A minimalistic programming language written in C89.
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

2029 рядки
53 KiB

4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
2 місяці тому
4 місяці тому
2 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
3 місяці тому
4 місяці тому
2 місяці тому
2 місяці тому
4 місяці тому
2 місяці тому
4 місяці тому
2 місяці тому
2 місяці тому
4 місяці тому
2 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
2 місяці тому
4 місяці тому
4 місяці тому
2 місяці тому
2 місяці тому
2 місяці тому
2 місяці тому
4 місяці тому
4 місяці тому
2 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
2 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
2 місяці тому
2 місяці тому
2 місяці тому
2 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
3 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
4 місяці тому
3 місяці тому
2 місяці тому
3 місяці тому
3 місяці тому
3 місяці тому
3 місяці тому
3 місяці тому
3 місяці тому
3 місяці тому
4 місяці тому
3 місяці тому
3 місяці тому
3 місяці тому
  1. #include "include/ink.h"
  2. #ifndef NOSTDLIB
  3. #include <stdio.h>
  4. #include <stdlib.h>
  5. #include <string.h>
  6. #include <ctype.h>
  7. #ifdef INSTRUMENTATION
  8. #include <time.h>
  9. #endif
  10. #endif
  11. #define INK_RESERVED (-1)
  12. #define INK_FUNCTION_KW (-2)
  13. #define INK_DO_KW (-3)
  14. #define INK_END_KW (-4)
  15. #define INK_LABEL (-5)
  16. #define INK_RETURN (-6)
  17. #define _KEYWORD_INK_FUNCTION "fn"
  18. #define _KEYWORD_INK_DO "do"
  19. #define _KEYWORD_INK_END "end"
  20. #define _KEYWORD_INK_RETURN "return"
  21. #define min(x, y) ((x) > (y) ? (y) : (x))
  22. #define max(x, y) ((x) < (y) ? (y) : (x))
  23. struct label {
  24. int active;
  25. int dest;
  26. char* name;
  27. };
  28. #ifdef NOSTDLIB
  29. static size_t strlen(const char* c) {
  30. size_t j;
  31. j = 0;
  32. while(*(c++)) {
  33. j++;
  34. }
  35. return j;
  36. }
  37. static void* memcpy(void* _dest, const void* _src, size_t sz) {
  38. char* dest;
  39. const char* src;
  40. dest = _dest;
  41. src = _src;
  42. while(sz--) {
  43. *(dest++) = *(src++);
  44. }
  45. return dest;
  46. }
  47. static int strcmp(const char* dest, const char* src) {
  48. while(*dest != 0 && *src != 0) {
  49. if(*(dest++) != *(src++)) {
  50. return 1;
  51. }
  52. }
  53. return 0;
  54. }
  55. static void* memmove(void* _dest, const void* _src, size_t sz) {
  56. char* dest;
  57. const char* src;
  58. dest = _dest;
  59. src = _src;
  60. if (src < dest) {
  61. src += sz;
  62. dest += sz;
  63. while (sz-- > 0) {
  64. *--dest = *--src;
  65. }
  66. } else {
  67. while (sz-- > 0) {
  68. *dest++ = *src++;
  69. }
  70. }
  71. return dest;
  72. }
  73. static void* memset(void* _dest, int src, size_t sz) {
  74. char* dest;
  75. dest = _dest;
  76. while(sz--) {
  77. *(dest++) = src++;
  78. }
  79. return dest;
  80. }
  81. static int isspace(int d) {
  82. return d == ' ' || d == '\t' || d == '\n';
  83. }
  84. static int isdigit(int d) {
  85. return '0' <= d && d <= '9';
  86. }
  87. static int atoi(const char* c) {
  88. int ret;
  89. ret = 0;
  90. while(*c) {
  91. ret *= 10;
  92. ret += *c - '0';
  93. ++c;
  94. }
  95. return ret;
  96. }
  97. #endif
  98. int ink_add_native(struct context* ctx, const char* name, void(*value)(struct context*)) {
  99. int len;
  100. char* copy;
  101. if(ctx->native_words == NULL) {
  102. ctx->native_words = ctx->inner_malloc(sizeof(struct native_fn) * 8);
  103. ctx->native_words_top = 0;
  104. ctx->native_words_capacity = 8;
  105. } else if(ctx->native_words_top == ctx->native_words_capacity) {
  106. int new_count;
  107. void* renewed;
  108. new_count = (ctx->native_words_capacity + ctx->native_words_capacity/2);
  109. renewed = ctx->inner_realloc(ctx->native_words, sizeof(struct native_fn) * new_count);
  110. if(renewed == NULL) {
  111. return -3;
  112. } else {
  113. ctx->native_words = renewed;
  114. ctx->native_words_capacity = new_count;
  115. }
  116. }
  117. len = strlen(name);
  118. copy = ctx->inner_malloc(len+1);
  119. if(copy == NULL) {
  120. return -4;
  121. }
  122. memcpy(copy, name, len);
  123. copy[len] = 0;
  124. ctx->native_words[ctx->native_words_top].value = value;
  125. ctx->native_words[ctx->native_words_top].name = copy;
  126. ctx->native_words_top++;
  127. return 0;
  128. }
  129. static int ink_add_indigenous(struct context* ctx, const char* name, struct elem* m, size_t count) {
  130. int len, i;
  131. char* copy;
  132. if(ctx->words == NULL) {
  133. ctx->words = ctx->malloc(sizeof(struct fn) * 8);
  134. ctx->words_top = 0;
  135. ctx->words_capacity = 8;
  136. } else if(ctx->words_top == ctx->words_capacity) {
  137. int new_count;
  138. void* renewed;
  139. new_count = (ctx->words_capacity + ctx->words_capacity/2);
  140. renewed = ctx->realloc(ctx->words, sizeof(struct fn) * new_count);
  141. if(renewed == NULL) {
  142. return -1;
  143. } else {
  144. ctx->words = renewed;
  145. ctx->words_capacity = new_count;
  146. }
  147. }
  148. for(i = 0; i < ctx->words_top; ++i) {
  149. if(strcmp(name, ctx->words[i].name) == 0) {
  150. ctx->free(ctx->words[i].things);
  151. ctx->words[i].things = ctx->malloc(sizeof(struct elem) * count);
  152. memcpy(ctx->words[i].things, m, sizeof(struct elem) * count);
  153. ctx->words[i].size = count;
  154. return i;
  155. }
  156. }
  157. len = strlen(name);
  158. copy = ctx->malloc(len+1);
  159. if(copy == NULL) {
  160. return -2;
  161. }
  162. memcpy(copy, name, len);
  163. copy[len] = 0;
  164. ctx->words[ctx->words_top].things = ctx->malloc(sizeof(struct elem) * count);
  165. memcpy(ctx->words[ctx->words_top].things, m, sizeof(struct elem) * count);
  166. ctx->words[ctx->words_top].size = count;
  167. ctx->words[ctx->words_top].name = copy;
  168. return ctx->words_top++;
  169. }
  170. /**
  171. *
  172. * @param ctx The context
  173. * @param name The name to add
  174. * @internal add a lexed string to the parser
  175. * @return the id of the string in the list
  176. */
  177. static int ink_add_lex_string(struct context* ctx, const char* name) {
  178. int i;
  179. int len;
  180. if(ctx->lex_reserved_words == NULL) {
  181. ctx->lex_reserved_words = ctx->inner_malloc(sizeof(char*) * 8);
  182. ctx->lex_reserved_words_top = 0;
  183. ctx->lex_reserved_words_capacity = 8;
  184. } else if(ctx->lex_reserved_words_top == ctx->lex_reserved_words_capacity) {
  185. int new_count;
  186. void* renewed;
  187. new_count = (ctx->lex_reserved_words_capacity + ctx->lex_reserved_words_capacity/2);
  188. renewed = ctx->inner_realloc(ctx->lex_reserved_words, sizeof(struct native_fn) * new_count);
  189. if(renewed == NULL) {
  190. return -5;
  191. } else {
  192. ctx->lex_reserved_words = renewed;
  193. ctx->lex_reserved_words_capacity = new_count;
  194. }
  195. }
  196. for(i = 0; i < ctx->lex_reserved_words_top; i++) {
  197. if(strcmp(ctx->lex_reserved_words[i], name) == 0) {
  198. return i;
  199. }
  200. }
  201. len = strlen(name);
  202. i = ctx->lex_reserved_words_top;
  203. ctx->lex_reserved_words[i] = ctx->malloc(len+1);
  204. memcpy(ctx->lex_reserved_words[i], name, len);
  205. ctx->lex_reserved_words[i][len] = 0;
  206. ctx->lex_reserved_words_top++;
  207. return i;
  208. }
  209. int ink_push(struct context* ctx, struct elem value) {
  210. struct ink_routine* current;
  211. if(ctx->routine_current >= ctx->routines_top) return -65;
  212. current = ctx->routines + ctx->routine_current;
  213. if(current->stack == NULL) {
  214. current->stack = ctx->malloc(sizeof(struct elem) * 8);
  215. current->top = 0;
  216. current->capacity = 8;
  217. } else if(current->top == current->capacity) {
  218. int new_count;
  219. void* renewed;
  220. new_count = (current->capacity + current->capacity/2);
  221. renewed = ctx->realloc(current->stack, sizeof(struct elem) * new_count);
  222. if(renewed == NULL) {
  223. return -18;
  224. } else {
  225. current->stack = renewed;
  226. current->capacity = new_count;
  227. }
  228. }
  229. current->stack[current->top] = value;
  230. current->top++;
  231. return 0;
  232. }
  233. int ink_push_fn(struct context* ctx, struct stack_frame value) {
  234. struct ink_routine* current;
  235. if(ctx->routine_current >= ctx->routines_top) return -55;
  236. current = ctx->routines + ctx->routine_current;
  237. if(current->panic) return -56;
  238. if(current->function_stack == NULL) {
  239. current->function_stack = ctx->malloc(sizeof(struct stack_frame) * 8);
  240. current->function_stack_top = 0;
  241. current->function_stack_capacity = 8;
  242. } else if(current->function_stack_top == current->function_stack_capacity) {
  243. int new_count;
  244. void* renewed;
  245. new_count = (current->function_stack_capacity + current->function_stack_capacity/2);
  246. renewed = ctx->realloc(current->function_stack, sizeof(struct stack_frame) * new_count);
  247. if(renewed == NULL) {
  248. return -9;
  249. } else {
  250. current->function_stack = renewed;
  251. current->function_stack_capacity = new_count;
  252. }
  253. }
  254. current->function_stack[current->function_stack_top] = value;
  255. current->function_stack_top++;
  256. return 0;
  257. }
  258. void ink_pop_fn(struct context* ctx) {
  259. if(ctx->routine_current >= ctx->routines_top) return;
  260. if(ctx->routines[ctx->routine_current].panic) return;
  261. if(ctx->routines[ctx->routine_current].function_stack == NULL) return;
  262. if(ctx->routines[ctx->routine_current].function_stack_top == 0) return;
  263. ctx->routines[ctx->routine_current].function_stack_top--;
  264. }
  265. void ink_pop(struct context* ctx) {
  266. if(ctx->routine_current >= ctx->routines_top) return;
  267. if(ctx->routines[ctx->routine_current].panic) return;
  268. if(ctx->routines[ctx->routine_current].stack == NULL) return;
  269. if(ctx->routines[ctx->routine_current].top == 0) return;
  270. ctx->routines[ctx->routine_current].top--;
  271. }
  272. struct context* ink_make_context(void*(*malloc)(size_t), void*(*realloc)(void*, size_t), void(*free)(void*), int(*putchar)(int)) {
  273. struct context* ctx;
  274. ctx = (struct context*)malloc(sizeof(struct context));
  275. ctx->malloc = malloc;
  276. ctx->realloc = realloc;
  277. ctx->free = free;
  278. ctx->inner_malloc = malloc;
  279. ctx->inner_realloc = realloc;
  280. ctx->inner_free = free;
  281. ctx->putchar = putchar;
  282. ctx->panic = 0;
  283. ctx->routines = NULL;
  284. ctx->routines_capacity = 0;
  285. ctx->routines_top = 0;
  286. ctx->types = NULL;
  287. ctx->types_capacity = 0;
  288. ctx->types_top = 0;
  289. ctx->native_words = NULL;
  290. ctx->native_words_capacity = 0;
  291. ctx->native_words_top = 0;
  292. ctx->words = NULL;
  293. ctx->words_capacity = 0;
  294. ctx->words_top = 0;
  295. ctx->lex_reserved_words = NULL;
  296. ctx->lex_reserved_words_capacity = 0;
  297. ctx->lex_reserved_words_top = 0;
  298. ctx->collections = 0;
  299. ctx->steps = 0;
  300. return ctx;
  301. }
  302. /**
  303. * Allocates a string that contains the integer
  304. * @param _ context (used to allocate)
  305. * @param cpy the value
  306. * @return the allocated string, needs to be freed by ctx->free
  307. * @internal this function is slightly cursed
  308. */
  309. static char* ink_itoa(struct context* _, int cpy) {
  310. char* n;
  311. char* it;
  312. n = _->malloc(16);
  313. n[15] = 0;
  314. it = n+15;
  315. do {
  316. it--;
  317. *it = (cpy % 10) + '0';
  318. cpy = cpy / 10;
  319. } while(cpy);
  320. memmove(n, it, 16 - (it-n));
  321. return n;
  322. }
  323. #ifndef NOSTDLIB
  324. struct context* ink_make_default_context(void) {
  325. struct context* ctx;
  326. ctx = ink_make_context(malloc, realloc, free, putchar);
  327. ink_std_library(ctx);
  328. return ctx;
  329. }
  330. #endif
  331. #ifndef NOSTRINGLITERALS
  332. static void new_protected_array(struct context* ctx);
  333. #endif
  334. static int ink_consume_one(int* end, struct context* pContext, char* r, int is_str) {
  335. int i;
  336. int done;
  337. struct elem value;
  338. int err;
  339. #ifndef NOSTRINGLITERALS
  340. if(is_str) {
  341. struct ink_routine* routine = pContext->routines + pContext->routine_current;
  342. struct ink_array* ary;
  343. int it = 0;
  344. new_protected_array(pContext);
  345. if(routine->top < 1) {
  346. pContext->panic = -1;
  347. return -8746;
  348. }
  349. value = routine->stack[routine->top - 1];
  350. ary = ink_get_value(pContext, value);
  351. if(ary == NULL) {
  352. pContext->panic = -1;
  353. return -8747;
  354. }
  355. for(;it != *end;++it) {
  356. struct elem character;
  357. character.type = INK_INTEGER;
  358. /* TODO: codepoint conversion and coalescence is required here */
  359. character.value = r[it];
  360. array_push(pContext, routine, ary, character);
  361. }
  362. *end = 0;
  363. return 0;
  364. }
  365. #endif
  366. is_str = is_str;
  367. if(*end == 0) {
  368. return 0;
  369. }
  370. r[*end] = 0;
  371. done = 0;
  372. if (strcmp(r, _KEYWORD_INK_FUNCTION) == 0) {
  373. value.value = 0;
  374. value.type = INK_FUNCTION_KW;
  375. done = 1;
  376. }
  377. if (!done && strcmp(r, _KEYWORD_INK_DO) == 0) {
  378. value.value = 0;
  379. value.type = INK_DO_KW;
  380. done = 1;
  381. }
  382. if (!done && strcmp(r, _KEYWORD_INK_END) == 0) {
  383. value.value = 0;
  384. value.type = INK_END_KW;
  385. done = 1;
  386. }
  387. if (!done && strcmp(r, _KEYWORD_INK_RETURN) == 0) {
  388. value.value = 0;
  389. value.type = INK_RETURN;
  390. done = 1;
  391. }
  392. if(done) {
  393. err = ink_push(pContext, value);
  394. if(err < 0) {
  395. return -19;
  396. }
  397. }
  398. if (!done) {
  399. for (i = 0; i < pContext->words_top; ++i) {
  400. if (strcmp(r, pContext->words[i].name) == 0) {
  401. value.value = i;
  402. value.type = INK_FUNCTION;
  403. err = ink_push(pContext, value);
  404. if(err < 0) {
  405. return -20;
  406. }
  407. done = 1;
  408. break;
  409. }
  410. }
  411. }
  412. if (!done) {
  413. for (i = 0; i < pContext->native_words_top; ++i) {
  414. if (strcmp(r, pContext->native_words[i].name) == 0) {
  415. value.value = i;
  416. value.type = INK_NATIVE_FUNCTION;
  417. err = ink_push(pContext, value);
  418. if(err < 0) {
  419. return -21;
  420. }
  421. done = 1;
  422. break;
  423. }
  424. }
  425. }
  426. if (!done) {
  427. for(i = (r[0] == '-'); i < *end; i++) {
  428. if(!isdigit(r[i])){
  429. goto not_an_int;
  430. }
  431. }
  432. value.value = atoi(r);
  433. value.type = INK_INTEGER;
  434. err = ink_push(pContext, value);
  435. if(err < 0) {
  436. return -22;
  437. }
  438. done = 1;
  439. }
  440. not_an_int:
  441. if (!done) {
  442. i = ink_add_lex_string(pContext, r);
  443. if(i < 0) {
  444. pContext->panic = 1;
  445. return -7;
  446. }
  447. value.value = i;
  448. if(r[strlen(r) - 1] == ':') {
  449. value.type = INK_LABEL;
  450. } else {
  451. value.type = INK_RESERVED;
  452. }
  453. err = ink_push(pContext, value);
  454. if(err < 0) {
  455. return -23;
  456. }
  457. }
  458. *end = 0;
  459. return 0;
  460. }
  461. static int ink_lex(struct context *pContext, const char* buffer) {
  462. /* Limits the token size to 127 chars */
  463. char r[128];
  464. int end;
  465. int err;
  466. #ifndef NOSTRINGLITERALS
  467. int parses_string;
  468. #endif
  469. end = 0;
  470. restart_after_comment:
  471. #ifndef NOSTRINGLITERALS
  472. parses_string = 0;
  473. #endif
  474. while(*buffer != 0) {
  475. #ifndef NOSTRINGLITERALS
  476. if(parses_string) {
  477. switch(*buffer) {
  478. case '"': {
  479. if(*(buffer+1) == 0 || isspace(*(buffer+1))) {
  480. err = ink_consume_one(&end, pContext, r, 1);
  481. if(err < 0) {
  482. pContext->panic = 1;
  483. return -995;
  484. }
  485. parses_string = 0;
  486. } else if(*(buffer+1) == '"') {
  487. r[end] = *buffer;
  488. ++end;
  489. ++buffer;
  490. } else if(*(buffer+1) == '/' && *(buffer+2) == '"') {
  491. r[end] = '\n';
  492. ++end;
  493. ++buffer;
  494. ++buffer;
  495. } else {
  496. pContext->panic = 1;
  497. return -994;
  498. }
  499. }break;
  500. default:
  501. r[end] = *buffer;
  502. ++end;
  503. }
  504. } else /* ... */
  505. #endif
  506. if(isspace(*buffer)) {
  507. if(end == 1 && r[0] == '#') {
  508. while(*buffer != '\n' && *buffer != 0) {
  509. ++buffer;
  510. }
  511. end = 0;
  512. goto restart_after_comment;
  513. }
  514. err = ink_consume_one(&end, pContext, r, 0);
  515. if(err < 0) {
  516. pContext->panic = 1;
  517. return -8;
  518. }
  519. } else /* ... */
  520. #ifndef NOSTRINGLITERALS
  521. if(end == 0 && *buffer == '"' && !parses_string) {
  522. parses_string = 1;
  523. } else /* ... */
  524. #endif
  525. {
  526. r[end] = *buffer;
  527. ++end;
  528. }
  529. ++buffer;
  530. }
  531. err = ink_consume_one(&end, pContext, r, 0);
  532. if(err < 0) {
  533. pContext->panic = 1;
  534. return -9;
  535. }
  536. return 0;
  537. }
  538. static int lblcmp(const char* label, const char* other, size_t label_sz) {
  539. while (label_sz != 1) {
  540. if(*other == 0) return 1;
  541. if(*label != *other) return 1;
  542. ++label;
  543. ++other;
  544. label_sz--;
  545. }
  546. return 0;
  547. }
  548. int ink_make_routine(struct context* ctx) {
  549. struct ink_routine* it;
  550. struct ink_routine* end;
  551. /* Allocate space if needed */
  552. if(ctx->routines == NULL) {
  553. ctx->routines = ctx->inner_malloc(sizeof(struct ink_routine) * 8);
  554. ctx->routines_top = 0;
  555. ctx->routines_capacity = 8;
  556. it = ctx->routines;
  557. end = ctx->routines + 8;
  558. for(;it != end;++it) {
  559. it->stack = NULL;
  560. it->function_stack = NULL;
  561. it->panic = INK_ROUTINE_CAN_REUSE;
  562. }
  563. } else if(ctx->routines_top == ctx->routines_capacity) {
  564. int new_count;
  565. void* renewed;
  566. new_count = (ctx->routines_capacity + ctx->routines_capacity/2);
  567. renewed = ctx->inner_realloc(ctx->routines, sizeof(struct ink_routine) * new_count);
  568. if(renewed == NULL) {
  569. return -99;
  570. } else {
  571. ctx->routines = renewed;
  572. it = ctx->routines + ctx->routines_capacity;
  573. end = ctx->routines + new_count;
  574. for(;it != end;++it) {
  575. it->panic = INK_ROUTINE_CAN_REUSE;
  576. }
  577. ctx->routines_capacity = new_count;
  578. }
  579. }
  580. it = ctx->routines;
  581. end = ctx->routines + ctx->routines_capacity;
  582. /* Looks for a reusable routine space then uses it */
  583. for(;it != end;++it) {
  584. if(it->panic == INK_ROUTINE_CAN_REUSE) {
  585. int idx;
  586. it->panic = 0;
  587. it->stack = NULL;
  588. it->top = 0;
  589. it->capacity = 0;
  590. it->function_stack = NULL;
  591. it->function_stack_top = 0;
  592. it->function_stack_capacity = 0;
  593. idx = it - ctx->routines;
  594. if(idx >= ctx->routines_top) {
  595. ctx->routines_top = idx + 1;
  596. }
  597. return idx;
  598. }
  599. }
  600. return -758;
  601. }
  602. int ink_kill_routine(struct context* ctx, int routine){
  603. struct ink_routine* curr;
  604. if(routine < 0 || routine >= ctx->routines_top) {
  605. return 0;
  606. }
  607. curr = ctx->routines + routine;
  608. if(curr->panic == INK_ROUTINE_CAN_REUSE) {
  609. return 0;
  610. }
  611. if(curr->stack != NULL) {
  612. ctx->free(curr->stack);
  613. curr->stack = NULL;
  614. }
  615. if(curr->function_stack != NULL) {
  616. ctx->free(curr->function_stack);
  617. curr->function_stack = NULL;
  618. }
  619. curr->panic = INK_ROUTINE_CAN_REUSE;
  620. return 1;
  621. }
  622. /**
  623. *
  624. * @param pContext
  625. * @param executable_buffer
  626. * @param executable_buffer_top
  627. * @internal Loop from hell
  628. */
  629. static int ink_parse(struct context* pContext, struct elem* executable_buffer, int* executable_buffer_top) {
  630. struct ink_routine* currentRoutine;
  631. int i, function_buffer_top, function_name, mode;
  632. int err;
  633. #define LABEL_BUFFER 128
  634. #define FUNCTION_BUFFER 256
  635. struct label labels[LABEL_BUFFER];
  636. struct elem function_buffer[FUNCTION_BUFFER];
  637. /* TODO: add checks for overflows in these arrays */
  638. currentRoutine = pContext->routines + pContext->routine_current;
  639. function_buffer_top = 0;
  640. function_name = -1;
  641. #define MODE_EXECUTABLE 0
  642. #define MODE_FUNCTION 1
  643. #define MODE_DO 2
  644. mode = MODE_EXECUTABLE;
  645. memset(labels, 0, sizeof(struct label)*LABEL_BUFFER);
  646. /* Loop from hell, good luck, pro-tip: leave the parser alone */
  647. for(i = 0; i < currentRoutine->top; ++i) {
  648. struct elem current;
  649. current = currentRoutine->stack[i];
  650. switch (mode) {
  651. case MODE_EXECUTABLE:
  652. switch(current.type) {
  653. case INK_FUNCTION_KW:
  654. mode = MODE_FUNCTION;
  655. function_name = -1;
  656. goto next_token;
  657. case INK_DO_KW:
  658. case INK_END_KW:
  659. return -26;
  660. default:
  661. executable_buffer[*executable_buffer_top] = current;
  662. *executable_buffer_top += 1;
  663. }
  664. break;
  665. case MODE_FUNCTION:
  666. if(current.type == INK_DO_KW) {
  667. if(function_name == -1) {
  668. return -27;
  669. } else {
  670. mode = MODE_DO;
  671. memset(labels, 0, sizeof(struct label)*128);
  672. goto next_token;
  673. }
  674. }
  675. if(function_name != -1) {
  676. return -28;
  677. }
  678. if(current.type != INK_RESERVED) {
  679. return -29;
  680. }
  681. function_name = current.value;
  682. break;
  683. case MODE_DO:
  684. if(current.type == INK_END_KW) {
  685. int j;
  686. for(j = 0; j < function_buffer_top; j++) {
  687. struct elem pt;
  688. pt = function_buffer[j];
  689. if(pt.type == INK_LABEL) {
  690. int k;
  691. for(k = 0; k < LABEL_BUFFER; k++) {
  692. if(labels[k].active) {
  693. if(strcmp(labels[k].name, pContext->lex_reserved_words[pt.value]) == 0) {
  694. labels[k].dest = j;
  695. return -30;
  696. break;
  697. }
  698. } else {
  699. labels[k].active = 1;
  700. labels[k].name = pContext->lex_reserved_words[pt.value];
  701. labels[k].dest = j;
  702. memcpy(function_buffer+j, function_buffer+j+1, sizeof(struct elem)*(function_buffer_top-j-1));
  703. function_buffer_top--;
  704. j--;
  705. break;
  706. }
  707. }
  708. }
  709. }
  710. for(j = 0; j < function_buffer_top; j++) {
  711. struct elem pt;
  712. pt = function_buffer[j];
  713. if(pt.type == INK_RESERVED) {
  714. int k;
  715. for(k = 0; k < LABEL_BUFFER; k++) {
  716. if(labels[k].active) {
  717. int label_sz;
  718. const char* lbl;
  719. lbl = labels[k].name;
  720. label_sz = strlen(lbl);
  721. if(lblcmp(labels[k].name, pContext->lex_reserved_words[pt.value], label_sz) == 0) {
  722. function_buffer[j].type = INK_INTEGER;
  723. function_buffer[j].value = labels[k].dest - j;
  724. break;
  725. }
  726. } else break;
  727. }
  728. }
  729. }
  730. err = ink_add_indigenous(pContext, pContext->lex_reserved_words[function_name], function_buffer, function_buffer_top);
  731. if(err < 0) {
  732. pContext->panic = 1;
  733. return -33;
  734. }
  735. function_buffer_top = 0;
  736. mode = MODE_EXECUTABLE;
  737. goto next_token;
  738. }
  739. function_buffer[function_buffer_top] = current;
  740. function_buffer_top += 1;
  741. break;
  742. }
  743. next_token: i=i;
  744. }
  745. if(mode == MODE_FUNCTION || mode == MODE_DO) {
  746. return -32;
  747. }
  748. return 0;
  749. #undef MODE_EXECUTABLE
  750. #undef MODE_FUNCTION
  751. #undef MODE_DO
  752. #undef LABEL_BUFFER
  753. #undef FUNCTION_BUFFER
  754. }
  755. int ink_step(struct context *pContext) {
  756. struct ink_routine* currentRoutine;
  757. struct stack_frame frame;
  758. struct stack_frame* top;
  759. struct elem next;
  760. int t;
  761. currentRoutine = pContext->routines + pContext->routine_current;
  762. pContext->steps++;
  763. if(currentRoutine->function_stack_top == 0) return 0;
  764. if(pContext->panic) {
  765. return -1;
  766. }
  767. top = &currentRoutine->function_stack[currentRoutine->function_stack_top-1];
  768. t = top->executing.type;
  769. switch(t) {
  770. case INK_NATIVE_FUNCTION:
  771. if(top->index != 0) {
  772. ink_pop_fn(pContext);
  773. } else {
  774. top->index++;
  775. if(pContext->native_words_top <= top->executing.value) {
  776. pContext->panic = 1;
  777. return -1;
  778. }
  779. pContext->native_words[top->executing.value].value(pContext);
  780. }
  781. break;
  782. case INK_FUNCTION:
  783. if(pContext->words_top <= top->executing.value) {
  784. pContext->panic = 1;
  785. return -1;
  786. }
  787. if(top->index >= pContext->words[top->executing.value].size) {
  788. ink_pop_fn(pContext);
  789. } else {
  790. next = pContext->words[top->executing.value].things[top->index];
  791. if(next.type == INK_RETURN) {
  792. ink_pop_fn(pContext);
  793. return 1;
  794. }
  795. frame.executing = next;
  796. frame.index = 0;
  797. t = ink_push_fn(pContext, frame);
  798. if(t < 0) {
  799. pContext->panic = 1;
  800. return -11;
  801. }
  802. top->index++;
  803. }
  804. break;
  805. default:
  806. t = ink_push(pContext, top->executing);
  807. if(t < 0) {
  808. pContext->panic = 1;
  809. return -25;
  810. }
  811. ink_pop_fn(pContext);
  812. break;
  813. }
  814. return 1;
  815. }
  816. int ink_compile(struct context *pContext, const char* buffer) {
  817. int routine, saved, executable_buffer_top;
  818. /* Main function has a size limit of 256 (need to know that for REPL */
  819. struct elem executable_buffer[256];
  820. struct ink_routine* currentRoutine;
  821. int err;
  822. struct stack_frame frame;
  823. char* integer;
  824. size_t integer_size;
  825. char main_fn[32] = "__-MAIN-__";
  826. routine = ink_make_routine(pContext);
  827. saved = pContext->routine_current;
  828. pContext->routine_current = routine;
  829. currentRoutine = pContext->routines + routine;
  830. currentRoutine->stack = NULL;
  831. currentRoutine->top = 0;
  832. currentRoutine->capacity = 0;
  833. err = ink_lex(pContext, buffer);
  834. if(err < 0) {
  835. pContext->panic = 1;
  836. return -1;
  837. }
  838. executable_buffer_top = 0;
  839. err = ink_parse(pContext, executable_buffer, &executable_buffer_top);
  840. if(err < 0) {
  841. pContext->panic = 1;
  842. return -1;
  843. }
  844. if(executable_buffer_top != 0) {
  845. integer = ink_itoa(pContext, routine);
  846. integer_size = strlen(integer);
  847. memcpy(main_fn + 10, integer, integer_size);
  848. pContext->free(integer);
  849. main_fn[10 + integer_size] = 0;
  850. frame.executing.value = ink_add_indigenous(pContext, main_fn, executable_buffer, executable_buffer_top);
  851. if (frame.executing.value < 0) {
  852. pContext->panic = 1;
  853. return -1;
  854. }
  855. frame.executing.type = INK_FUNCTION;
  856. frame.index = 0;
  857. err = ink_push_fn(pContext, frame);
  858. pContext->routines[pContext->routine_current].top = 0;
  859. if (err < 0) {
  860. pContext->panic = 1;
  861. return -1;
  862. }
  863. } else {
  864. pContext->routines[pContext->routine_current].panic = INK_ROUTINE_SUCCESS;
  865. }
  866. pContext->routine_current = saved;
  867. return routine;
  868. }
  869. int ink_can_run(struct context* pContext) {
  870. int it;
  871. for(it = 0; it < pContext->routines_top; ++it) {
  872. if(pContext->routines[it].panic == 0) {
  873. return 1;
  874. }
  875. }
  876. return 0;
  877. }
  878. int ink_step_everyone(struct context* pContext) {
  879. int out;
  880. pContext->routine_current = -1;
  881. for(;;) {
  882. /* Increment to next runnable routine */
  883. do{
  884. ++(pContext->routine_current);
  885. } while(pContext->routine_current < pContext->routines_top && pContext->routines[pContext->routine_current].panic != 0);
  886. /* Exit condition */
  887. if(pContext->routine_current >= pContext->routines_top) break;
  888. /* Kill? */
  889. if(pContext->routines[pContext->routine_current].panic == INK_ROUTINE_SUCCESS) {
  890. ink_kill_routine(pContext, pContext->routine_current);
  891. }
  892. /* Step! */
  893. out = ink_step(pContext);
  894. if(out == 0) {
  895. pContext->routines[pContext->routine_current].panic = INK_ROUTINE_SUCCESS;
  896. } else if(out < 0) {
  897. pContext->routines[pContext->routine_current].panic = out;
  898. }
  899. }
  900. return 0;
  901. }
  902. int ink_new_type(
  903. struct context* ctx,
  904. const char* type_name,
  905. int size,
  906. void (*collect)(struct context*,void*),
  907. struct ink_collection_list (*gc)(struct context*,void*)
  908. ) {
  909. if(ctx->panic) return -128;
  910. /* Resize for push */
  911. if(ctx->types == NULL) {
  912. ctx->types = ctx->inner_malloc(sizeof(struct ink_type) * 8);
  913. ctx->types_top = 0;
  914. ctx->types_capacity = 8;
  915. } else if(ctx->types_top == ctx->types_capacity) {
  916. int new_count;
  917. void* renewed;
  918. new_count = (ctx->types_capacity + ctx->types_capacity/2);
  919. renewed = ctx->inner_realloc(ctx->types, sizeof(struct ink_type) * new_count);
  920. if(renewed == NULL) {
  921. return -129;
  922. } else {
  923. ctx->types = renewed;
  924. ctx->types_capacity = new_count;
  925. }
  926. }
  927. /* Push */
  928. ctx->types[ctx->types_top].name = type_name;
  929. ctx->types[ctx->types_top].element_size = size;
  930. ctx->types[ctx->types_top].elements = NULL;
  931. ctx->types[ctx->types_top].elements_top = 0;
  932. ctx->types[ctx->types_top].elements_capacity = 0;
  933. ctx->types[ctx->types_top].collect = collect;
  934. ctx->types[ctx->types_top].gc = gc;
  935. ctx->types_top++;
  936. /* Satisfying the minimal value requirement */
  937. return ctx->types_top - 1 + 16;
  938. }
  939. static struct element_slab* ink_get_value_link(struct context* ctx, struct elem ref) {
  940. int type_id;
  941. if(ref.type < 16) return NULL;
  942. type_id = ref.type - 16;
  943. if(type_id >= ctx->types_top) return NULL;
  944. if(ctx->types[type_id].element_size == 0) return NULL;
  945. if(ref.value < 0) return NULL;
  946. if(ref.value >= ctx->types[type_id].elements_top) return NULL;
  947. if(! ctx->types[type_id].elements[ref.value].in_use) return NULL;
  948. return ctx->types[type_id].elements + ref.value;
  949. }
  950. void* ink_get_value(struct context* ctx, struct elem ref) {
  951. struct element_slab* s;
  952. s = ink_get_value_link(ctx, ref);
  953. if(s == NULL) return NULL;
  954. return s->data;
  955. }
  956. struct elem ink_make_native_unsafe(struct context* ctx, int type, void* ptr, int is_protected) {
  957. int type_id;
  958. struct elem ret;
  959. int g, i;
  960. if(type < 16) {
  961. ret.type = 0;
  962. ret.value = -130;
  963. return ret;
  964. }
  965. /* Apply invariant of the user defined types */
  966. type_id = type - 16;
  967. if(type_id >= ctx->types_top) {
  968. ret.type = 0;
  969. ret.value = -129;
  970. return ret;
  971. }
  972. if(ctx->panic) {
  973. ret.type = 0;
  974. ret.value = -135;
  975. return ret;
  976. }
  977. /* Resize for push of value in store */
  978. if(ctx->types[type_id].elements == NULL) {
  979. ctx->types[type_id].elements = ctx->inner_malloc(sizeof(struct element_slab) * 8);
  980. ctx->types[type_id].elements_top = 0;
  981. ctx->types[type_id].elements_capacity = 8;
  982. memset(ctx->types[type_id].elements + ctx->types[type_id].elements_top, 0, sizeof(struct element_slab)*(ctx->types[type_id].elements_capacity - ctx->types[type_id].elements_top));
  983. } else if(ctx->types[type_id].elements_top == ctx->types[type_id].elements_capacity) {
  984. int new_count;
  985. void* renewed;
  986. new_count = (ctx->types[type_id].elements_capacity + ctx->types[type_id].elements_capacity/2);
  987. renewed = ctx->inner_realloc(ctx->types[type_id].elements, sizeof(struct element_slab) * new_count);
  988. if(renewed == NULL) {
  989. ret.type = 0;
  990. ret.value = -129;
  991. return ret;
  992. } else {
  993. ctx->types[type_id].elements = renewed;
  994. ctx->types[type_id].elements_capacity = new_count;
  995. memset(ctx->types[type_id].elements + ctx->types[type_id].elements_top, 0, sizeof(struct element_slab)*(ctx->types[type_id].elements_capacity - ctx->types[type_id].elements_top));
  996. }
  997. }
  998. /* Push value in store */
  999. g = ctx->types[type_id].elements_capacity;
  1000. for(i = 0; i < g; ++i) {
  1001. if(! ctx->types[type_id].elements[i].in_use) {
  1002. ctx->types[type_id].elements[i].in_use = 1;
  1003. ctx->types[type_id].elements[i].uses = 1;
  1004. ctx->types[type_id].elements[i].is_protected = is_protected;
  1005. if(ctx->types[type_id].element_size < 0) {
  1006. ctx->types[type_id].elements[i].data = ptr;
  1007. } else {
  1008. void* new_ptr = ctx->malloc(ctx->types[type_id].element_size);
  1009. if(new_ptr == NULL) {
  1010. ret.type = 0;
  1011. ret.value = -139;
  1012. return ret;
  1013. }
  1014. memcpy(new_ptr, ptr, ctx->types[type_id].element_size);
  1015. ctx->types[type_id].elements[i].data = new_ptr;
  1016. }
  1017. ctx->types[type_id].elements_top = max(ctx->types[type_id].elements_top, i+1);
  1018. ret.type = type;
  1019. ret.value = i;
  1020. return ret;
  1021. }
  1022. }
  1023. ret.type = 0;
  1024. ret.value = -140;
  1025. return ret;
  1026. }
  1027. struct elem ink_make_native(struct context* ctx, int type, void* ptr) {
  1028. return ink_make_native_unsafe(ctx, type, ptr, 0);
  1029. }
  1030. void ink_gc(struct context* ctx) {
  1031. int i, j, k;
  1032. int marked;
  1033. struct element_slab* v;
  1034. for(i = 0; i < ctx->types_top; ++i) {
  1035. for(j = 0; j < ctx->types[i].elements_top; ++j) {
  1036. ctx->types[i].elements[j].uses = 0;
  1037. }
  1038. }
  1039. /* Start by marking the roots of the routines, Clear the routines if possible */
  1040. for(i = 0; i < ctx->routines_top; ++i) {
  1041. if(ctx->routines[i].panic == INK_ROUTINE_SUCCESS) {
  1042. ctx->free(ctx->routines[i].stack);
  1043. ctx->free(ctx->routines[i].function_stack);
  1044. ctx->routines[i].panic = INK_ROUTINE_CAN_REUSE;
  1045. }
  1046. if(ctx->routines[i].panic == INK_ROUTINE_CAN_REUSE) {
  1047. continue;
  1048. }
  1049. for(j = 0; j < ctx->routines[i].top; ++j) {
  1050. v = ink_get_value_link(ctx, ctx->routines[i].stack[j]);
  1051. if(v != NULL) ++v->uses;
  1052. }
  1053. }
  1054. /* TODO: Mark objects contained within function code */
  1055. /* Mark the rest of the data */
  1056. do {
  1057. marked = 0;
  1058. for (i = 0; i < ctx->types_top; ++i) {
  1059. for (j = 0; j < ctx->types[i].elements_top; ++j) {
  1060. /* Only mark from things that are active and detected as in use */
  1061. if (ctx->types[i].elements[j].in_use && ctx->types[i].elements[j].is_protected && ctx->types[i].elements[j].uses) {
  1062. struct ink_collection_list c;
  1063. c = ctx->types[i].gc(ctx, ctx->types[i].elements[j].data);
  1064. for (k = 0; k < c.count; ++k) {
  1065. v = ink_get_value_link(ctx, c.elements[k]);
  1066. /* Never mark twice to avoid infinite loops with e.g. arrays that contain themselves */
  1067. if (v != NULL && !v->uses) {
  1068. ++v->uses;
  1069. marked = 1;
  1070. }
  1071. }
  1072. if (c.elements != NULL) ctx->inner_free(c.elements);
  1073. }
  1074. }
  1075. }
  1076. } while(marked);
  1077. /* Sweep phase: explore any allocated data and sweep the unused away */
  1078. for(i = 0; i < ctx->types_top; ++i) {
  1079. for(j = 0; j < ctx->types[i].elements_top; ++j) {
  1080. if(ctx->types[i].elements[j].uses == 0 && ctx->types[i].elements[j].in_use && ctx->types[i].elements[j].is_protected == 0) {
  1081. ctx->collections++;
  1082. ctx->types[i].collect(ctx, ctx->types[i].elements[j].data);
  1083. if(ctx->types[i].element_size > 0) {
  1084. ctx->free(ctx->types[i].elements[j].data);
  1085. }
  1086. ctx->types[i].elements[j].data = NULL;
  1087. ctx->types[i].elements[j].uses = 0;
  1088. ctx->types[i].elements[j].in_use = 0;
  1089. }
  1090. }
  1091. }
  1092. }
  1093. /**********************************************************************************************************************/
  1094. static void print_stacktrace(struct context* _) {
  1095. int i;
  1096. struct ink_routine* currentRoutine;
  1097. currentRoutine = _->routines + _->routine_current;
  1098. for(i = 0; i < currentRoutine->function_stack_top; ++i) {
  1099. struct elem thing;
  1100. char *n;
  1101. thing = currentRoutine->function_stack[i].executing;
  1102. switch(thing.type) {
  1103. case INK_NATIVE_FUNCTION: {
  1104. n = _->native_words[thing.value].name;
  1105. while (*n) {
  1106. _->putchar(*n);
  1107. ++n;
  1108. }
  1109. _->putchar(10);
  1110. break;
  1111. }
  1112. case INK_FUNCTION:{
  1113. n = _->words[thing.value].name;
  1114. while (*n) {
  1115. _->putchar(*n);
  1116. ++n;
  1117. }
  1118. _->putchar(':');
  1119. n = ink_itoa(_, currentRoutine->function_stack[i].index);
  1120. while (*n) {
  1121. _->putchar(*n);
  1122. ++n;
  1123. }
  1124. _->putchar(10);
  1125. break;
  1126. }
  1127. default:
  1128. break;
  1129. }
  1130. }
  1131. }
  1132. static void add_int(struct context* ctx) {
  1133. struct ink_routine* currentRoutine;
  1134. struct elem a;
  1135. struct elem b;
  1136. currentRoutine = ctx->routines + ctx->routine_current;
  1137. if(currentRoutine->top < 2) {
  1138. currentRoutine->panic = -1;
  1139. return;
  1140. }
  1141. a = currentRoutine->stack[currentRoutine->top-1];
  1142. b = currentRoutine->stack[currentRoutine->top-2];
  1143. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1144. ctx->panic = 1;
  1145. return;
  1146. }
  1147. ink_pop(ctx);
  1148. currentRoutine->stack[currentRoutine->top-1].value = a.value + b.value;
  1149. }
  1150. static void sub_int(struct context* ctx) {
  1151. struct ink_routine* currentRoutine;
  1152. struct elem a;
  1153. struct elem b;
  1154. currentRoutine = ctx->routines + ctx->routine_current;
  1155. if(currentRoutine->top < 2) {
  1156. currentRoutine->panic = -1;
  1157. return;
  1158. }
  1159. a = currentRoutine->stack[currentRoutine->top-1];
  1160. b = currentRoutine->stack[currentRoutine->top-2];
  1161. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1162. currentRoutine->panic = -1;
  1163. return;
  1164. }
  1165. ink_pop(ctx);
  1166. currentRoutine->stack[currentRoutine->top-1].value = b.value - a.value;
  1167. }
  1168. static void mult_int(struct context* ctx) {
  1169. struct ink_routine* currentRoutine;
  1170. struct elem a;
  1171. struct elem b;
  1172. currentRoutine = ctx->routines + ctx->routine_current;
  1173. if(currentRoutine->top < 2) {
  1174. currentRoutine->panic = -1;
  1175. return;
  1176. }
  1177. a = currentRoutine->stack[currentRoutine->top-1];
  1178. b = currentRoutine->stack[currentRoutine->top-2];
  1179. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1180. currentRoutine->panic = -1;
  1181. return;
  1182. }
  1183. ink_pop(ctx);
  1184. currentRoutine->stack[currentRoutine->top-1].value = b.value * a.value;
  1185. }
  1186. static void div_int(struct context* ctx) {
  1187. struct ink_routine* currentRoutine;
  1188. struct elem a;
  1189. struct elem b;
  1190. currentRoutine = ctx->routines + ctx->routine_current;
  1191. if(currentRoutine->top < 2) {
  1192. currentRoutine->panic = -1;
  1193. return;
  1194. }
  1195. a = currentRoutine->stack[currentRoutine->top-1];
  1196. b = currentRoutine->stack[currentRoutine->top-2];
  1197. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1198. currentRoutine->panic = -1;
  1199. return;
  1200. }
  1201. ink_pop(ctx);
  1202. currentRoutine->stack[currentRoutine->top-1].value = b.value / a.value;
  1203. }
  1204. static void is_equal(struct context* ctx) {
  1205. struct ink_routine* currentRoutine;
  1206. struct elem a;
  1207. struct elem b;
  1208. struct elem ret;
  1209. currentRoutine = ctx->routines + ctx->routine_current;
  1210. if(currentRoutine->top < 2) {
  1211. currentRoutine->panic = -1;
  1212. return;
  1213. }
  1214. a = currentRoutine->stack[currentRoutine->top-1];
  1215. b = currentRoutine->stack[currentRoutine->top-2];
  1216. ink_pop(ctx);
  1217. ink_pop(ctx);
  1218. ret.type = INK_INTEGER;
  1219. ret.value = a.value == b.value && a.type == b.type;
  1220. ink_push(ctx, ret);
  1221. }
  1222. static void is_different(struct context* ctx) {
  1223. struct ink_routine* currentRoutine;
  1224. struct elem a;
  1225. struct elem b;
  1226. struct elem ret;
  1227. currentRoutine = ctx->routines + ctx->routine_current;
  1228. if(currentRoutine->top < 2) {
  1229. currentRoutine->panic = -1;
  1230. return;
  1231. }
  1232. a = currentRoutine->stack[currentRoutine->top-1];
  1233. b = currentRoutine->stack[currentRoutine->top-2];
  1234. ink_pop(ctx);
  1235. ink_pop(ctx);
  1236. ret.type = INK_INTEGER;
  1237. ret.value = !(a.value == b.value && a.type == b.type);
  1238. ink_push(ctx, ret);
  1239. }
  1240. #ifndef NOEXTRAARITHMETIC
  1241. static void rem_int(struct context* ctx) {
  1242. struct ink_routine* currentRoutine;
  1243. struct elem a;
  1244. struct elem b;
  1245. currentRoutine = ctx->routines + ctx->routine_current;
  1246. if(currentRoutine->top < 2) {
  1247. currentRoutine->panic = -1;
  1248. return;
  1249. }
  1250. a = currentRoutine->stack[currentRoutine->top-1];
  1251. b = currentRoutine->stack[currentRoutine->top-2];
  1252. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1253. currentRoutine->panic = -1;
  1254. return;
  1255. }
  1256. ink_pop(ctx);
  1257. currentRoutine->stack[currentRoutine->top-1].value = b.value % a.value;
  1258. }
  1259. static void xor_int(struct context* ctx) {
  1260. struct ink_routine* currentRoutine;
  1261. struct elem a;
  1262. struct elem b;
  1263. currentRoutine = ctx->routines + ctx->routine_current;
  1264. if(currentRoutine->top < 2) {
  1265. currentRoutine->panic = -1;
  1266. return;
  1267. }
  1268. a = currentRoutine->stack[currentRoutine->top-1];
  1269. b = currentRoutine->stack[currentRoutine->top-2];
  1270. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1271. currentRoutine->panic = -1;
  1272. return;
  1273. }
  1274. ink_pop(ctx);
  1275. currentRoutine->stack[currentRoutine->top-1].value = b.value ^ a.value;
  1276. }
  1277. static void gt_int(struct context* ctx) {
  1278. struct ink_routine* currentRoutine;
  1279. struct elem a;
  1280. struct elem b;
  1281. currentRoutine = ctx->routines + ctx->routine_current;
  1282. if(currentRoutine->top < 2) {
  1283. currentRoutine->panic = -1;
  1284. return;
  1285. }
  1286. a = currentRoutine->stack[currentRoutine->top-1];
  1287. b = currentRoutine->stack[currentRoutine->top-2];
  1288. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1289. currentRoutine->panic = -1;
  1290. return;
  1291. }
  1292. ink_pop(ctx);
  1293. currentRoutine->stack[currentRoutine->top-1].value = b.value > a.value;
  1294. }
  1295. static void gte_int(struct context* ctx) {
  1296. struct ink_routine* currentRoutine;
  1297. struct elem a;
  1298. struct elem b;
  1299. currentRoutine = ctx->routines + ctx->routine_current;
  1300. if(currentRoutine->top < 2) {
  1301. currentRoutine->panic = -1;
  1302. return;
  1303. }
  1304. a = currentRoutine->stack[currentRoutine->top-1];
  1305. b = currentRoutine->stack[currentRoutine->top-2];
  1306. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1307. currentRoutine->panic = -1;
  1308. return;
  1309. }
  1310. ink_pop(ctx);
  1311. currentRoutine->stack[currentRoutine->top-1].value = b.value >= a.value;
  1312. }
  1313. static void lte_int(struct context* ctx) {
  1314. struct ink_routine* currentRoutine;
  1315. struct elem a;
  1316. struct elem b;
  1317. currentRoutine = ctx->routines + ctx->routine_current;
  1318. if(currentRoutine->top < 2) {
  1319. currentRoutine->panic = -1;
  1320. return;
  1321. }
  1322. a = currentRoutine->stack[currentRoutine->top-1];
  1323. b = currentRoutine->stack[currentRoutine->top-2];
  1324. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1325. currentRoutine->panic = -1;
  1326. return;
  1327. }
  1328. ink_pop(ctx);
  1329. currentRoutine->stack[currentRoutine->top-1].value = b.value <= a.value;
  1330. }
  1331. #endif /* NOEXTRAARITHMETIC */
  1332. static void lt_int(struct context* ctx) {
  1333. struct ink_routine* currentRoutine;
  1334. struct elem a;
  1335. struct elem b;
  1336. currentRoutine = ctx->routines + ctx->routine_current;
  1337. if(currentRoutine->top < 2) {
  1338. currentRoutine->panic = -1;
  1339. return;
  1340. }
  1341. a = currentRoutine->stack[currentRoutine->top-1];
  1342. b = currentRoutine->stack[currentRoutine->top-2];
  1343. if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
  1344. currentRoutine->panic = -1;
  1345. return;
  1346. }
  1347. ink_pop(ctx);
  1348. currentRoutine->stack[currentRoutine->top-1].value = b.value < a.value;
  1349. }
  1350. static void dupe_elem(struct context* ctx) {
  1351. struct ink_routine* currentRoutine;
  1352. struct elem a;
  1353. int err;
  1354. currentRoutine = ctx->routines + ctx->routine_current;
  1355. if(currentRoutine->top < 1) {
  1356. ctx->panic = 1;
  1357. return;
  1358. }
  1359. a = currentRoutine->stack[currentRoutine->top-1];
  1360. err = ink_push(ctx, a);
  1361. if(err < 0) ctx->panic = 1;
  1362. }
  1363. static void drop_elem(struct context* ctx) {
  1364. struct ink_routine* currentRoutine;
  1365. currentRoutine = ctx->routines + ctx->routine_current;
  1366. if(currentRoutine->top < 1) {
  1367. ctx->panic = 1;
  1368. return;
  1369. }
  1370. ink_pop(ctx);
  1371. }
  1372. static void pluck_elem(struct context* ctx) {
  1373. struct ink_routine* currentRoutine;
  1374. struct elem a;
  1375. int position, err;
  1376. currentRoutine = ctx->routines + ctx->routine_current;
  1377. if(currentRoutine->top < 1) {
  1378. currentRoutine->panic = -1;
  1379. return;
  1380. }
  1381. a = currentRoutine->stack[currentRoutine->top-1];
  1382. if(a.type != INK_INTEGER) {
  1383. ctx->panic = 1;
  1384. return;
  1385. }
  1386. position = currentRoutine->top - (a.value + 1);
  1387. if(position >= currentRoutine->top || position < 0) {
  1388. ctx->panic = 1;
  1389. return;
  1390. }
  1391. ink_pop(ctx);
  1392. err = ink_push(ctx, currentRoutine->stack[position]);
  1393. if(err < 0) ctx->panic = 1;
  1394. }
  1395. static void swap_elem(struct context* ctx) {
  1396. struct ink_routine* currentRoutine;
  1397. struct elem a;
  1398. struct elem b;
  1399. currentRoutine = ctx->routines + ctx->routine_current;
  1400. if(currentRoutine->top < 2) {
  1401. currentRoutine->panic = -1;
  1402. return;
  1403. }
  1404. a = currentRoutine->stack[currentRoutine->top-1];
  1405. b = currentRoutine->stack[currentRoutine->top-2];
  1406. currentRoutine->stack[currentRoutine->top-2] = a;
  1407. currentRoutine->stack[currentRoutine->top-1] = b;
  1408. }
  1409. static void return_if(struct context* ctx) {
  1410. struct ink_routine* currentRoutine;
  1411. struct elem a;
  1412. currentRoutine = ctx->routines + ctx->routine_current;
  1413. if(currentRoutine->top < 1) {
  1414. ctx->panic = -1;
  1415. return;
  1416. }
  1417. a = currentRoutine->stack[currentRoutine->top-1];
  1418. if(a.type != INK_INTEGER) {
  1419. ctx->panic = 1;
  1420. return;
  1421. }
  1422. if(a.value) {
  1423. ink_pop_fn(ctx);
  1424. ink_pop_fn(ctx);
  1425. }
  1426. ink_pop(ctx);
  1427. return;
  1428. }
  1429. static void jump_if(struct context* ctx) {
  1430. struct ink_routine* currentRoutine;
  1431. struct elem label;
  1432. struct elem condition;
  1433. currentRoutine = ctx->routines + ctx->routine_current;
  1434. if(currentRoutine->top < 2) {
  1435. ctx->panic = -1;
  1436. return;
  1437. }
  1438. label = currentRoutine->stack[currentRoutine->top-1];
  1439. condition = currentRoutine->stack[currentRoutine->top-2];
  1440. if(label.type != INK_INTEGER || condition.type != INK_INTEGER) {
  1441. ctx->panic = -1;
  1442. return;
  1443. }
  1444. ink_pop(ctx);
  1445. ink_pop(ctx);
  1446. ink_pop_fn(ctx);
  1447. if(condition.value) {
  1448. currentRoutine->function_stack[currentRoutine->function_stack_top - 1].index += label.value - 2;
  1449. }
  1450. return;
  1451. }
  1452. static void print_int(struct context* ctx) {
  1453. struct ink_routine* currentRoutine;
  1454. struct elem a;
  1455. char* n;
  1456. char* str;
  1457. currentRoutine = ctx->routines + ctx->routine_current;
  1458. if(currentRoutine->top < 1 || currentRoutine->stack[currentRoutine->top-1].type != INK_INTEGER) {
  1459. currentRoutine->panic = -1;
  1460. return;
  1461. }
  1462. a = currentRoutine->stack[currentRoutine->top-1];
  1463. ink_pop(ctx);
  1464. n = ink_itoa(ctx, a.value);
  1465. str = n;
  1466. while (*str) {
  1467. ctx->putchar(*str);
  1468. ++str;
  1469. }
  1470. ctx->free(n);
  1471. }
  1472. static void print_as_utf8(struct context* ctx) {
  1473. struct ink_routine* currentRoutine;
  1474. struct elem a;
  1475. currentRoutine = ctx->routines + ctx->routine_current;
  1476. if(currentRoutine->top < 1 || currentRoutine->stack[currentRoutine->top-1].type != INK_INTEGER) {
  1477. ctx->panic = -1;
  1478. return;
  1479. }
  1480. a = currentRoutine->stack[currentRoutine->top-1];
  1481. if(a.value <= 0x7F) {
  1482. ctx->putchar(a.value);
  1483. } else if(a.value <= 0x7FF) {
  1484. ctx->putchar(((a.value & 0xFC0) >> 6) | 192);
  1485. ctx->putchar((a.value & 0x3F) | 128);
  1486. } else if(a.value <= 0xFFFF) {
  1487. ctx->putchar(((a.value & 0x3F000) >> 12) | 224);
  1488. ctx->putchar(((a.value & 0xFC0) >> 6) | 128);
  1489. ctx->putchar((a.value & 0x3F) | 128);
  1490. } else if(a.value <= 0x10FFFF) {
  1491. ctx->putchar(((a.value & 0x3C0000) >> 18) | 240);
  1492. ctx->putchar(((a.value & 0x3F000) >> 12) | 128);
  1493. ctx->putchar(((a.value & 0xFC0) >> 6) | 128);
  1494. ctx->putchar((a.value & 0x3F) | 128);
  1495. } else {
  1496. ctx->panic = -1;
  1497. return;
  1498. }
  1499. ink_pop(ctx);
  1500. }
  1501. int get_type_by_name(struct context* ctx, const char* name) {
  1502. int i;
  1503. for(i = 0; i < ctx->types_top; ++i) {
  1504. if(strcmp(ctx->types[i].name, name) == 0) {
  1505. return i + 16;
  1506. }
  1507. }
  1508. return -1;
  1509. }
  1510. static void run_gc(struct context* ctx) {
  1511. ink_gc(ctx);
  1512. }
  1513. static void clear_stack(struct context* ctx) {
  1514. struct ink_routine* currentRoutine;
  1515. currentRoutine = ctx->routines + ctx->routine_current;
  1516. while (currentRoutine->top >= 1) {
  1517. ink_pop(ctx);
  1518. }
  1519. return;
  1520. }
  1521. static void dump_stack(struct context* ctx) {
  1522. struct ink_routine* currentRoutine;
  1523. int index;
  1524. char* idx;
  1525. char* type;
  1526. char* value;
  1527. char* it;
  1528. currentRoutine = ctx->routines + ctx->routine_current;
  1529. index = currentRoutine->top;
  1530. while (index) {
  1531. --index;
  1532. idx = ink_itoa(ctx,index);
  1533. type = ink_itoa(ctx, currentRoutine->stack[index].type);
  1534. value = ink_itoa(ctx,currentRoutine->stack[index].value);
  1535. for(it = idx; *it; ++it) ctx->putchar(*it);
  1536. ctx->putchar(' ');ctx->putchar('|');ctx->putchar(' ');
  1537. for(it = type; *it; ++it) ctx->putchar(*it);
  1538. ctx->putchar(' ');ctx->putchar('|');ctx->putchar(' ');
  1539. for(it = value; *it; ++it) ctx->putchar(*it);
  1540. ctx->putchar('\n');
  1541. ctx->free(value);
  1542. ctx->free(type);
  1543. ctx->free(idx);
  1544. }
  1545. return;
  1546. }
  1547. static void collect_noop() {}
  1548. static struct ink_collection_list gc_noop() {
  1549. struct ink_collection_list c;
  1550. c.elements = NULL;
  1551. c.count = 0;
  1552. return c;
  1553. }
  1554. #ifndef NOARRAYLIB
  1555. static void collect_array(struct context* ctx, void* array) {
  1556. struct ink_array* ary;
  1557. ary = array;
  1558. if(ary->elements != NULL) ctx->free(ary->elements);
  1559. }
  1560. static struct ink_collection_list gc_array(struct context* ctx, void* array) {
  1561. struct ink_array* ary;
  1562. struct ink_collection_list c;
  1563. ary = array;
  1564. c.elements = ctx->inner_malloc(sizeof(struct elem)*ary->top);
  1565. c.count = ary->top;
  1566. memcpy(c.elements, ary->elements, sizeof(struct elem)*ary->top);
  1567. return c;
  1568. }
  1569. static void new_array(struct context* ctx) {
  1570. int tid;
  1571. struct elem e;
  1572. struct ink_array ary;
  1573. tid = get_type_by_name(ctx, "array");
  1574. ary.elements = NULL;
  1575. ary.top = 0;
  1576. ary.capacity = 0;
  1577. e = ink_make_native(ctx, tid, &ary);
  1578. ink_push(ctx, e);
  1579. }
  1580. #ifndef NOSTRINGLITERALS
  1581. static void new_protected_array(struct context* ctx) {
  1582. int tid;
  1583. struct elem e;
  1584. struct ink_array ary;
  1585. tid = get_type_by_name(ctx, "array");
  1586. ary.elements = NULL;
  1587. ary.top = 0;
  1588. ary.capacity = 0;
  1589. e = ink_make_native_unsafe(ctx, tid, &ary, 1);
  1590. ink_push(ctx, e);
  1591. }
  1592. #endif
  1593. static void push_array_stack_delim(struct context* ctx) {
  1594. int tid;
  1595. struct elem e;
  1596. tid = get_type_by_name(ctx, "array_marker");
  1597. e.type = tid;
  1598. e.value = 0;
  1599. ink_push(ctx, e);
  1600. }
  1601. void array_push(struct context* ctx, struct ink_routine* currentRoutine, struct ink_array* ary, struct elem value) {
  1602. if(ary->elements == NULL) {
  1603. ary->elements = ctx->malloc(sizeof(struct elem) * 8);
  1604. ary->top = 0;
  1605. ary->capacity = 8;
  1606. } else if(ary->top == ary->capacity) {
  1607. int new_count;
  1608. void* renewed;
  1609. new_count = (ary->capacity + ary->capacity/2);
  1610. renewed = ctx->realloc(ary->elements, sizeof(struct elem) * new_count);
  1611. if(renewed == NULL) {
  1612. currentRoutine->panic = -1;
  1613. return;
  1614. } else {
  1615. ary->elements = renewed;
  1616. ary->capacity = new_count;
  1617. }
  1618. }
  1619. ary->elements[ary->top] = value;
  1620. ary->top++;
  1621. }
  1622. static void push_array(struct context* ctx) {
  1623. int tid;
  1624. struct elem a;
  1625. struct ink_routine* currentRoutine;
  1626. struct ink_array* ary;
  1627. tid = get_type_by_name(ctx, "array");
  1628. currentRoutine = ctx->routines + ctx->routine_current;
  1629. if(currentRoutine->top < 2 || currentRoutine->stack[currentRoutine->top-1].type != tid) {
  1630. currentRoutine->panic = -1;
  1631. return;
  1632. }
  1633. a = currentRoutine->stack[currentRoutine->top-1];
  1634. ary= ink_get_value(ctx, a);
  1635. if(ary == NULL) {
  1636. currentRoutine->panic = -1;
  1637. return;
  1638. }
  1639. ink_pop(ctx);
  1640. array_push(ctx, currentRoutine, ary, currentRoutine->stack[currentRoutine->top-1]);
  1641. ink_pop(ctx);
  1642. }
  1643. static void push_delimited_array(struct context* ctx) {
  1644. int tid, idx, counter, i;
  1645. struct elem a;
  1646. struct ink_routine* currentRoutine;
  1647. struct ink_array* ary;
  1648. tid = get_type_by_name(ctx, "array_marker");
  1649. currentRoutine = ctx->routines + ctx->routine_current;
  1650. if(currentRoutine->top < 1) {
  1651. currentRoutine->panic = -1;
  1652. return;
  1653. }
  1654. new_array(ctx);
  1655. a = currentRoutine->stack[currentRoutine->top-1];
  1656. ink_pop(ctx);
  1657. ary= ink_get_value(ctx, a);
  1658. for(idx = 1; idx <= currentRoutine->top; ++idx) {
  1659. if(currentRoutine->stack[currentRoutine->top-idx].type == tid) {
  1660. break;
  1661. }
  1662. }
  1663. /* Save for cleanup */
  1664. counter = idx;
  1665. /* Don't copy the delimiter */
  1666. idx -= 1;
  1667. ary->elements = malloc(sizeof(struct elem) * idx);
  1668. if(ary->elements == NULL) {
  1669. currentRoutine->panic = -541;
  1670. return;
  1671. }
  1672. ary->capacity = idx;
  1673. ary->top = 0;
  1674. /* Copy the data */
  1675. for(i = currentRoutine->top - idx; i < currentRoutine->top; ++i) {
  1676. ary->elements[ary->top] = currentRoutine->stack[i];
  1677. ++(ary->top);
  1678. }
  1679. /* Cleanup */
  1680. while(counter--) {
  1681. ink_pop(ctx);
  1682. }
  1683. /* Put value in place */
  1684. ink_push(ctx, a);
  1685. }
  1686. static void index_array(struct context* ctx) {
  1687. int tid;
  1688. struct ink_routine *currentRoutine;
  1689. struct elem a;
  1690. struct ink_array *ary;
  1691. struct elem idx;
  1692. tid = get_type_by_name(ctx, "array");
  1693. currentRoutine = ctx->routines + ctx->routine_current;
  1694. if (currentRoutine->top < 2 || currentRoutine->stack[currentRoutine->top - 1].type != tid || currentRoutine->stack[currentRoutine->top - 2].type != INK_INTEGER) {
  1695. currentRoutine->panic = -1;
  1696. return;
  1697. }
  1698. a = currentRoutine->stack[currentRoutine->top - 1];
  1699. ary = ink_get_value(ctx, a);
  1700. if (ary == NULL) {
  1701. currentRoutine->panic = -1;
  1702. return;
  1703. }
  1704. ink_pop(ctx);
  1705. idx = currentRoutine->stack[currentRoutine->top - 1];
  1706. ink_pop(ctx);
  1707. if(ary->top <= idx.value) {
  1708. currentRoutine->panic = -1;
  1709. return;
  1710. }
  1711. ink_push(ctx, ary->elements[idx.value]);
  1712. }
  1713. static void set_array(struct context* ctx) {
  1714. int tid;
  1715. struct ink_routine *currentRoutine;
  1716. struct elem a;
  1717. struct ink_array *ary;
  1718. struct elem idx;
  1719. struct elem value;
  1720. tid = get_type_by_name(ctx, "array");
  1721. currentRoutine = ctx->routines + ctx->routine_current;
  1722. if (currentRoutine->top < 3 || currentRoutine->stack[currentRoutine->top - 1].type != tid || currentRoutine->stack[currentRoutine->top - 2].type != INK_INTEGER) {
  1723. currentRoutine->panic = -1;
  1724. return;
  1725. }
  1726. a = currentRoutine->stack[currentRoutine->top - 1];
  1727. ary = ink_get_value(ctx, a);
  1728. if (ary == NULL) {
  1729. currentRoutine->panic = -1;
  1730. return;
  1731. }
  1732. idx = currentRoutine->stack[currentRoutine->top - 2];
  1733. value = currentRoutine->stack[currentRoutine->top - 3];
  1734. if(ary->top <= idx.value) {
  1735. currentRoutine->panic = -1;
  1736. return;
  1737. }
  1738. ink_pop(ctx);
  1739. ink_pop(ctx);
  1740. ink_pop(ctx);
  1741. ary->elements[idx.value] = value;
  1742. }
  1743. static void get_size_array(struct context* ctx) {
  1744. int tid;
  1745. struct ink_routine *currentRoutine;
  1746. struct elem a;
  1747. struct ink_array *ary;
  1748. struct elem sz;
  1749. tid = get_type_by_name(ctx, "array");
  1750. currentRoutine = ctx->routines + ctx->routine_current;
  1751. if (currentRoutine->top < 1 || currentRoutine->stack[currentRoutine->top - 1].type != tid) {
  1752. currentRoutine->panic = -1;
  1753. return;
  1754. }
  1755. a = currentRoutine->stack[currentRoutine->top - 1];
  1756. ary = ink_get_value(ctx, a);
  1757. if (ary == NULL) {
  1758. currentRoutine->panic = -1;
  1759. return;
  1760. }
  1761. ink_pop(ctx);
  1762. sz.type = INK_INTEGER;
  1763. sz.value = ary->top;
  1764. ink_push(ctx, sz);
  1765. }
  1766. static void is_array(struct context* ctx) {
  1767. int tid;
  1768. struct ink_routine *currentRoutine;
  1769. struct elem a;
  1770. tid = get_type_by_name(ctx, "array");
  1771. currentRoutine = ctx->routines + ctx->routine_current;
  1772. if (currentRoutine->top < 1) {
  1773. currentRoutine->panic = -1;
  1774. return;
  1775. }
  1776. a.type = INK_INTEGER;
  1777. a.value = currentRoutine->stack[currentRoutine->top - 1].type == tid;
  1778. ink_pop(ctx);
  1779. ink_push(ctx, a);
  1780. }
  1781. static void is_int(struct context* ctx) {
  1782. struct ink_routine *currentRoutine;
  1783. struct elem a;
  1784. currentRoutine = ctx->routines + ctx->routine_current;
  1785. if (currentRoutine->top < 1) {
  1786. currentRoutine->panic = -1;
  1787. return;
  1788. }
  1789. a.type = INK_INTEGER;
  1790. a.value = currentRoutine->stack[currentRoutine->top - 1].type == INK_INTEGER;
  1791. ink_pop(ctx);
  1792. ink_push(ctx, a);
  1793. }
  1794. static void print_array_of_codepoints(struct context* ctx) {
  1795. int tid, i;
  1796. struct ink_routine *currentRoutine;
  1797. struct elem a;
  1798. struct ink_array *ary;
  1799. tid = get_type_by_name(ctx, "array");
  1800. currentRoutine = ctx->routines + ctx->routine_current;
  1801. if (currentRoutine->top < 1 || currentRoutine->stack[currentRoutine->top - 1].type != tid) {
  1802. currentRoutine->panic = -1;
  1803. return;
  1804. }
  1805. a = currentRoutine->stack[currentRoutine->top - 1];
  1806. ary = ink_get_value(ctx, a);
  1807. for(i = 0; i < ary->top; ++i) {
  1808. if(ary->elements[i].type != INK_INTEGER) {
  1809. currentRoutine->panic = -1;
  1810. return;
  1811. }
  1812. }
  1813. ink_pop(ctx);
  1814. for(i = 0; i < ary->top; ++i) {
  1815. ink_push(ctx, ary->elements[i]);
  1816. print_as_utf8(ctx);
  1817. }
  1818. }
  1819. static void arrayify_stack(struct context* ctx) {
  1820. struct ink_routine* currentRoutine;
  1821. struct elem array_ref;
  1822. struct ink_array* ary;
  1823. int idx;
  1824. currentRoutine = ctx->routines + ctx->routine_current;
  1825. new_array(ctx);
  1826. if(currentRoutine->panic < 0) return;
  1827. array_ref = currentRoutine->stack[currentRoutine->top - 1];
  1828. ary = ink_get_value(ctx, array_ref);
  1829. if(ary == NULL) {
  1830. currentRoutine->panic = -717;
  1831. return;
  1832. }
  1833. ink_pop(ctx);
  1834. for(idx = 0; idx < currentRoutine->top; ++idx) {
  1835. array_push(ctx, currentRoutine, ary, currentRoutine->stack[idx]);
  1836. }
  1837. while (currentRoutine->top > 0) {
  1838. ink_pop(ctx);
  1839. }
  1840. ink_push(ctx, array_ref);
  1841. return;
  1842. }
  1843. #endif /* NOARRAYLIB */
  1844. int ink_std_library(struct context* ctx) {
  1845. int v;
  1846. v = 0;
  1847. v += ink_add_native(ctx, "sys.trace", print_stacktrace);
  1848. v += ink_add_native(ctx, "sys.gc", run_gc);
  1849. v += ink_add_native(ctx, "print_int", print_int);
  1850. v += ink_add_native(ctx, "print_utf8", print_as_utf8);
  1851. v += ink_add_native(ctx, "+", add_int);
  1852. v += ink_add_native(ctx, "-", sub_int);
  1853. v += ink_add_native(ctx, "*", mult_int);
  1854. v += ink_add_native(ctx, "/", div_int);
  1855. v += ink_add_native(ctx, "==", is_equal);
  1856. v += ink_add_native(ctx, "!=", is_different);
  1857. v += ink_add_native(ctx, "<", lt_int);
  1858. v += ink_add_native(ctx, "swap", swap_elem);
  1859. v += ink_add_native(ctx, "dup", dupe_elem);
  1860. v += ink_add_native(ctx, "drop", drop_elem);
  1861. v += ink_add_native(ctx, "stack.clear", clear_stack);
  1862. v += ink_add_native(ctx, "stack.dump", dump_stack);
  1863. v += ink_add_native(ctx, "pluck", pluck_elem);
  1864. v += ink_add_native(ctx, "return_if", return_if);
  1865. v += ink_add_native(ctx, "jump_if", jump_if);
  1866. v += ink_add_native(ctx, "is.int", is_int);
  1867. #ifndef NOEXTRAARITHMETIC
  1868. v += ink_add_native(ctx, ">", gt_int);
  1869. v += ink_add_native(ctx, ">=", gte_int);
  1870. v += ink_add_native(ctx, "=<", lte_int);
  1871. v += ink_add_native(ctx, "%", rem_int);
  1872. v += ink_add_native(ctx, "int.xor", xor_int);
  1873. #endif /* NOEXTRAARITHMETIC */
  1874. #ifndef NOARRAYLIB
  1875. ink_new_type(ctx, "array", sizeof(struct ink_array), collect_array, gc_array);
  1876. ink_new_type(ctx, "array_marker", 0, collect_noop, gc_noop);
  1877. v += ink_add_native(ctx, "[", push_array_stack_delim);
  1878. v += ink_add_native(ctx, "]", push_delimited_array);
  1879. v += ink_add_native(ctx, "array.new", new_array);
  1880. v += ink_add_native(ctx, "array.push", push_array);
  1881. v += ink_add_native(ctx, "array.index", index_array);
  1882. v += ink_add_native(ctx, "array.set", set_array);
  1883. v += ink_add_native(ctx, "array.size", get_size_array);
  1884. v += ink_add_native(ctx, "array.print_utf8", print_array_of_codepoints);
  1885. v += ink_add_native(ctx, "is.array", is_array);
  1886. v += ink_add_native(ctx, "stack.to_array", arrayify_stack);
  1887. #endif /* NOARRAYLIB */
  1888. return v;
  1889. }