|
|
@ -0,0 +1,80 @@ |
|
|
|
#version 120 |
|
|
|
|
|
|
|
// Input vertex attributes (from vertex shader) |
|
|
|
varying vec2 fragTexCoord; |
|
|
|
varying vec4 fragColor; |
|
|
|
|
|
|
|
uniform vec2 c; // c.x = real, c.y = imaginary component. Equation done is z^2 + c |
|
|
|
uniform vec2 offset; // Offset of the scale. |
|
|
|
uniform float zoom; // Zoom of the scale. |
|
|
|
|
|
|
|
// NOTE: Maximum number of shader for-loop iterations depend on GPU, |
|
|
|
// for example, on RasperryPi for this examply only supports up to 60 |
|
|
|
const int maxIterations = 255; // Max iterations to do. |
|
|
|
const float colorCycles = 1.0; // Number of times the color palette repeats. |
|
|
|
|
|
|
|
// Square a complex number |
|
|
|
vec2 ComplexSquare(vec2 z) |
|
|
|
{ |
|
|
|
return vec2(z.x*z.x - z.y*z.y, z.x*z.y*2.0); |
|
|
|
} |
|
|
|
|
|
|
|
// Convert Hue Saturation Value (HSV) color into RGB |
|
|
|
vec3 Hsv2rgb(vec3 c) |
|
|
|
{ |
|
|
|
vec4 K = vec4(1.0, 2.0/3.0, 1.0/3.0, 3.0); |
|
|
|
vec3 p = abs(fract(c.xxx + K.xyz)*6.0 - K.www); |
|
|
|
return c.z*mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y); |
|
|
|
} |
|
|
|
|
|
|
|
void main() |
|
|
|
{ |
|
|
|
/********************************************************************************************** |
|
|
|
Julia sets use a function z^2 + c, where c is a constant. |
|
|
|
This function is iterated until the nature of the point is determined. |
|
|
|
|
|
|
|
If the magnitude of the number becomes greater than 2, then from that point onward |
|
|
|
the number will get bigger and bigger, and will never get smaller (tends towards infinity). |
|
|
|
2^2 = 4, 4^2 = 8 and so on. |
|
|
|
So at 2 we stop iterating. |
|
|
|
|
|
|
|
If the number is below 2, we keep iterating. |
|
|
|
But when do we stop iterating if the number is always below 2 (it converges)? |
|
|
|
That is what maxIterations is for. |
|
|
|
Then we can divide the iterations by the maxIterations value to get a normalized value that we can |
|
|
|
then map to a color. |
|
|
|
|
|
|
|
We use dot product (z.x * z.x + z.y * z.y) to determine the magnitude (length) squared. |
|
|
|
And once the magnitude squared is > 4, then magnitude > 2 is also true (saves computational power). |
|
|
|
*************************************************************************************************/ |
|
|
|
|
|
|
|
// The pixel coordinates are scaled so they are on the mandelbrot scale |
|
|
|
// NOTE: fragTexCoord already comes as normalized screen coordinates but offset must be normalized before scaling and zoom |
|
|
|
vec2 z = vec2((fragTexCoord.x - 0.5)*2.5, (fragTexCoord.y - 0.5)*1.5)/zoom; |
|
|
|
z.x += offset.x; |
|
|
|
z.y += offset.y; |
|
|
|
|
|
|
|
int iter = 0; |
|
|
|
for (int iterations = 0; iterations < maxIterations; iterations++) |
|
|
|
{ |
|
|
|
z = ComplexSquare(z) + c; // Iterate function |
|
|
|
if (dot(z, z) > 4.0) break; |
|
|
|
|
|
|
|
iter = iterations; |
|
|
|
} |
|
|
|
|
|
|
|
// Another few iterations decreases errors in the smoothing calculation. |
|
|
|
// See http://linas.org/art-gallery/escape/escape.html for more information. |
|
|
|
z = ComplexSquare(z) + c; |
|
|
|
z = ComplexSquare(z) + c; |
|
|
|
|
|
|
|
// This last part smooths the color (again see link above). |
|
|
|
float smoothVal = float(iter) + 1.0 - (log(log(length(z)))/log(2.0)); |
|
|
|
|
|
|
|
// Normalize the value so it is between 0 and 1. |
|
|
|
float norm = smoothVal/float(maxIterations); |
|
|
|
|
|
|
|
// If in set, color black. 0.999 allows for some float accuracy error. |
|
|
|
if (norm > 0.999) gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0); |
|
|
|
else gl_FragColor = vec4(Hsv2rgb(vec3(norm*colorCycles, 1.0, 1.0)), 1.0); |
|
|
|
} |