A minimalistic programming language written in C89.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2398 rivejä
62 KiB

#include "include/ink.h"
#ifndef NOSTDLIB
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#ifdef INSTRUMENTATION
#include <time.h>
#endif
#endif
#define INK_RESERVED (-1)
#define INK_FUNCTION_KW (-2)
#define INK_DO_KW (-3)
#define INK_END_KW (-4)
#define INK_LABEL (-5)
#define INK_RETURN (-6)
#define _KEYWORD_INK_FUNCTION "fn"
#define _KEYWORD_INK_DO "do"
#define _KEYWORD_INK_END "end"
#define _KEYWORD_INK_RETURN "return"
#define INK_ARRAY_FLAG_PROTECTED 1
#define min(x, y) ((x) > (y) ? (y) : (x))
#define max(x, y) ((x) < (y) ? (y) : (x))
#ifdef __GNUC__
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#else
#define likely(x) (!!(x))
#define unlikely(x) (!!(x))
#endif
struct label {
int active;
int dest;
char* name;
};
#ifdef NOSTDLIB
static size_t strlen(const char* c) {
size_t j;
j = 0;
while(*(c++)) {
j++;
}
return j;
}
static void* memcpy(void* _dest, const void* _src, size_t sz) {
char* dest;
const char* src;
dest = _dest;
src = _src;
while(sz--) {
*(dest++) = *(src++);
}
return dest;
}
static int strcmp(const char* dest, const char* src) {
while(*dest != 0 && *src != 0) {
if(*(dest++) != *(src++)) {
return 1;
}
}
return 0;
}
static void* memmove(void* _dest, const void* _src, size_t sz) {
char* dest;
const char* src;
dest = _dest;
src = _src;
if (src < dest) {
src += sz;
dest += sz;
while (sz-- > 0) {
*--dest = *--src;
}
} else {
while (sz-- > 0) {
*dest++ = *src++;
}
}
return dest;
}
static void* memset(void* _dest, int src, size_t sz) {
char* dest;
dest = _dest;
while(sz--) {
*(dest++) = src++;
}
return dest;
}
static int isspace(int d) {
return d == ' ' || d == '\t' || d == '\n';
}
static int isdigit(int d) {
return '0' <= d && d <= '9';
}
static int atoi(const char* c) {
int ret;
ret = 0;
while(*c) {
ret *= 10;
ret += *c - '0';
++c;
}
return ret;
}
#endif
int ink_add_native(struct context* ctx, const char* name, void(*value)(struct context*)) {
int len;
char* copy;
if(ctx->native_words == NULL) {
ctx->native_words = ctx->inner_malloc(ctx, sizeof(struct native_fn) * 8);
ctx->native_words_top = 0;
ctx->native_words_capacity = 8;
} else if(ctx->native_words_top == ctx->native_words_capacity) {
int new_count;
void* renewed;
new_count = (ctx->native_words_capacity + ctx->native_words_capacity/2);
renewed = ctx->inner_realloc(ctx, ctx->native_words, sizeof(struct native_fn) * new_count);
if(renewed == NULL) {
return -3;
} else {
ctx->native_words = renewed;
ctx->native_words_capacity = new_count;
}
}
len = strlen(name);
copy = ctx->inner_malloc(ctx, len+1);
if(copy == NULL) {
return -4;
}
memcpy(copy, name, len);
copy[len] = 0;
ctx->native_words[ctx->native_words_top].value = value;
ctx->native_words[ctx->native_words_top].name = copy;
ctx->native_words_top++;
return 0;
}
static int ink_add_indigenous(struct context* ctx, const char* name, struct elem* m, size_t count) {
int len, i;
char* copy;
if(ctx->words == NULL) {
ctx->words = ctx->malloc(ctx, sizeof(struct fn) * 8);
ctx->words_top = 0;
ctx->words_capacity = 8;
} else if(ctx->words_top == ctx->words_capacity) {
int new_count;
void* renewed;
new_count = (ctx->words_capacity + ctx->words_capacity/2);
renewed = ctx->realloc(ctx, ctx->words, sizeof(struct fn) * new_count);
if(renewed == NULL) {
return -1;
} else {
ctx->words = renewed;
ctx->words_capacity = new_count;
}
}
for(i = 0; i < ctx->words_top; ++i) {
if(strcmp(name, ctx->words[i].name) == 0) {
if(ctx->words[i].things != NULL) ctx->free(ctx, ctx->words[i].things);
ctx->words[i].things = ctx->malloc(ctx, sizeof(struct elem) * count);
memcpy(ctx->words[i].things, m, sizeof(struct elem) * count);
ctx->words[i].size = count;
return i;
}
}
len = strlen(name);
copy = ctx->malloc(ctx, len+1);
if(copy == NULL) {
return -2;
}
memcpy(copy, name, len);
copy[len] = 0;
ctx->words[ctx->words_top].things = ctx->malloc(ctx, sizeof(struct elem) * count);
memcpy(ctx->words[ctx->words_top].things, m, sizeof(struct elem) * count);
ctx->words[ctx->words_top].size = count;
ctx->words[ctx->words_top].name = copy;
return ctx->words_top++;
}
/**
*
* @param ctx The context
* @param name The name to add
* @internal add a lexed string to the parser
* @return the id of the string in the list
*/
static int ink_add_lex_string(struct context* ctx, const char* name) {
int i;
int len;
if(ctx->lex_reserved_words == NULL) {
ctx->lex_reserved_words = ctx->inner_malloc(ctx, sizeof(char*) * 8);
ctx->lex_reserved_words_top = 0;
ctx->lex_reserved_words_capacity = 8;
} else if(ctx->lex_reserved_words_top == ctx->lex_reserved_words_capacity) {
int new_count;
void* renewed;
new_count = (ctx->lex_reserved_words_capacity + ctx->lex_reserved_words_capacity/2);
renewed = ctx->inner_realloc(ctx, ctx->lex_reserved_words, sizeof(struct native_fn) * new_count);
if(renewed == NULL) {
return -5;
} else {
ctx->lex_reserved_words = renewed;
ctx->lex_reserved_words_capacity = new_count;
}
}
for(i = 0; i < ctx->lex_reserved_words_top; i++) {
if(strcmp(ctx->lex_reserved_words[i], name) == 0) {
return i;
}
}
len = strlen(name);
i = ctx->lex_reserved_words_top;
ctx->lex_reserved_words[i] = ctx->malloc(ctx, len+1);
memcpy(ctx->lex_reserved_words[i], name, len);
ctx->lex_reserved_words[i][len] = 0;
ctx->lex_reserved_words_top++;
return i;
}
int ink_push(struct context* ctx, struct elem value) {
struct ink_routine* current;
if(ctx->routine_current >= ctx->routines_top) return -65;
current = ctx->routines + ctx->routine_current;
if(current->stack == NULL) {
current->stack = ctx->malloc(ctx, sizeof(struct elem) * 8);
current->top = 0;
current->capacity = 8;
} else if(current->top == current->capacity) {
int new_count;
void* renewed;
new_count = (current->capacity + current->capacity/2);
renewed = ctx->realloc(ctx, current->stack, sizeof(struct elem) * new_count);
#ifndef NOEXTRACHECKS
if(renewed == NULL) {
return -18;
}
#endif
current->stack = renewed;
current->capacity = new_count;
}
current->stack[current->top] = value;
current->top++;
return 0;
}
int ink_push_fn(struct context* ctx, struct stack_frame value) {
struct ink_routine* current;
if(ctx->routine_current >= ctx->routines_top) return -55;
current = ctx->routines + ctx->routine_current;
if(current->panic) return -56;
if(current->function_stack == NULL) {
current->function_stack = ctx->malloc(ctx, sizeof(struct stack_frame) * 8);
current->function_stack_top = 0;
current->function_stack_capacity = 8;
} else if(current->function_stack_top == current->function_stack_capacity) {
int new_count;
void* renewed;
new_count = (current->function_stack_capacity + current->function_stack_capacity/2);
renewed = ctx->realloc(ctx, current->function_stack, sizeof(struct stack_frame) * new_count);
if(renewed == NULL) {
return -9;
} else {
current->function_stack = renewed;
current->function_stack_capacity = new_count;
}
}
current->function_stack[current->function_stack_top] = value;
current->function_stack_top++;
return 0;
}
void ink_pop_fn(struct context* ctx) {
if(ctx->routine_current >= ctx->routines_top) return;
if(ctx->routines[ctx->routine_current].panic) return;
if(ctx->routines[ctx->routine_current].function_stack == NULL) return;
if(ctx->routines[ctx->routine_current].function_stack_top == 0) return;
ctx->routines[ctx->routine_current].function_stack_top--;
}
void ink_pop(struct context* ctx) {
if(ctx->routine_current >= ctx->routines_top) return;
if(ctx->routines[ctx->routine_current].panic) return;
if(ctx->routines[ctx->routine_current].stack == NULL) return;
if(ctx->routines[ctx->routine_current].top == 0) return;
ctx->routines[ctx->routine_current].top--;
}
struct context* ink_make_context(void*(*malloc)(struct context*, size_t), void*(*realloc)(struct context*, void*, size_t), void(*free)(struct context*, void*), int(*putchar)(struct context*, int)) {
struct context* ctx;
ctx = (struct context*)malloc(NULL, sizeof(struct context));
ctx->malloc = malloc;
ctx->realloc = realloc;
ctx->free = free;
ctx->inner_malloc = malloc;
ctx->inner_realloc = realloc;
ctx->inner_free = free;
ctx->putchar = putchar;
ctx->panic = 0;
ctx->routines = NULL;
ctx->routines_capacity = 0;
ctx->routines_top = 0;
ctx->types = NULL;
ctx->types_capacity = 0;
ctx->types_top = 0;
ctx->native_words = NULL;
ctx->native_words_capacity = 0;
ctx->native_words_top = 0;
ctx->words = NULL;
ctx->words_capacity = 0;
ctx->words_top = 0;
ctx->lex_reserved_words = NULL;
ctx->lex_reserved_words_capacity = 0;
ctx->lex_reserved_words_top = 0;
ctx->collections = 0;
ctx->steps = 0;
return ctx;
}
void ink_make_context_inplace(struct context* location, void*(*malloc)(struct context*, size_t), void*(*realloc)(struct context*, void*, size_t), void(*free)(struct context*, void*), int(*putchar)(struct context*, int)) {
struct context* ctx = location;
ctx->malloc = malloc;
ctx->realloc = realloc;
ctx->free = free;
ctx->inner_malloc = malloc;
ctx->inner_realloc = realloc;
ctx->inner_free = free;
ctx->putchar = putchar;
ctx->panic = 0;
ctx->routines = NULL;
ctx->routines_capacity = 0;
ctx->routines_top = 0;
ctx->types = NULL;
ctx->types_capacity = 0;
ctx->types_top = 0;
ctx->native_words = NULL;
ctx->native_words_capacity = 0;
ctx->native_words_top = 0;
ctx->words = NULL;
ctx->words_capacity = 0;
ctx->words_top = 0;
ctx->lex_reserved_words = NULL;
ctx->lex_reserved_words_capacity = 0;
ctx->lex_reserved_words_top = 0;
ctx->collections = 0;
ctx->steps = 0;
}
/**
* Allocates a string that contains the integer
* @param _ context (used to allocate)
* @param cpy the value
* @return the allocated string, needs to be freed by ctx->free
* @internal this function is slightly cursed
*/
static char* ink_itoa(struct context* _, int cpy) {
char* n;
char* it;
n = _->malloc(_, 16);
n[15] = 0;
it = n+15;
do {
it--;
*it = (cpy % 10) + '0';
cpy = cpy / 10;
} while(cpy);
memmove(n, it, 16 - (it-n));
return n;
}
#ifndef NOSTDLIB
static void* ink_malloc(struct context* _, size_t sz) {
_=_;
return malloc(sz);
}
static void* ink_realloc(struct context* _, void* ptr, size_t sz) {
_=_;
return realloc(ptr, sz);
}
static void ink_free(struct context* _, void* ptr) {
_=_;
free(ptr);
}
static int ink_putchar(struct context* _, int c) {
_=_;
return putchar(c);
}
struct context* ink_make_default_context(void) {
struct context* ctx;
ctx = ink_make_context(ink_malloc, ink_realloc, ink_free, ink_putchar);
ink_std_library(ctx);
return ctx;
}
#endif
#ifndef NOSTRINGLITERALS
static void new_protected_array(struct context* ctx);
#endif
static int ink_consume_one(int* end, struct context* pContext, char* r, int is_str) {
int i;
int done;
struct elem value;
int err;
#ifndef NOSTRINGLITERALS
if(is_str) {
struct ink_routine* routine = pContext->routines + pContext->routine_current;
struct ink_array* ary;
int it = 0;
new_protected_array(pContext);
if(routine->top < 1) {
pContext->panic = -1;
return -8746;
}
value = routine->stack[routine->top - 1];
ary = ink_get_value(pContext, value);
#ifndef NOEXTRACHECKS
if(ary == NULL) {
pContext->panic = -1;
return -8747;
}
#endif
for(;it != *end;++it) {
struct elem character;
character.type = INK_INTEGER;
/* TODO: codepoint conversion and coalescence is required here */
character.value = r[it];
array_push(pContext, routine, ary, character);
}
*end = 0;
return 0;
}
#endif
is_str = is_str;
if(*end == 0) {
return 0;
}
r[*end] = 0;
done = 0;
if (strcmp(r, _KEYWORD_INK_FUNCTION) == 0) {
value.value = 0;
value.type = INK_FUNCTION_KW;
done = 1;
}
if (!done && strcmp(r, _KEYWORD_INK_DO) == 0) {
value.value = 0;
value.type = INK_DO_KW;
done = 1;
}
if (!done && strcmp(r, _KEYWORD_INK_END) == 0) {
value.value = 0;
value.type = INK_END_KW;
done = 1;
}
if (!done && strcmp(r, _KEYWORD_INK_RETURN) == 0) {
value.value = 0;
value.type = INK_RETURN;
done = 1;
}
if(done) {
err = ink_push(pContext, value);
if(err < 0) {
return -19;
}
}
if (!done) {
for (i = 0; i < pContext->words_top; ++i) {
if (strcmp(r, pContext->words[i].name) == 0) {
value.value = i;
value.type = INK_FUNCTION;
err = ink_push(pContext, value);
if(err < 0) {
return -20;
}
done = 1;
break;
}
}
}
if (!done) {
for (i = 0; i < pContext->native_words_top; ++i) {
if (strcmp(r, pContext->native_words[i].name) == 0) {
value.value = i;
value.type = INK_NATIVE_FUNCTION;
err = ink_push(pContext, value);
if(err < 0) {
return -21;
}
done = 1;
break;
}
}
}
if (!done) {
for(i = (r[0] == '-'); i < *end; i++) {
if(!isdigit(r[i])){
goto not_an_int;
}
}
value.value = atoi(r);
value.type = INK_INTEGER;
err = ink_push(pContext, value);
if(err < 0) {
return -22;
}
done = 1;
}
not_an_int:
if (!done) {
i = ink_add_lex_string(pContext, r);
if(i < 0) {
pContext->panic = 1;
return -7;
}
value.value = i;
if(r[strlen(r) - 1] == ':') {
value.type = INK_LABEL;
} else {
value.type = INK_RESERVED;
}
err = ink_push(pContext, value);
#ifndef NOEXTRACHECKS
if(err < 0) {
return -23;
}
#endif
}
*end = 0;
return 0;
}
static int ink_lex(struct context *pContext, const char* buffer) {
/* Limits the token size to 127 chars */
char r[128];
int end;
int err;
#ifndef NOSTRINGLITERALS
int parses_string;
#endif
end = 0;
restart_after_comment:
#ifndef NOSTRINGLITERALS
parses_string = 0;
#endif
while(*buffer != 0) {
#ifndef NOSTRINGLITERALS
if(parses_string) {
switch(*buffer) {
case '"': {
if(*(buffer+1) == 0 || isspace(*(buffer+1))) {
err = ink_consume_one(&end, pContext, r, 1);
if(err < 0) {
pContext->panic = 1;
return -995;
}
parses_string = 0;
} else if(*(buffer+1) == '"') {
r[end] = *buffer;
++end;
++buffer;
} else if(*(buffer+1) == '/' && *(buffer+2) == '"') {
r[end] = '\n';
++end;
++buffer;
++buffer;
} else {
pContext->panic = 1;
return -994;
}
}break;
default:
r[end] = *buffer;
++end;
}
} else /* go on parsing something else if it is not a string, like this to be able to disable strings */
#endif
if(isspace(*buffer)) {
if(end == 1 && r[0] == '#') {
while(*buffer != '\n' && *buffer != 0) {
++buffer;
}
end = 0;
goto restart_after_comment;
}
err = ink_consume_one(&end, pContext, r, 0);
#ifndef NOEXTRACHECKS
if(err < 0) {
pContext->panic = 1;
return -8;
}
#endif
} else /* ... */
#ifndef NOSTRINGLITERALS
if(end == 0 && *buffer == '"' && !parses_string) {
parses_string = 1;
} else /* ... */
#endif
{
r[end] = *buffer;
++end;
}
++buffer;
}
err = ink_consume_one(&end, pContext, r, 0);
#ifndef NOEXTRACHECKS
if(err < 0) {
pContext->panic = 1;
return -9;
}
#endif
return 0;
}
static int lblcmp(const char* label, const char* other, size_t label_sz) {
while (label_sz != 1) {
if(*other == 0) return 1;
if(*label != *other) return 1;
++label;
++other;
label_sz--;
}
return 0;
}
int ink_make_routine(struct context* ctx) {
struct ink_routine* it;
struct ink_routine* end;
/* Allocate space if needed */
if(ctx->routines == NULL) {
ctx->routines = ctx->inner_malloc(ctx, sizeof(struct ink_routine) * 8);
ctx->routines_top = 0;
ctx->routines_capacity = 8;
it = ctx->routines;
end = ctx->routines + 8;
for(;it != end;++it) {
it->stack = NULL;
it->function_stack = NULL;
it->top = it->capacity = 0;
it->function_stack_top = it->function_stack_capacity = 0;
it->panic = INK_ROUTINE_CAN_REUSE;
it->parse_error.is_set = 0;
it->runtime_error.is_set = 0;
}
} else if(ctx->routines_top == ctx->routines_capacity) {
int new_count;
void* renewed;
new_count = (ctx->routines_capacity + ctx->routines_capacity/2);
renewed = ctx->inner_realloc(ctx, ctx->routines, sizeof(struct ink_routine) * new_count);
#ifndef NOEXTRACHECKS
if(renewed == NULL) {
return -99;
}
#endif
ctx->routines = renewed;
it = ctx->routines + ctx->routines_capacity;
end = ctx->routines + new_count;
for(;it != end;++it) {
it->stack = NULL;
it->function_stack = NULL;
it->top = it->capacity = 0;
it->function_stack_top = it->function_stack_capacity = 0;
it->panic = INK_ROUTINE_CAN_REUSE;
it->parse_error.is_set = 0;
it->runtime_error.is_set = 0;
}
ctx->routines_capacity = new_count;
}
it = ctx->routines;
end = ctx->routines + ctx->routines_capacity;
/* Looks for a reusable routine space then uses it */
for(;it != end;++it) {
if(it->panic == INK_ROUTINE_CAN_REUSE) {
int idx;
it->panic = 0;
it->top = 0;
it->function_stack_top = 0;
idx = it - ctx->routines;
if(idx >= ctx->routines_top) {
ctx->routines_top = idx + 1;
}
return idx;
}
}
/* FIXME: Maybe we need to abort here, this seems like quite an unsteady state */
return -758;
}
int ink_kill_routine(struct context* ctx, int routine){
struct ink_routine* curr;
if(routine < 0 || routine >= ctx->routines_top) {
return 0;
}
curr = ctx->routines + routine;
if(curr->panic == INK_ROUTINE_CAN_REUSE) {
return 0;
}
if(curr->stack != NULL) {
ctx->free(ctx, curr->stack);
curr->stack = NULL;
curr->top = curr->capacity = 0;
}
if(curr->function_stack != NULL) {
ctx->free(ctx, curr->function_stack);
curr->function_stack = NULL;
curr->function_stack_top = curr->function_stack_capacity = 0;
}
curr->panic = INK_ROUTINE_CAN_REUSE;
return 1;
}
/**
*
* @param pContext
* @param executable_buffer
* @param executable_buffer_top
* @internal Loop from hell
*/
static int ink_parse(struct context* pContext, struct elem* executable_buffer, int* executable_buffer_top) {
struct ink_routine* currentRoutine;
int i, function_buffer_top, function_name, mode;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wunused-but-set-variable"
int err;
#pragma GCC diagnostic pop
#define LABEL_BUFFER 128
#define FUNCTION_BUFFER 256
struct label labels[LABEL_BUFFER];
struct elem function_buffer[FUNCTION_BUFFER];
/* TODO: add checks for overflows in these arrays */
currentRoutine = pContext->routines + pContext->routine_current;
function_buffer_top = 0;
function_name = -1;
#define MODE_EXECUTABLE 0
#define MODE_FUNCTION 1
#define MODE_DO 2
mode = MODE_EXECUTABLE;
memset(labels, 0, sizeof(struct label)*LABEL_BUFFER);
/* Loop from hell, good luck, pro-tip: leave the parser alone */
for(i = 0; i < currentRoutine->top; ++i) {
struct elem current;
current = currentRoutine->stack[i];
switch (mode) {
case MODE_EXECUTABLE:
switch(current.type) {
case INK_FUNCTION_KW:
mode = MODE_FUNCTION;
function_name = -1;
goto next_token;
#ifndef NOEXTRACHECKS
case INK_DO_KW:
currentRoutine->parse_error.is_set = 1;
currentRoutine->parse_error.error_message = "Found start of function body unexpectedly";
currentRoutine->parse_error.offset= i;
return -26;
case INK_END_KW:
currentRoutine->parse_error.is_set = 1;
currentRoutine->parse_error.error_message = "Found end of function unexpectedly";
currentRoutine->parse_error.offset= i;
return -26;
#endif
default:
executable_buffer[*executable_buffer_top] = current;
*executable_buffer_top += 1;
}
break;
case MODE_FUNCTION:
if(current.type == INK_DO_KW) {
#ifndef NOEXTRACHECKS
if(function_name == -1) {
currentRoutine->parse_error.is_set = 1;
currentRoutine->parse_error.error_message = "Found start of function body before the name of the function was provided";
currentRoutine->parse_error.offset= i;
return -27;
}
#endif
mode = MODE_DO;
memset(labels, 0, sizeof(struct label)*128);
goto next_token;
}
#ifndef NOEXTRACHECKS
if(function_name != -1) {
currentRoutine->parse_error.is_set = 1;
currentRoutine->parse_error.error_message = "Function name was not found";
currentRoutine->parse_error.offset= i;
return -28;
}
if(current.type != INK_RESERVED) {
currentRoutine->parse_error.is_set = 1;
currentRoutine->parse_error.error_message = "Expected special token";
currentRoutine->parse_error.offset= i;
return -29;
}
#endif
function_name = current.value;
break;
case MODE_DO:
if(current.type == INK_END_KW) {
int j;
for(j = 0; j < function_buffer_top; j++) {
struct elem pt;
pt = function_buffer[j];
if(pt.type == INK_LABEL) {
int k;
for(k = 0; k < LABEL_BUFFER; k++) {
if(labels[k].active) {
#ifndef NOEXTRACHECKS
if(strcmp(labels[k].name, pContext->lex_reserved_words[pt.value]) == 0) {
labels[k].dest = j;
currentRoutine->parse_error.is_set = 1;
currentRoutine->parse_error.error_message = "Label duplicate label in function";
currentRoutine->parse_error.offset= i;
return -30;
break;
}
#endif
} else {
labels[k].active = 1;
labels[k].name = pContext->lex_reserved_words[pt.value];
labels[k].dest = j;
memcpy(function_buffer+j, function_buffer+j+1, sizeof(struct elem)*(function_buffer_top-j-1));
function_buffer_top--;
j--;
break;
}
}
}
}
for(j = 0; j < function_buffer_top; j++) {
struct elem pt;
pt = function_buffer[j];
if(pt.type == INK_RESERVED) {
int k;
for(k = 0; k < LABEL_BUFFER; k++) {
if(labels[k].active) {
int label_sz;
const char* lbl;
lbl = labels[k].name;
label_sz = strlen(lbl);
if(lblcmp(labels[k].name, pContext->lex_reserved_words[pt.value], label_sz) == 0) {
function_buffer[j].type = INK_INTEGER;
function_buffer[j].value = labels[k].dest - j;
break;
}
} else break;
}
}
}
err = ink_add_indigenous(pContext, pContext->lex_reserved_words[function_name], function_buffer, function_buffer_top);
#ifndef NOEXTRACHECKS
if(err < 0) {
pContext->panic = 1;
return -33;
}
#endif
function_buffer_top = 0;
mode = MODE_EXECUTABLE;
goto next_token;
}
function_buffer[function_buffer_top] = current;
function_buffer_top += 1;
break;
}
next_token: i=i;
}
#ifndef NOEXTRACHECKS
if(mode == MODE_FUNCTION || mode == MODE_DO) {
currentRoutine->parse_error.is_set = 1;
currentRoutine->parse_error.error_message = "Expected a function to be complete";
currentRoutine->parse_error.offset= i;
return -32;
}
#endif
return 0;
#undef MODE_EXECUTABLE
#undef MODE_FUNCTION
#undef MODE_DO
#undef LABEL_BUFFER
#undef FUNCTION_BUFFER
}
int ink_step(struct context *pContext) {
struct ink_routine* currentRoutine;
struct stack_frame frame;
struct stack_frame* top;
struct elem next;
int t;
currentRoutine = pContext->routines + pContext->routine_current;
pContext->steps++;
if(currentRoutine->function_stack_top == 0) return 0;
if(pContext->panic) {
return -1;
}
top = &currentRoutine->function_stack[currentRoutine->function_stack_top-1];
t = top->executing.type;
switch(t) {
case INK_NATIVE_FUNCTION:
if(top->index != 0) {
ink_pop_fn(pContext);
} else {
top->index++;
#ifndef NOEXTRACHECKS
if(pContext->native_words_top <= top->executing.value) {
currentRoutine->runtime_error.is_set = 1;
currentRoutine->runtime_error.error_message = "Bytecode contained out of bound executable word";
pContext->panic = 1;
return -1;
}
#endif
pContext->native_words[top->executing.value].value(pContext);
}
break;
case INK_FUNCTION:
#ifndef NOEXTRACHECKS
if(pContext->words_top <= top->executing.value) {
currentRoutine->runtime_error.is_set = 1;
currentRoutine->runtime_error.error_message = "Bytecode contained out of bound artificial word";
pContext->panic = 1;
return -1;
}
#endif
if(top->index >= pContext->words[top->executing.value].size) {
ink_pop_fn(pContext);
} else {
next = pContext->words[top->executing.value].things[top->index];
if(next.type == INK_RETURN) {
ink_pop_fn(pContext);
return 1;
}
frame.executing = next;
frame.index = 0;
t = ink_push_fn(pContext, frame);
#ifndef NOEXTRACHECKS
if(t < 0) {
pContext->panic = 1;
currentRoutine->runtime_error.is_set = 1;
currentRoutine->runtime_error.error_message = "Instruction pointer underflow";
return -11;
}
#endif
top->index++;
}
break;
default:
t = ink_push(pContext, top->executing);
#ifndef NOEXTRACHECKS
if(t < 0) {
currentRoutine->runtime_error.is_set = 1;
currentRoutine->runtime_error.error_message = "Literal token could not be pushed";
pContext->panic = 1;
return -25;
}
#endif
ink_pop_fn(pContext);
break;
}
return 1;
}
int ink_compile(struct context *pContext, const char* buffer) {
int routine, saved, executable_buffer_top;
/* Main function has a size limit of 256 (need to know that for REPL */
struct elem executable_buffer[256];
struct ink_routine* currentRoutine;
int err;
struct stack_frame frame;
char* integer;
size_t integer_size;
char main_fn[32] = "__-MAIN-__";
routine = ink_make_routine(pContext);
saved = pContext->routine_current;
pContext->routine_current = routine;
currentRoutine = pContext->routines + routine;
currentRoutine->stack = NULL;
currentRoutine->top = 0;
currentRoutine->capacity = 0;
err = ink_lex(pContext, buffer);
if(err < 0) {
#ifndef NOEXTRACHECKS
if(!currentRoutine->parse_error.is_set) {
currentRoutine->parse_error.is_set = 1;
currentRoutine->parse_error.error_message = "Unknown lexer error";
currentRoutine->parse_error.offset = -1;
}
#endif
pContext->panic = 1;
return -1;
}
executable_buffer_top = 0;
err = ink_parse(pContext, executable_buffer, &executable_buffer_top);
if(err < 0) {
#ifndef NOEXTRACHECKS
if(!currentRoutine->parse_error.is_set) {
currentRoutine->parse_error.is_set = 1;
currentRoutine->parse_error.error_message = "Unknown parser error";
currentRoutine->parse_error.offset = -1;
}
#endif
pContext->panic = 1;
return -1;
}
if(executable_buffer_top != 0) {
integer = ink_itoa(pContext, routine);
integer_size = strlen(integer);
memcpy(main_fn + 10, integer, integer_size);
pContext->free(pContext, integer);
integer = NULL;
main_fn[10 + integer_size] = 0;
frame.executing.value = ink_add_indigenous(pContext, main_fn, executable_buffer, executable_buffer_top);
if (frame.executing.value < 0) {
#ifndef NOEXTRACHECKS
if(!currentRoutine->parse_error.is_set) {
currentRoutine->parse_error.is_set = 1;
currentRoutine->parse_error.error_message = "Could not start execution: no valid way to create a frame";
currentRoutine->parse_error.offset = -1;
}
#endif
pContext->panic = 1;
return -1;
}
frame.executing.type = INK_FUNCTION;
frame.index = 0;
err = ink_push_fn(pContext, frame);
pContext->routines[pContext->routine_current].top = 0;
#ifndef NOEXTRACHECKS
if (err < 0) {
if(!currentRoutine->parse_error.is_set) {
currentRoutine->parse_error.is_set = 1;
currentRoutine->parse_error.error_message = "Could not push any executable frame: push failed";
currentRoutine->parse_error.offset = -1;
}
pContext->panic = 1;
return -1;
}
#endif
} else {
pContext->routines[pContext->routine_current].panic = INK_ROUTINE_SUCCESS;
}
pContext->routine_current = saved;
return routine;
}
int ink_can_run(struct context* pContext) {
int it;
if(pContext->panic) return 0;
if(pContext->routines_top == 0) return 0;
for(it = 0; it < pContext->routines_top; ++it) {
if(
pContext->routines[it].panic == 0
&& !pContext->routines[it].parse_error.is_set
&& !pContext->routines[it].runtime_error.is_set
) {
return 1;
}
}
return 0;
}
int ink_step_everyone(struct context* pContext) {
int idx;
int out;
pContext->routine_current = -1;
for(;;) {
top_label:
/* Increment to next runnable routine */
do{
++(pContext->routine_current);
} while(
pContext->routine_current < pContext->routines_top
&& pContext->routines[pContext->routine_current].panic != 0
&& pContext->routines[pContext->routine_current].parse_error.is_set
&& pContext->routines[pContext->routine_current].runtime_error.is_set
);
/* Exit condition */
if(pContext->routine_current >= pContext->routines_top) break;
/* Kill? */
if(pContext->routines[pContext->routine_current].panic == INK_ROUTINE_SUCCESS) {
goto top_label;
/* We used to kill the routines here, idk if this cleanup is wise as it may happen in somewhat interstitial
* moments and affect performance
* ink_kill_routine(pContext, pContext->routine_current); */
}
/* Step! */
for(idx = 0; idx < INK_STEP_BATCH_COUNT; ++idx) {
out = ink_step(pContext);
if (unlikely(out == 0)) {
pContext->routines[pContext->routine_current].panic = INK_ROUTINE_SUCCESS;
goto top_label;
} else if (unlikely(out < 0)) {
pContext->routines[pContext->routine_current].panic = out;
goto top_label;
}
}
}
return 0;
}
int ink_new_type(
struct context* ctx,
const char* type_name,
int size,
void (*collect)(struct context*,void*),
struct ink_collection_list (*gc)(struct context*,void*)
) {
if(ctx->panic) return -128;
/* Resize for push */
if(ctx->types == NULL) {
ctx->types = ctx->inner_malloc(ctx, sizeof(struct ink_type) * 8);
ctx->types_top = 0;
ctx->types_capacity = 8;
} else if(ctx->types_top == ctx->types_capacity) {
int new_count;
void* renewed;
new_count = (ctx->types_capacity + ctx->types_capacity/2);
renewed = ctx->inner_realloc(ctx, ctx->types, sizeof(struct ink_type) * new_count);
if(renewed == NULL) {
return -129;
} else {
ctx->types = renewed;
ctx->types_capacity = new_count;
}
}
/* Push */
ctx->types[ctx->types_top].name = type_name;
ctx->types[ctx->types_top].element_size = size;
ctx->types[ctx->types_top].elements = NULL;
ctx->types[ctx->types_top].elements_top = 0;
ctx->types[ctx->types_top].elements_capacity = 0;
ctx->types[ctx->types_top].collect = collect;
ctx->types[ctx->types_top].gc = gc;
ctx->types_top++;
/* Satisfying the minimal value requirement */
return ctx->types_top - 1 + 16;
}
static struct element_slab* ink_get_value_link(struct context* ctx, struct elem ref) {
int type_id;
if(ref.type < 16) return NULL;
type_id = ref.type - 16;
if(type_id >= ctx->types_top) return NULL;
if(ctx->types[type_id].element_size == 0) return NULL;
if(ref.value < 0) return NULL;
if(ref.value >= ctx->types[type_id].elements_top) return NULL;
if(! ctx->types[type_id].elements[ref.value].in_use) return NULL;
return ctx->types[type_id].elements + ref.value;
}
void* ink_get_value(struct context* ctx, struct elem ref) {
struct element_slab* s;
s = ink_get_value_link(ctx, ref);
if(s == NULL) return NULL;
return s->data;
}
struct elem ink_make_native_unsafe(struct context* ctx, int type, void* ptr, int is_protected) {
int type_id;
struct elem ret;
int g, i;
if(type < 16) {
ret.type = 0;
ret.value = -130;
return ret;
}
/* Apply invariant of the user defined types */
type_id = type - 16;
if(type_id >= ctx->types_top) {
ret.type = 0;
ret.value = -129;
return ret;
}
if(ctx->panic) {
ret.type = 0;
ret.value = -135;
return ret;
}
/* Resize for push of value in store */
if(ctx->types[type_id].elements == NULL) {
ctx->types[type_id].elements = ctx->inner_malloc(ctx, sizeof(struct element_slab) * 8);
ctx->types[type_id].elements_top = 0;
ctx->types[type_id].elements_capacity = 8;
memset(ctx->types[type_id].elements + ctx->types[type_id].elements_top, 0, sizeof(struct element_slab)*(ctx->types[type_id].elements_capacity - ctx->types[type_id].elements_top));
} else if(ctx->types[type_id].elements_top == ctx->types[type_id].elements_capacity) {
int new_count;
void* renewed;
new_count = (ctx->types[type_id].elements_capacity + ctx->types[type_id].elements_capacity/2);
renewed = ctx->inner_realloc(ctx, ctx->types[type_id].elements, sizeof(struct element_slab) * new_count);
if(renewed == NULL) {
ret.type = 0;
ret.value = -129;
return ret;
} else {
ctx->types[type_id].elements = renewed;
ctx->types[type_id].elements_capacity = new_count;
memset(ctx->types[type_id].elements + ctx->types[type_id].elements_top, 0, sizeof(struct element_slab)*(ctx->types[type_id].elements_capacity - ctx->types[type_id].elements_top));
}
}
/* Push value in store */
g = ctx->types[type_id].elements_capacity;
for(i = 0; i < g; ++i) {
if(! ctx->types[type_id].elements[i].in_use) {
ctx->types[type_id].elements[i].in_use = 1;
ctx->types[type_id].elements[i].uses = 1;
ctx->types[type_id].elements[i].is_protected = is_protected;
if(ctx->types[type_id].element_size < 0) {
ctx->types[type_id].elements[i].data = ptr;
} else {
void* new_ptr = ctx->malloc(ctx, ctx->types[type_id].element_size);
if(new_ptr == NULL) {
ret.type = 0;
ret.value = -139;
return ret;
}
memcpy(new_ptr, ptr, ctx->types[type_id].element_size);
ctx->types[type_id].elements[i].data = new_ptr;
}
ctx->types[type_id].elements_top = max(ctx->types[type_id].elements_top, i+1);
ret.type = type;
ret.value = i;
return ret;
}
}
ret.type = 0;
ret.value = -140;
return ret;
}
struct elem ink_make_native(struct context* ctx, int type, void* ptr) {
return ink_make_native_unsafe(ctx, type, ptr, 0);
}
void ink_clean_routines(struct context* ctx) {
int i;
#ifndef NOEXTRACHECKS
int j;
struct elem null;
null.value = 0;
null.type = INK_INTEGER;
#endif
for(i = 0; i < ctx->routines_top; ++i) {
if(ctx->routines[i].panic == INK_ROUTINE_CAN_REUSE || ctx->routines[i].panic == INK_ROUTINE_SUCCESS) {
#ifndef NOEXTRACHECKS
if(ctx->routines[i].stack != NULL) {
for (j = 0; j < ctx->routines[i].top; ++j) {
ctx->routines[i].stack[j] = null;
}
}
if(ctx->routines[i].function_stack != NULL) {
for (j = 0; j < ctx->routines[i].function_stack_top; ++j) {
ctx->routines[i].function_stack[j].executing = null;
ctx->routines[i].function_stack[j].index = 0;
}
}
#endif
ctx->routines[i].top = 0;
ctx->routines[i].function_stack_top = 0;
ctx->routines[i].panic = INK_ROUTINE_CAN_REUSE;
}
}
}
void ink_gc(struct context* ctx) {
int i, j, k;
int marked;
struct element_slab* v;
struct elem* thing;
for(i = 0; i < ctx->types_top; ++i) {
for(j = 0; j < ctx->types[i].elements_top; ++j) {
ctx->types[i].elements[j].uses = 0;
}
}
/* Start by marking the roots of the routines, Clear the routines if possible */
for(i = 0; i < ctx->routines_top; ++i) {
if(ctx->routines[i].panic == INK_ROUTINE_SUCCESS) {
#ifndef NOEXTRACHECKS
if(ctx->routines[i].stack != NULL) {
ctx->free(ctx, ctx->routines[i].stack);
ctx->routines[i].stack = NULL;
}
#endif
ctx->routines[i].top = 0;
#ifndef NOEXTRACHECKS
if(ctx->routines[i].function_stack != NULL) {
ctx->free(ctx, ctx->routines[i].function_stack);
ctx->routines[i].function_stack = NULL;
}
#endif
ctx->routines[i].function_stack_top = 0;
ctx->routines[i].panic = INK_ROUTINE_CAN_REUSE;
} else if(ctx->routines[i].panic == INK_ROUTINE_CAN_REUSE) {
continue;
} else for(j = 0; j < ctx->routines[i].top; ++j) {
v = ink_get_value_link(ctx, ctx->routines[i].stack[j]);
if(v != NULL && !v->uses) ++v->uses;
}
}
for(i = 0; i < ctx->native_words_top; ++i) {
struct fn* function = ctx->words + i;
for(j = 0; j < function->size; ++j) {
thing = function->things + j;
v = ink_get_value_link(ctx, *thing);
if (v != NULL && !v->uses) {
++v->uses;
}
}
}
/* Mark the rest of the data */
do {
marked = 0;
for (i = 0; i < ctx->types_top; ++i) {
for (j = 0; j < ctx->types[i].elements_top; ++j) {
/* Only mark from things that are active and detected as in use */
if (ctx->types[i].elements[j].in_use && ctx->types[i].elements[j].is_protected && ctx->types[i].elements[j].uses) {
struct ink_collection_list c;
c = ctx->types[i].gc(ctx, ctx->types[i].elements[j].data);
for (k = 0; k < c.count; ++k) {
v = ink_get_value_link(ctx, c.elements[k]);
/* Never mark twice to avoid infinite loops with e.g. arrays that contain themselves */
if (v != NULL && !v->uses) {
++v->uses;
marked = 1;
}
}
if (c.elements != NULL) {
ctx->inner_free(ctx, c.elements);
c.elements = NULL;
}
}
}
}
} while(marked);
/* Sweep phase: explore any allocated data and sweep the unused away */
for(i = 0; i < ctx->types_top; ++i) {
for(j = 0; j < ctx->types[i].elements_top; ++j) {
if(ctx->types[i].elements[j].uses == 0 && ctx->types[i].elements[j].in_use && ctx->types[i].elements[j].is_protected == 0) {
ctx->collections++;
ctx->types[i].collect(ctx, ctx->types[i].elements[j].data);
if(ctx->types[i].element_size > 0 && ctx->types[i].elements[j].data != NULL) {
ctx->free(ctx, ctx->types[i].elements[j].data);
}
ctx->types[i].elements[j].data = NULL;
ctx->types[i].elements[j].uses = 0;
ctx->types[i].elements[j].in_use = 0;
}
}
}
}
/**********************************************************************************************************************/
static void print_stacktrace(struct context* _) {
int i;
struct ink_routine* currentRoutine;
currentRoutine = _->routines + _->routine_current;
for(i = 0; i < currentRoutine->function_stack_top; ++i) {
struct elem thing;
char *n;
thing = currentRoutine->function_stack[i].executing;
switch(thing.type) {
case INK_NATIVE_FUNCTION: {
n = _->native_words[thing.value].name;
while (*n) {
_->putchar(_, *n);
++n;
}
_->putchar(_, 10);
break;
}
case INK_FUNCTION:{
n = _->words[thing.value].name;
while (*n) {
_->putchar(_, *n);
++n;
}
_->putchar(_, ':');
n = ink_itoa(_, currentRoutine->function_stack[i].index);
while (*n) {
_->putchar(_, *n);
++n;
}
_->putchar(_, 10);
break;
}
default:
break;
}
}
}
static void add_int(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
struct elem b;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
b = currentRoutine->stack[currentRoutine->top-2];
#ifndef NOEXTRACHECKS
if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
ctx->panic = 1;
return;
}
#endif
ink_pop(ctx);
currentRoutine->stack[currentRoutine->top-1].value = a.value + b.value;
}
static void sub_int(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
struct elem b;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
b = currentRoutine->stack[currentRoutine->top-2];
#ifndef NOEXTRACHECKS
if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
currentRoutine->panic = -1;
return;
}
#endif
ink_pop(ctx);
currentRoutine->stack[currentRoutine->top-1].value = b.value - a.value;
}
static void mult_int(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
struct elem b;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
b = currentRoutine->stack[currentRoutine->top-2];
#ifndef NOEXTRACHECKS
if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
currentRoutine->panic = -1;
return;
}
#endif
ink_pop(ctx);
currentRoutine->stack[currentRoutine->top-1].value = b.value * a.value;
}
static void div_int(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
struct elem b;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
b = currentRoutine->stack[currentRoutine->top-2];
#ifndef NOEXTRACHECKS
if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
currentRoutine->panic = -1;
return;
}
#endif
ink_pop(ctx);
currentRoutine->stack[currentRoutine->top-1].value = b.value / a.value;
}
static void is_equal(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
struct elem b;
struct elem ret;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
b = currentRoutine->stack[currentRoutine->top-2];
ink_pop(ctx);
ink_pop(ctx);
ret.type = INK_INTEGER;
ret.value = a.value == b.value && a.type == b.type;
ink_push(ctx, ret);
}
static void is_different(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
struct elem b;
struct elem ret;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
b = currentRoutine->stack[currentRoutine->top-2];
ink_pop(ctx);
ink_pop(ctx);
ret.type = INK_INTEGER;
ret.value = !(a.value == b.value && a.type == b.type);
ink_push(ctx, ret);
}
#ifndef NOEXTRAARITHMETIC
static void rem_int(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
struct elem b;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
b = currentRoutine->stack[currentRoutine->top-2];
#ifndef NOEXTRACHECKS
if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
currentRoutine->panic = -1;
return;
}
#endif
ink_pop(ctx);
currentRoutine->stack[currentRoutine->top-1].value = b.value % a.value;
}
static void xor_int(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
struct elem b;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
b = currentRoutine->stack[currentRoutine->top-2];
#ifndef NOEXTRACHECKS
if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
currentRoutine->panic = -1;
return;
}
#endif
ink_pop(ctx);
currentRoutine->stack[currentRoutine->top-1].value = b.value ^ a.value;
}
static void gt_int(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
struct elem b;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
b = currentRoutine->stack[currentRoutine->top-2];
#ifndef NOEXTRACHECKS
if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
currentRoutine->panic = -1;
return;
}
#endif
ink_pop(ctx);
currentRoutine->stack[currentRoutine->top-1].value = b.value > a.value;
}
static void gte_int(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
struct elem b;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
b = currentRoutine->stack[currentRoutine->top-2];
#ifndef NOEXTRACHECKS
if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
currentRoutine->panic = -1;
return;
}
#endif
ink_pop(ctx);
currentRoutine->stack[currentRoutine->top-1].value = b.value >= a.value;
}
static void lte_int(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
struct elem b;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
b = currentRoutine->stack[currentRoutine->top-2];
#ifndef NOEXTRACHECKS
if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
currentRoutine->panic = -1;
return;
}
#endif
ink_pop(ctx);
currentRoutine->stack[currentRoutine->top-1].value = b.value <= a.value;
}
#endif /* NOEXTRAARITHMETIC */
static void lt_int(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
struct elem b;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
b = currentRoutine->stack[currentRoutine->top-2];
#ifndef NOEXTRACHECKS
if(!(a.type == INK_INTEGER && b.type == INK_INTEGER)) {
currentRoutine->panic = -1;
return;
}
#endif
ink_pop(ctx);
currentRoutine->stack[currentRoutine->top-1].value = b.value < a.value;
}
static void dupe_elem(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wunused-but-set-variable"
int err;
#pragma GCC diagnostic pop
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 1) {
ctx->panic = 1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
err = ink_push(ctx, a);
#ifndef NOEXTRACHECKS
if(err < 0) ctx->panic = 1;
#endif
}
static void drop_elem(struct context* ctx) {
#ifndef NOEXTRACHECKS
struct ink_routine* currentRoutine;
currentRoutine = ctx->routines + ctx->routine_current;
if(currentRoutine->top < 1) {
ctx->panic = 1;
return;
}
#endif
ink_pop(ctx);
}
static void pluck_elem(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
int position;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wunused-but-set-variable"
int err;
#pragma GCC diagnostic pop
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 1) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
#ifndef NOEXTRACHECKS
if(a.type != INK_INTEGER) {
ctx->panic = 1;
return;
}
#endif
position = currentRoutine->top - (a.value + 1);
#ifndef NOEXTRACHECKS
if(position >= currentRoutine->top || position < 0) {
ctx->panic = 1;
return;
}
#endif
ink_pop(ctx);
err = ink_push(ctx, currentRoutine->stack[position]);
#ifndef NOEXTRACHECKS
if(err < 0) ctx->panic = 1;
#endif
}
static void swap_elem(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
struct elem b;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
b = currentRoutine->stack[currentRoutine->top-2];
currentRoutine->stack[currentRoutine->top-2] = a;
currentRoutine->stack[currentRoutine->top-1] = b;
}
static void return_if(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 1) {
ctx->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
#ifndef NOEXTRACHECKS
if(a.type != INK_INTEGER) {
ctx->panic = 1;
return;
}
#endif
if(a.value) {
ink_pop_fn(ctx);
ink_pop_fn(ctx);
}
ink_pop(ctx);
return;
}
static void jump_if(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem label;
struct elem condition;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2) {
ctx->panic = -1;
return;
}
#endif
label = currentRoutine->stack[currentRoutine->top-1];
condition = currentRoutine->stack[currentRoutine->top-2];
#ifndef NOEXTRACHECKS
if(label.type != INK_INTEGER || condition.type != INK_INTEGER) {
ctx->panic = -1;
return;
}
#endif
ink_pop(ctx);
ink_pop(ctx);
ink_pop_fn(ctx);
if(condition.value) {
currentRoutine->function_stack[currentRoutine->function_stack_top - 1].index += label.value - 2;
}
return;
}
static void print_int(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
char* n;
char* str;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 1 || currentRoutine->stack[currentRoutine->top-1].type != INK_INTEGER) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
ink_pop(ctx);
n = ink_itoa(ctx, a.value);
str = n;
while (*str) {
ctx->putchar(ctx, *str);
++str;
}
ctx->free(ctx, n);
n = NULL;
}
static void print_as_utf8(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem a;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 1 || currentRoutine->stack[currentRoutine->top-1].type != INK_INTEGER) {
ctx->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
if(a.value <= 0x7F) {
ctx->putchar(ctx, a.value);
} else if(a.value <= 0x7FF) {
ctx->putchar(ctx, ((a.value & 0xFC0) >> 6) | 192);
ctx->putchar(ctx, (a.value & 0x3F) | 128);
} else if(a.value <= 0xFFFF) {
ctx->putchar(ctx, ((a.value & 0x3F000) >> 12) | 224);
ctx->putchar(ctx, ((a.value & 0xFC0) >> 6) | 128);
ctx->putchar(ctx, (a.value & 0x3F) | 128);
} else if(a.value <= 0x10FFFF) {
ctx->putchar(ctx, ((a.value & 0x3C0000) >> 18) | 240);
ctx->putchar(ctx, ((a.value & 0x3F000) >> 12) | 128);
ctx->putchar(ctx, ((a.value & 0xFC0) >> 6) | 128);
ctx->putchar(ctx, (a.value & 0x3F) | 128);
} else {
ctx->panic = -1;
return;
}
ink_pop(ctx);
}
int get_type_by_name(struct context* ctx, const char* name) {
int i;
for(i = 0; i < ctx->types_top; ++i) {
if(strcmp(ctx->types[i].name, name) == 0) {
return i + 16;
}
}
return -1;
}
static void run_gc(struct context* ctx) {
ink_gc(ctx);
}
static void clear_stack(struct context* ctx) {
struct ink_routine* currentRoutine;
currentRoutine = ctx->routines + ctx->routine_current;
while (currentRoutine->top >= 1) {
ink_pop(ctx);
}
return;
}
static void dump_stack(struct context* ctx) {
struct ink_routine* currentRoutine;
int index;
char* idx;
char* type;
char* value;
char* it;
currentRoutine = ctx->routines + ctx->routine_current;
index = currentRoutine->top;
while (index) {
--index;
idx = ink_itoa(ctx,index);
type = ink_itoa(ctx, currentRoutine->stack[index].type);
value = ink_itoa(ctx,currentRoutine->stack[index].value);
for(it = idx; *it; ++it) ctx->putchar(ctx, *it);
ctx->putchar(ctx, ' ');ctx->putchar(ctx, '|');ctx->putchar(ctx, ' ');
for(it = type; *it; ++it) ctx->putchar(ctx, *it);
ctx->putchar(ctx, ' ');ctx->putchar(ctx, '|');ctx->putchar(ctx, ' ');
for(it = value; *it; ++it) ctx->putchar(ctx, *it);
ctx->putchar(ctx, '\n');
if(value != NULL) ctx->free(ctx, value);
if(type != NULL) ctx->free(ctx, type);
if(idx != NULL) ctx->free(ctx, idx);
value = type = idx = NULL;
}
return;
}
static void collect_noop() {}
static struct ink_collection_list gc_noop() {
struct ink_collection_list c;
c.elements = NULL;
c.count = 0;
return c;
}
#ifndef NOARRAYLIB
static void collect_array(struct context* ctx, void* array) {
struct ink_array* ary;
ary = array;
if(ary->elements != NULL) {
ctx->free(ctx, ary->elements);
ary->elements = NULL;
}
}
static struct ink_collection_list gc_array(struct context* ctx, void* array) {
struct ink_array* ary;
struct ink_collection_list c;
ary = array;
c.elements = ctx->inner_malloc(ctx, sizeof(struct elem)*ary->top);
c.count = ary->top;
memcpy(c.elements, ary->elements, sizeof(struct elem)*ary->top);
return c;
}
static void new_array(struct context* ctx) {
int tid;
struct elem e;
struct ink_array ary;
tid = get_type_by_name(ctx, "array");
ary.elements = NULL;
ary.top = 0;
ary.capacity = 0;
ary.flags = 0;
e = ink_make_native(ctx, tid, &ary);
ink_push(ctx, e);
}
#ifndef NOSTRINGLITERALS
static void new_protected_array(struct context* ctx) {
int tid;
struct elem e;
struct ink_array ary;
tid = get_type_by_name(ctx, "array");
ary.elements = NULL;
ary.top = 0;
ary.capacity = 0;
e = ink_make_native_unsafe(ctx, tid, &ary, 1);
ink_push(ctx, e);
}
#endif
static void push_array_stack_delim(struct context* ctx) {
int tid;
struct elem e;
tid = get_type_by_name(ctx, "array_marker");
e.type = tid;
e.value = 0;
ink_push(ctx, e);
}
int array_push_s(struct context* ctx, struct ink_array* ary, struct elem value) {
if(ary->elements == NULL) {
ary->elements = ctx->malloc(ctx, sizeof(struct elem) * 8);
ary->top = 0;
ary->capacity = 8;
} else if(ary->top == ary->capacity) {
int new_count;
void* renewed;
new_count = (ary->capacity + ary->capacity/2);
renewed = ctx->realloc(ctx, ary->elements, sizeof(struct elem) * new_count);
if(renewed == NULL) {
return 1;
} else {
ary->elements = renewed;
ary->capacity = new_count;
}
}
ary->elements[ary->top] = value;
ary->top++;
return 0;
}
void array_push(struct context* ctx, struct ink_routine* currentRoutine, struct ink_array* ary, struct elem value) {
if(array_push_s(ctx, ary, value)) {
currentRoutine->panic = -1;
}
}
static void push_array(struct context* ctx) {
struct elem a;
struct ink_routine* currentRoutine;
struct ink_array* ary;
#ifndef NOEXTRACHECKS
int tid;
tid = get_type_by_name(ctx, "array");
#endif
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 2 || currentRoutine->stack[currentRoutine->top-1].type != tid) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top-1];
ary= ink_get_value(ctx, a);
#ifndef NOEXTRACHECKS
if(ary == NULL) {
currentRoutine->panic = -1;
return;
}
#endif
ink_pop(ctx);
array_push(ctx, currentRoutine, ary, currentRoutine->stack[currentRoutine->top-1]);
ink_pop(ctx);
}
static void push_delimited_array(struct context* ctx) {
int tid, idx, counter, i;
struct elem a;
struct ink_routine* currentRoutine;
struct ink_array* ary;
tid = get_type_by_name(ctx, "array_marker");
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if(currentRoutine->top < 1) {
currentRoutine->panic = -1;
return;
}
#endif
new_array(ctx);
a = currentRoutine->stack[currentRoutine->top-1];
ink_pop(ctx);
ary= ink_get_value(ctx, a);
for(idx = 1; idx <= currentRoutine->top; ++idx) {
if(currentRoutine->stack[currentRoutine->top-idx].type == tid) {
break;
}
}
/* Save for cleanup */
counter = idx;
/* Don't copy the delimiter */
idx -= 1;
ary->elements = malloc(sizeof(struct elem) * idx);
#ifndef NOEXTRACHECKS
if(ary->elements == NULL) {
currentRoutine->panic = -541;
return;
}
#endif
ary->capacity = idx;
ary->top = 0;
/* Copy the data */
for(i = currentRoutine->top - idx; i < currentRoutine->top; ++i) {
ary->elements[ary->top] = currentRoutine->stack[i];
++(ary->top);
}
/* Cleanup */
while(counter--) {
ink_pop(ctx);
}
/* Put value in place */
ink_push(ctx, a);
}
static void index_array(struct context* ctx) {
struct ink_routine *currentRoutine;
struct elem a;
struct ink_array *ary;
struct elem idx;
#ifndef NOEXTRACHECKS
int tid;
tid = get_type_by_name(ctx, "array");
#endif
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if (currentRoutine->top < 2 || currentRoutine->stack[currentRoutine->top - 1].type != tid || currentRoutine->stack[currentRoutine->top - 2].type != INK_INTEGER) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top - 1];
ary = ink_get_value(ctx, a);
#ifndef NOEXTRACHECKS
if (ary == NULL) {
currentRoutine->panic = -1;
return;
}
#endif
ink_pop(ctx);
idx = currentRoutine->stack[currentRoutine->top - 1];
ink_pop(ctx);
#ifndef NOEXTRACHECKS
if(ary->top <= idx.value) {
currentRoutine->panic = -1;
return;
}
#endif
ink_push(ctx, ary->elements[idx.value]);
}
static void set_array(struct context* ctx) {
struct ink_routine *currentRoutine;
struct elem a;
struct ink_array *ary;
struct elem idx;
struct elem value;
#ifndef NOEXTRACHECKS
int tid;
tid = get_type_by_name(ctx, "array");
#endif
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if (currentRoutine->top < 3 || currentRoutine->stack[currentRoutine->top - 1].type != tid || currentRoutine->stack[currentRoutine->top - 2].type != INK_INTEGER) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top - 1];
ary = ink_get_value(ctx, a);
#ifndef NOEXTRACHECKS
if (ary == NULL) {
currentRoutine->panic = -1;
return;
}
#endif
idx = currentRoutine->stack[currentRoutine->top - 2];
value = currentRoutine->stack[currentRoutine->top - 3];
#ifndef NOEXTRACHECKS
if(ary->top <= idx.value) {
currentRoutine->panic = -1;
return;
}
#endif
ink_pop(ctx);
ink_pop(ctx);
ink_pop(ctx);
ary->elements[idx.value] = value;
}
static void get_size_array(struct context* ctx) {
struct ink_routine *currentRoutine;
struct elem a;
struct ink_array *ary;
struct elem sz;
#ifndef NOEXTRACHECKS
int tid;
tid = get_type_by_name(ctx, "array");
#endif
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if (currentRoutine->top < 1 || currentRoutine->stack[currentRoutine->top - 1].type != tid) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top - 1];
ary = ink_get_value(ctx, a);
#ifndef NOEXTRACHECKS
if (ary == NULL) {
currentRoutine->panic = -1;
return;
}
#endif
ink_pop(ctx);
sz.type = INK_INTEGER;
sz.value = ary->top;
ink_push(ctx, sz);
}
static void is_array(struct context* ctx) {
int tid;
struct ink_routine *currentRoutine;
struct elem a;
tid = get_type_by_name(ctx, "array");
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if (currentRoutine->top < 1) {
currentRoutine->panic = -1;
return;
}
#endif
a.type = INK_INTEGER;
a.value = currentRoutine->stack[currentRoutine->top - 1].type == tid;
ink_pop(ctx);
ink_push(ctx, a);
}
static void is_int(struct context* ctx) {
struct ink_routine *currentRoutine;
struct elem a;
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if (currentRoutine->top < 1) {
currentRoutine->panic = -1;
return;
}
#endif
a.type = INK_INTEGER;
a.value = currentRoutine->stack[currentRoutine->top - 1].type == INK_INTEGER;
ink_pop(ctx);
ink_push(ctx, a);
}
static void print_array_of_codepoints(struct context* ctx) {
int i;
struct ink_routine *currentRoutine;
struct elem a;
struct ink_array *ary;
#ifndef NOEXTRACHECKS
int tid;
tid = get_type_by_name(ctx, "array");
#endif
currentRoutine = ctx->routines + ctx->routine_current;
#ifndef NOEXTRACHECKS
if (currentRoutine->top < 1 || currentRoutine->stack[currentRoutine->top - 1].type != tid) {
currentRoutine->panic = -1;
return;
}
#endif
a = currentRoutine->stack[currentRoutine->top - 1];
ary = ink_get_value(ctx, a);
#ifndef NOEXTRACHECKS
for(i = 0; i < ary->top; ++i) {
if(ary->elements[i].type != INK_INTEGER) {
currentRoutine->panic = -1;
return;
}
}
#endif
ink_pop(ctx);
for(i = 0; i < ary->top; ++i) {
ink_push(ctx, ary->elements[i]);
print_as_utf8(ctx);
}
}
static void arrayify_stack(struct context* ctx) {
struct ink_routine* currentRoutine;
struct elem array_ref;
struct ink_array* ary;
int idx;
currentRoutine = ctx->routines + ctx->routine_current;
new_array(ctx);
if(currentRoutine->panic < 0) return;
array_ref = currentRoutine->stack[currentRoutine->top - 1];
ary = ink_get_value(ctx, array_ref);
#ifndef NOEXTRACHECKS
if(ary == NULL) {
currentRoutine->panic = -717;
return;
}
#endif
ink_pop(ctx);
for(idx = 0; idx < currentRoutine->top; ++idx) {
array_push(ctx, currentRoutine, ary, currentRoutine->stack[idx]);
}
while (currentRoutine->top > 0) {
ink_pop(ctx);
}
ink_push(ctx, array_ref);
return;
}
#endif /* NOARRAYLIB */
int ink_std_library(struct context* ctx) {
int v;
v = 0;
v += ink_add_native(ctx, "sys.trace", print_stacktrace);
v += ink_add_native(ctx, "sys.gc", run_gc);
v += ink_add_native(ctx, "print_int", print_int);
v += ink_add_native(ctx, "print_utf8", print_as_utf8);
v += ink_add_native(ctx, "+", add_int);
v += ink_add_native(ctx, "-", sub_int);
v += ink_add_native(ctx, "*", mult_int);
v += ink_add_native(ctx, "/", div_int);
v += ink_add_native(ctx, "==", is_equal);
v += ink_add_native(ctx, "!=", is_different);
v += ink_add_native(ctx, "<", lt_int);
v += ink_add_native(ctx, "swap", swap_elem);
v += ink_add_native(ctx, "dup", dupe_elem);
v += ink_add_native(ctx, "drop", drop_elem);
v += ink_add_native(ctx, "stack.clear", clear_stack);
v += ink_add_native(ctx, "stack.dump", dump_stack);
v += ink_add_native(ctx, "pluck", pluck_elem);
v += ink_add_native(ctx, "return_if", return_if);
v += ink_add_native(ctx, "jump_if", jump_if);
v += ink_add_native(ctx, "is.int", is_int);
#ifndef NOEXTRAARITHMETIC
v += ink_add_native(ctx, ">", gt_int);
v += ink_add_native(ctx, ">=", gte_int);
v += ink_add_native(ctx, "=<", lte_int);
v += ink_add_native(ctx, "%", rem_int);
v += ink_add_native(ctx, "int.xor", xor_int);
#endif /* NOEXTRAARITHMETIC */
#ifndef NOARRAYLIB
ink_new_type(ctx, "array", sizeof(struct ink_array), collect_array, gc_array);
ink_new_type(ctx, "array_marker", 0, collect_noop, gc_noop);
v += ink_add_native(ctx, "[", push_array_stack_delim);
v += ink_add_native(ctx, "]", push_delimited_array);
v += ink_add_native(ctx, "array.new", new_array);
v += ink_add_native(ctx, "array.push", push_array);
v += ink_add_native(ctx, "array.index", index_array);
v += ink_add_native(ctx, "array.set", set_array);
v += ink_add_native(ctx, "array.size", get_size_array);
v += ink_add_native(ctx, "array.print_utf8", print_array_of_codepoints);
v += ink_add_native(ctx, "is.array", is_array);
v += ink_add_native(ctx, "stack.to_array", arrayify_stack);
#endif /* NOARRAYLIB */
return v;
}