406. if(*other == 0) return 1;
  407. if(*label != *other) return 1;
  408. ++label;
  409. ++other;
  410. label_sz--;
  411. }
  412. return 0;
  413. }
  414. /**
  415. *
  416. * @param pContext
  417. * @param executable_buffer
  418. * @param executable_buffer_top
  419. * @internal Loop from hell
  420. */
  421. static int ink_parse(struct context* pContext, struct elem* executable_buffer, int* executable_buffer_top) {
  422. int i;
  423. #define LABEL_BUFFER 128
  424. #define FUNCTION_BUFFER 256
  425. struct label labels[LABEL_BUFFER];
  426. struct elem function_buffer[FUNCTION_BUFFER];
  427. int function_buffer_top = 0;
  428. int function_name = -1;
  429. #define MODE_EXECUTABLE 0
  430. #define MODE_FUNCTION 1
  431. #define MODE_DO 2
  432. int mode = 0;
  433. memset(labels, 0, sizeof(struct label)*LABEL_BUFFER);
  434. for(i = 0; i < pContext->top; ++i) {
  435. struct elem current;
  436. current = pContext->stack[i];
  437. switch (mode) {
  438. case MODE_EXECUTABLE:
  439. switch(current.type) {
  440. case INK_FUNCTION_KW:
  441. mode = MODE_FUNCTION;
  442. function_name = -1;
  443. goto next_token;
  444. case INK_DO_KW:
  445. case INK_END_KW:
  446. return -26;
  447. default:
  448. executable_buffer[*executable_buffer_top] = current;
  449. *executable_buffer_top += 1;
  450. }
  451. break;
  452. case MODE_FUNCTION:
  453. if(current.type == INK_DO_KW) {
  454. if(function_name == -1) {
  455. return -27;
  456. } else {
  457. mode = MODE_DO;
  458. memset(labels, 0, sizeof(struct label)*128);
  459. goto next_token;
  460. }
  461. }
  462. if(function_name != -1) {
  463. return -28;
  464. }
  465. if(current.type != INK_RESERVED) {
  466. return -29;
  467. }
  468. function_name = current.value;
  469. break;
  470. case MODE_DO:
  471. if(current.type == INK_END_KW) {
  472. int j;
  473. for(j = 0; j < function_buffer_top; j++) {
  474. struct elem pt;
  475. pt = function_buffer[j];
  476. if(pt.type == INK_LABEL) {
  477. int k;
  478. for(k = 0; k < LABEL_BUFFER; k++) {
  479. if(labels[k].active) {
  480. if(strcmp(labels[k].name, pContext->lex_reserved_words[pt.value]) == 0) {
  481. labels[k].dest = j;
  482. return -30;
  483. break;
  484. }
  485. } else {
  486. labels[k].active = 1;
  487. labels[k].name = pContext->lex_reserved_words[pt.value];
  488. labels[k].dest = j;
  489. memcpy(function_buffer+j, function_buffer+j+1, sizeof(struct elem)*(function_buffer_top-j-1));
  490. function_buffer_top--;
  491. j--;
  492. break;
  493. }
  494. }
  495. }
  496. }
  497. for(j = 0; j < function_buffer_top; j++) {
  498. struct elem pt;
  499. pt = function_buffer[j];
  500. if(pt.type == INK_RESERVED) {
  501. const char* str = pContext->lex_reserved_words[pt.value];
  502. int k;
  503. for(k = 0; k < LABEL_BUFFER; k++) {
  504. if(labels[k].active) {
  505. const char* lbl = labels[k].name;
  506. int label_sz = strlen(lbl);
  507. if(lblcmp(labels[k].name, pContext->lex_reserved_words[pt.value], label_sz) == 0) {
  508. function_buffer[j].type = INK_INTEGER;
  509. function_buffer[j].value = labels[k].dest - j;
  510. break;
  511. }
  512. } else break;
  513. }
  514. }
  515. }
  516. int err;
  517. err = ink_add_indigenous(pContext, pContext->lex_reserved_words[function_name], function_buffer, function_buffer_top);
  518. if(err < 0) {
  519. pContext->panic = 1;
  520. return -33;
  521. }
  522. function_buffer_top = 0;
  523. mode = MODE_EXECUTABLE;
  524. goto next_token;
  525. }
  526. function_buffer[function_buffer_top] = current;
  527. function_buffer_top += 1;
  528. break;
  529. }
  530. next_token: i=i;
  531. }
  532. if(mode == MODE_FUNCTION || mode == MODE_DO) {
  533. return -32;
  534. }
  535. return 0;
  536. #undef MODE_EXECUTABLE
  537. #undef MODE_FUNCTION
  538. #undef MODE_DO
  539. #undef LABEL_BUFFER
  540. #undef FUNCTION_BUFFER
  541. }
  542. int ink_step(struct context *pContext) {
  543. if(pContext->function_stack_top == 0) return 0;
  544. if(pContext->panic) {
  545. return -1;
  546. }
  547. struct stack_frame frame;
  548. struct stack_frame* top;
  549. struct elem next;
  550. int t;
  551. top = &pContext->function_stack[pContext->function_stack_top-1];
  552. t = top->executing.type;
  553. switch(t) {
  554. case INK_NATIVE_FUNCTION:
  555. if(top->index != 0) {
  556. ink_pop_fn(pContext);
  557. } else {
  558. top->index++;
  559. if(pContext->native_words_top <= top->executing.value) {
  560. pContext->panic = 1;
  561. return -1;
  562. }
  563. pContext->native_words[top->executing.value].value(pContext);
  564. }
  565. break;
  566. case INK_FUNCTION:
  567. if(pContext->words_top <= top->executing.value) {
  568. pContext->panic = 1;
  569. return -1;
  570. }
  571. if(top->index >= pContext->words[top->executing.value].size) {
  572. ink_pop_fn(pContext);
  573. } else {
  574. next = pContext->words[top->executing.value].things[top->index];
  575. if(next.type == INK_RETURN) {
  576. ink_pop_fn(pContext);
  577. return 1;
  578. }
  579. frame.executing = next;
  580. frame.index = 0;
  581. t = ink_push_fn(pContext, frame);
  582. if(t < 0) {
  583. pContext->panic = 1;
  584. return -11;
  585. }
  586. top->index++;
  587. }
  588. break;
  589. default:
  590. t = ink_push(pContext, top->executing);
  591. if(t < 0) {
  592. pContext->panic = 1;
  593. return -25;
  594. }
  595. ink_pop_fn(pContext);
  596. break;
  597. }
  598. return 1;
  599. }
  600. void ink_run(struct context *pContext, char* buffer) {
  601. pContext->free(pContext->stack);
  602. pContext->stack = NULL;
  603. pContext->top = 0;
  604. pContext->capacity = 0;
  605. int err;
  606. err = ink_lex(pContext, buffer);
  607. if(err < 0) {
  608. pContext->panic = 1;
  609. return;
  610. }
  611. int i = 0;
  612. struct elem executable_buffer[256];
  613. int executable_buffer_top = 0;
  614. err = ink_parse(pContext, executable_buffer, &executable_buffer_top);
  615. if(err < 0) {
  616. pContext->panic = 1;
  617. return;
  618. }
  619. struct stack_frame frame;
  620. frame.executing.value = ink_add_indigenous(pContext, "__-MAIN-__", executable_buffer, executable_buffer_top);
  621. if(frame.executing.value < 0) {
  622. pContext->panic = 1;
  623. return;
  624. }
  625. frame.executing.type = INK_FUNCTION;
  626. frame.index = 0;
  627. err = ink_push_fn(pContext, frame);
  628. if(err < 0) {
  629. pContext->panic = 1;
  630. return;
  631. }
  632. int out;
  633. do {
  634. out = ink_step(pContext);
  635. } while(out > 0);
  636. }
  637. /**********************************************************************************************************************/
  638. static void print_stacktrace(struct context* _) {
  639. int i = 0;
  640. for(; i < _->function_stack_top; ++i) {
  641. struct elem thing;
  642. thing = _->function_stack[i].executing;
  643. switch(thing.type) {
  644. case INK_NATIVE_FUNCTION: {
  645. char *n = _->native_words[thing.value].name;
  646. while (*n) {
  647. _->putchar(*n);
  648. ++n;
  649. }
  650. _->putchar(10);
  651. break;
  652. }
  653. case INK_FUNCTION:{
  654. char *n = _->native_words[thing.value].name;
  655. while (*n) {
  656. _->putchar(*n);
  657. ++n;
  658. }
  659. _->putchar(':');
  660. n = ink_itoa(_, _->function_stack[i].index);
  661. while (*n) {
  662. _->putchar(*n);
  663. ++n;
  664. }
  665. _->free(n);
  666. _->putchar(10);
  667. break;
  668. }
  669. default:
  670. break;
  671. }
  672. }
  673. }
  674. static void add_int(struct context* ctx) {
  675. if(ctx->top < 2) {
  676. ctx->panic = 1;
  677. return;
  678. }
  679. struct elem a;
  680. struct elem b;
  681. a = ctx->stack[ctx->top-1];
  682. b = ctx->stack[ctx->top-2];
  683. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  684. ctx->panic = 1;
  685. return;
  686. }
  687. ink_pop(ctx);
  688. ctx->stack[ctx->top-1].value = a.value + b.value;
  689. }
  690. static void sub_int(struct context* ctx) {
  691. if(ctx->top < 2) {
  692. ctx->panic = 1;
  693. return;
  694. }
  695. struct elem a;
  696. struct elem b;
  697. a = ctx->stack[ctx->top-1];
  698. b = ctx->stack[ctx->top-2];
  699. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  700. ctx->panic = 1;
  701. return;
  702. }
  703. ink_pop(ctx);
  704. ctx->stack[ctx->top-1].value = b.value - a.value;
  705. }
  706. static void mult_int(struct context* ctx) {
  707. if(ctx->top < 2) {
  708. ctx->panic = 1;
  709. return;
  710. }
  711. struct elem a;
  712. struct elem b;
  713. a = ctx->stack[ctx->top-1];
  714. b = ctx->stack[ctx->top-2];
  715. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  716. ctx->panic = 1;
  717. return;
  718. }
  719. ink_pop(ctx);
  720. ctx->stack[ctx->top-1].value = b.value * a.value;
  721. }
  722. static void div_int(struct context* ctx) {
  723. if(ctx->top < 2) {
  724. ctx->panic = 1;
  725. return;
  726. }
  727. struct elem a;
  728. struct elem b;
  729. a = ctx->stack[ctx->top-1];
  730. b = ctx->stack[ctx->top-2];
  731. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  732. ctx->panic = 1;
  733. return;
  734. }
  735. ink_pop(ctx);
  736. ctx->stack[ctx->top-1].value = b.value / a.value;
  737. }
  738. static void rem_int(struct context* ctx) {
  739. if(ctx->top < 2) {
  740. ctx->panic = 1;
  741. return;
  742. }
  743. struct elem a;
  744. struct elem b;
  745. a = ctx->stack[ctx->top-1];
  746. b = ctx->stack[ctx->top-2];
  747. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  748. ctx->panic = 1;
  749. return;
  750. }
  751. ink_pop(ctx);
  752. ctx->stack[ctx->top-1].value = b.value % a.value;
  753. }
  754. static void dupe_elem(struct context* ctx) {
  755. if(ctx->top < 1) {
  756. ctx->panic = 1;
  757. return;
  758. }
  759. struct elem a;
  760. a = ctx->stack[ctx->top-1];
  761. int err;
  762. err = ink_push(ctx, a);
  763. if(err < 0) ctx->panic;
  764. }
  765. static void drop_elem(struct context* ctx) {
  766. if(ctx->top < 1) {
  767. ctx->panic = 1;
  768. return;
  769. }
  770. ink_pop(ctx);
  771. }
  772. static void pluck_elem(struct context* ctx) {
  773. if(ctx->top < 1) {
  774. ctx->panic = 1;
  775. return;
  776. }
  777. struct elem a;
  778. a = ctx->stack[ctx->top-1];
  779. if(a.type != INK_INTEGER) {
  780. ctx->panic = 1;
  781. return;
  782. }
  783. int position = ctx->top - (a.value + 1);
  784. if(position >= ctx->top || position < 0) {
  785. ctx->panic = 1;
  786. return;
  787. }
  788. ink_pop(ctx);
  789. int err;
  790. err = ink_push(ctx, ctx->stack[position]);
  791. if(err < 0) ctx->panic;
  792. }
  793. static void swap_elem(struct context* ctx) {
  794. if(ctx->top < 2) {
  795. ctx->panic = 1;
  796. return;
  797. }
  798. struct elem a;
  799. struct elem b;
  800. a = ctx->stack[ctx->top-1];
  801. b = ctx->stack[ctx->top-2];
  802. ctx->stack[ctx->top-2] = a;
  803. ctx->stack[ctx->top-1] = b;
  804. }
  805. static void return_if(struct context* ctx) {
  806. if(ctx->top < 1) {
  807. ctx->panic = 1;
  808. return;
  809. }
  810. struct elem a;
  811. a = ctx->stack[ctx->top-1];
  812. if(a.type != INK_INTEGER) {
  813. ctx->panic = 1;
  814. return;
  815. }
  816. if(a.value) {
  817. ink_pop_fn(ctx);
  818. ink_pop_fn(ctx);
  819. }
  820. ink_pop(ctx);
  821. return;
  822. }
  823. static void jump_if(struct context* ctx) {
  824. if(ctx->top < 1) {
  825. ctx->panic = 1;
  826. return;
  827. }
  828. struct elem a;
  829. a = ctx->stack[ctx->top-1];
  830. if(a.type != INK_INTEGER) {
  831. ctx->panic = 1;
  832. return;
  833. }
  834. ink_pop(ctx);
  835. if(a.value) {
  836. ink_pop_fn(ctx);
  837. a = ctx->stack[ctx->top-1];
  838. ctx->function_stack[ctx->function_stack_top - 1].index += a.value - 3;
  839. ink_pop(ctx);
  840. //printf("\t*%d\n", ctx->function_stack[ctx->function_stack_top - 1].index);
  841. }
  842. return;
  843. }
  844. static void print_int(struct context* ctx) {
  845. if(ctx->top < 1 || ctx->stack[ctx->top-1].type != INK_INTEGER) {
  846. ctx->panic = 1;
  847. return;
  848. }
  849. struct elem a;
  850. a = ctx->stack[ctx->top-1];
  851. ink_pop(ctx);
  852. char* n = ink_itoa(ctx, a.value);
  853. char* str = n;
  854. while (*str) {
  855. ctx->putchar(*str);
  856. ++str;
  857. }
  858. ctx->free(n);
  859. }
  860. static void print_as_utf8(struct context* ctx) {
  861. if(ctx->top < 1 || ctx->stack[ctx->top-1].type != INK_INTEGER) {
  862. ctx->panic = 1;
  863. return;
  864. }
  865. struct elem a;
  866. a = ctx->stack[ctx->top-1];
  867. if(a.value <= 0x7F) {
  868. ctx->putchar(a.value);
  869. } else if(a.value <= 0x7FF) {
  870. ctx->putchar(((a.value & 0xFC0) >> 6) | 192);
  871. ctx->putchar((a.value & 0x3F) | 128);
  872. } else if(a.value <= 0xFFFF) {
  873. ctx->putchar(((a.value & 0x3F000) >> 12) | 224);
  874. ctx->putchar(((a.value & 0xFC0) >> 6) | 128);
  875. ctx->putchar((a.value & 0x3F) | 128);
  876. } else if(a.value <= 0x10FFFF) {
  877. ctx->putchar(((a.value & 0x3C0000) >> 18) | 240);
  878. ctx->putchar(((a.value & 0x3F000) >> 12) | 128);
  879. ctx->putchar(((a.value & 0xFC0) >> 6) | 128);
  880. ctx->putchar((a.value & 0x3F) | 128);
  881. } else {
  882. ctx->panic = 1;
  883. return;
  884. }
  885. ink_pop(ctx);
  886. }
  887. int ink_std_library(struct context* ctx) {
  888. int v;
  889. v += ink_add_native(ctx, "trace", print_stacktrace);
  890. v += ink_add_native(ctx, "print_int", print_int);
  891. v += ink_add_native(ctx, "print_utf8", print_as_utf8);
  892. v += ink_add_native(ctx, "+", add_int);
  893. v += ink_add_native(ctx, "-", sub_int);
  894. v += ink_add_native(ctx, "*", mult_int);
  895. v += ink_add_native(ctx, "/", div_int);
  896. v += ink_add_native(ctx, "%", rem_int);
  897. v += ink_add_native(ctx, "swap", swap_elem);
  898. v += ink_add_native(ctx, "dup", dupe_elem);
  899. v += ink_add_native(ctx, "drop", drop_elem);
  900. v += ink_add_native(ctx, "pluck", pluck_elem);
  901. v += ink_add_native(ctx, "return_if", return_if);
  902. v += ink_add_native(ctx, "jump_if", jump_if);
  903. return v;
  904. }