Selaa lähdekoodia

Added garbage collection (and a memory corruption bug)

main
Ludovic 'Archivist' Lagouardette 5 kuukautta sitten
vanhempi
commit
efd764b907
6 muutettua tiedostoa jossa 308 lisäystä ja 13 poistoa
  1. +75
    -8
      ink.h
  2. +219
    -2
      lib.c
  3. +2
    -1
      main.c
  4. +2
    -0
      test/test02.nk
  5. +9
    -1
      test/test03.nk
  6. +1
    -1
      test/test04.nk

+ 75
- 8
ink.h Näytä tiedosto

@ -1,6 +1,7 @@
#pragma once
#include "stddef.h"
/**
* Represents the natively defined type of integers
*/
@ -85,16 +86,31 @@ struct ink_routine {
void *routine_userdata;
};
/**
* Contains a list of element on which garbage collection is to not be performed
*/
struct ink_collection_list {
struct elem* elems;
size_t size;
struct elem* elements;
size_t count;
};
struct element_slab {
void* data;
int uses;
int in_use;
};
/**
* Contains all the data for every element of any type and its garbage collection information.
*/
struct ink_type {
const char* name;
void* elements;
void (*collect)(void*);
struct ink_collection_list (*gc)(void*);
const char* name; //< The name of the type
int element_size; //< The size of individual elements of the type, 0 for int adjacent, negative for unmanaged size
struct element_slab* elements; //< The elements that are still live
int elements_top; //< The top of the elements list
int elements_capacity; //< The allocated capacity of the elements list
void (*collect)(struct context*,void*); //< The "destructor" of the object
struct ink_collection_list (*gc)(struct context*,void*); //< A function that returns an in-interpreter allocated list of elem references within the object
};
/**
@ -136,8 +152,9 @@ struct context {
char **lex_reserved_words;
int lex_reserved_words_capacity;
int lex_reserved_words_top;
unsigned int steps;
unsigned int steps;
unsigned int collections;
/**
* Can be set to any data that is convenient to the user to track and use within natively defined functions
@ -251,6 +268,56 @@ void ink_pop_fn(struct context *ctx);
*/
void ink_pop(struct context *ctx);
/**
* Declares a new type that can be stored within the interpreter
* @param ctx The context in which to add the file
* @param type_name The name of the type we want to add
* @param size The size in bytes of the type to add, size of 0 mean no size, in which case the type is adjacent to C int, negative size means that the memory is not managed by the interpreter.
* @param collect A "destructor" function for the data
* @param gc A function that returns a list (allocated with the `inner_malloc`) of all the elements this element holds references to
* @return if positive, a new type id, if negative an error value
* @internal user defined type ids minimal value is 15, we keep the first 16 types as reserved, just like negative type ids
*/
int ink_new_type(
struct context* ctx,
const char* type_name,
int size,
void (*collect)(struct context*,void*),
struct ink_collection_list (*gc)(struct context*,void*)
);
/**
*
* @param ctx The context of the interpreter
* @param ref The in-interpreter reference
* @return A pointer to the created value or NULL if it can't be found or has a size of 0
*/
void* ink_get_value(struct context* ctx, struct elem ref);
/**
* Builds a native type from the provided memory by copying it using memcpy
* @param ctx The context in which we operate
* @param type_id The type_id to use
* @param ptr The pointer from which to copy
* @return The in-interpreter reference of the newly created element
*/
struct elem ink_make_native(struct context* ctx, int type_id, void* ptr);
/**
* Builds a transparent type from the provided pointer
* @param ctx The context in which we operate
* @param type_id The type_id to use
* @param ptr The pointer
* @return The in-interpreter reference of the newly created element
*/
struct elem ink_make_transparent(struct context* ctx, int type_id, void* ptr);
/**
* Launch the mark and sweep garbage collection
* @param ctx The context to clean
*/
void ink_gc(struct context* ctx);
#ifdef __cplusplus
};
#endif

+ 219
- 2
lib.c Näytä tiedosto

@ -21,6 +21,9 @@
#define _KEYWORD_INK_END "end"
#define _KEYWORD_INK_RETURN "return"
#define min(x, y) ((x) > (y) ? (y) : (x))
#define max(x, y) ((x) < (y) ? (y) : (x))
struct label {
int active;
int dest;
@ -271,6 +274,9 @@ struct context* ink_make_context(void*(*malloc)(size_t), void*(*realloc)(void*,
ctx->routines = NULL;
ctx->routines_capacity = 0;
ctx->routines_top = 0;
ctx->types = NULL;
ctx->types_capacity = 0;
ctx->types_top = 0;
ctx->native_words = NULL;
ctx->native_words_capacity = 0;
ctx->native_words_top = 0;
@ -280,7 +286,8 @@ struct context* ink_make_context(void*(*malloc)(size_t), void*(*realloc)(void*,
ctx->lex_reserved_words = NULL;
ctx->lex_reserved_words_capacity = 0;
ctx->lex_reserved_words_top = 0;
ctx->steps = 0;
ctx->collections = 0;
ctx->steps = 0;
return ctx;
}
@ -791,6 +798,172 @@ int ink_step_everyone(struct context* pContext) {
return 0;
}
int ink_new_type(
struct context* ctx,
const char* type_name,
int size,
void (*collect)(struct context*,void*),
struct ink_collection_list (*gc)(struct context*,void*)
) {
if(ctx->panic) return -128;
if(ctx->types == NULL) {
ctx->types = ctx->inner_malloc(sizeof(struct ink_type) * 8);
ctx->types_top = 0;
ctx->types_capacity = 8;
} else if(ctx->types_top == ctx->types_capacity) {
int new_count = (ctx->types_capacity + ctx->types_capacity/2);
void* renewed = ctx->inner_realloc(ctx->types, sizeof(struct ink_type) * new_count);
if(renewed == NULL) {
return -129;
} else {
ctx->types = renewed;
ctx->types_capacity = new_count;
}
}
ctx->types[ctx->types_top].name = type_name;
ctx->types[ctx->types_top].element_size = size;
ctx->types[ctx->types_top].elements = NULL;
ctx->types[ctx->types_top].elements_top = 0;
ctx->types[ctx->types_top].elements_capacity = 0;
ctx->types[ctx->types_top].collect = collect;
ctx->types[ctx->types_top].gc = gc;
ctx->types_top++;
// Satisfying the minimal value requirement
return ctx->types_top - 1 + 16;
}
static struct element_slab* ink_get_value_link(struct context* ctx, struct elem ref) {
if(ref.type < 16) return NULL;
int type_id = ref.type - 16;
if(type_id >= ctx->types_top) return NULL;
if(ctx->types[type_id].element_size == 0) return NULL;
if(ref.value < 0) return NULL;
if(ref.value >= ctx->types[type_id].elements_top) return NULL;
if(! ctx->types[type_id].elements[ref.value].in_use) return NULL;
return ctx->types[type_id].elements + ref.value;
}
void* ink_get_value(struct context* ctx, struct elem ref) {
struct element_slab* s;
s = ink_get_value_link(ctx, ref);
if(s == NULL) return NULL;
return s->data;
}
struct elem ink_make_native(struct context* ctx, int type, void* ptr) {
if(type < 16) {
struct elem ret;
ret.type = 0;
ret.value = -130;
return ret;
}
int type_id = type - 16;
if(type_id >= ctx->types_top) {
struct elem ret;
ret.type = 0;
ret.value = -129;
return ret;
}
if(ctx->panic) {
struct elem ret;
ret.type = 0;
ret.value = -135;
return ret;
}
if(ctx->types[type_id].elements == NULL) {
ctx->types[type_id].elements = ctx->inner_malloc(sizeof(struct element_slab) * 8);
ctx->types[type_id].elements_top = 0;
ctx->types[type_id].elements_capacity = 8;
memset(ctx->types[type_id].elements + ctx->types[type_id].elements_top, 0, ctx->types[type_id].elements_capacity - ctx->types[type_id].elements_top);
} else if(ctx->types[type_id].elements_top == ctx->types[type_id].elements_capacity) {
int new_count = (ctx->types[type_id].elements_capacity + ctx->types[type_id].elements_capacity/2);
void* renewed = ctx->inner_realloc(ctx->types[type_id].elements, sizeof(struct element_slab) * new_count);
if(renewed == NULL) {
struct elem ret;
ret.type = 0;
ret.value = -129;
return ret;
} else {
ctx->types[type_id].elements = renewed;
ctx->types[type_id].elements_capacity = new_count;
memset(ctx->types[type_id].elements + ctx->types[type_id].elements_top, 0, ctx->types[type_id].elements_capacity - ctx->types[type_id].elements_top);
}
}
int g = ctx->types[type_id].elements_capacity;
int i;
for(i = 0; i < g; ++i) {
if(! ctx->types[type_id].elements[i].in_use) {
ctx->types[type_id].elements[i].in_use = 1;
ctx->types[type_id].elements[i].uses = 1;
if(ctx->types[type_id].element_size < 0) {
ctx->types[type_id].elements[i].data = ptr;
} else {
void* new_ptr = ctx->malloc(ctx->types[type_id].element_size);
if(new_ptr == NULL) {
struct elem ret;
ret.type = 0;
ret.value = -139;
return ret;
}
memcpy(new_ptr, ptr, ctx->types[type_id].element_size);
ctx->types[type_id].elements[i].data = ptr;
}
ctx->types[type_id].elements_top = max(ctx->types[type_id].elements_top+1, i+1);
struct elem ret;
ret.type = type;
ret.value = i;
return ret;
}
}
struct elem ret;
ret.type = 0;
ret.value = -140;
return ret;
}
void ink_gc(struct context* ctx) {
int i, j, k;
for(i = 0; i < ctx->types_top; ++i) {
for(j = 0; j < ctx->types[i].elements_top; ++j) {
ctx->types[i].elements[j].uses = 0;
}
}
for(i = 0; i < ctx->types_top; ++i) {
for(j = 0; j < ctx->types[i].elements_top; ++j) {
struct ink_collection_list c = ctx->types[i].gc(ctx, ctx->types[i].elements[j].data);
for(k = 0; k < c.count; ++k) {
struct element_slab* v = ink_get_value_link(ctx, c.elements[k]);
if(v != NULL) ++v->uses;
}
if(c.elements != NULL) ctx->inner_free(c.elements);
}
}
for(i = 0; i < ctx->routines_top; ++i) {
for(j = 0; j < ctx->routines[i].top; ++j) {
struct element_slab* v = ink_get_value_link(ctx, ctx->routines[i].stack[j]);
if(v != NULL) ++v->uses;
}
}
for(i = 0; i < ctx->types_top; ++i) {
for(j = 0; j < ctx->types[i].elements_top; ++j) {
if(ctx->types[i].elements[j].uses == 0) {
ctx->collections++;
ctx->types[i].collect(ctx, ctx->types[i].elements[j].data);
if(ctx->types[i].element_size > 0) {
ctx->free(ctx->types[i].elements[j].data);
}
ctx->types[i].elements[j].data = NULL;
ctx->types[i].elements[j].uses = 0;
ctx->types[i].elements[j].in_use = 0;
}
}
}
}
/**********************************************************************************************************************/
static void print_stacktrace(struct context* _) {
@ -1069,10 +1242,54 @@ static void print_as_utf8(struct context* ctx) {
ink_pop(ctx);
}
struct ink_array {
int top;
int capacity;
struct elem* elements;
};
static int get_type_by_name(struct context* ctx, const char* name) {
int i;
for(i = 0; i < ctx->types_top; ++i) {
if(strcmp(ctx->types[i].name, name) == 0) {
return i + 16;
}
}
return -1;
}
static void collect_array(struct context* ctx, void* array) {
struct ink_array* ary = array;
ctx->free(ary->elements);
}
static struct ink_collection_list gc_array(struct context* ctx, void* array) {
struct ink_array* ary = array;
struct ink_collection_list c;
c.elements = ctx->inner_malloc(sizeof(struct elem)*ary->top);
c.count = ary->top;
memcpy(c.elements, ary->elements, sizeof(struct elem)*ary->top);
return c;
}
static void new_array(struct context* ctx) {
int tid = get_type_by_name(ctx, "array");
struct ink_array ary;
ary.elements = NULL;
ary.top = 0;
ary.capacity = 0;
struct elem e = ink_make_native(ctx, tid, &ary);
ink_push(ctx, e);
}
int ink_std_library(struct context* ctx) {
int v;
v = 0;
v += ink_add_native(ctx, "trace", print_stacktrace);
int array_t = ink_new_type(ctx, "array", sizeof(struct ink_array), collect_array, gc_array);
v += ink_add_native(ctx, "array", new_array);
v += ink_add_native(ctx, "trace", print_stacktrace);
v += ink_add_native(ctx, "print_int", print_int);
v += ink_add_native(ctx, "print_utf8", print_as_utf8);
v += ink_add_native(ctx, "+", add_int);

+ 2
- 1
main.c Näytä tiedosto

@ -24,6 +24,7 @@ int main(int argc, char** argv) {
while(ink_can_run(ctx)) {
ink_step_everyone(ctx);
}
printf("\nExecuted in %u steps\n", ctx->steps);
ink_gc(ctx);
printf("\nExecuted in %u steps\nCollected %u times\n", ctx->steps, ctx->collections);
return ctx->panic;
}

+ 2
- 0
test/test02.nk Näytä tiedosto

@ -1,3 +1,5 @@
fn print_n_utf8 do
print_n_utf8_impl drop
end
array drop array drop

+ 9
- 1
test/test03.nk Näytä tiedosto

@ -1 +1,9 @@
4 potato2
4 potato2
fn u do
loop:
65 print_int
loop 1 jump_if
end

+ 1
- 1
test/test04.nk Näytä tiedosto

@ -1 +1 @@
4 potato3
4 potato3

Ladataan…
Peruuta
Tallenna