diff --git a/src/raymath.h b/src/raymath.h index a531b3a14..95abf1d21 100644 --- a/src/raymath.h +++ b/src/raymath.h @@ -391,7 +391,7 @@ RMAPI Vector2 Vector2Divide(Vector2 v1, Vector2 v2) // Normalize provided vector RMAPI Vector2 Vector2Normalize(Vector2 v) { - Vector2 result = { 0 }; + Vector2 result = Vector2Zero(); float length = sqrtf((v.x*v.x) + (v.y*v.y)); if (length > 0) @@ -407,7 +407,7 @@ RMAPI Vector2 Vector2Normalize(Vector2 v) // Transforms a Vector2 by a given Matrix RMAPI Vector2 Vector2Transform(Vector2 v, Matrix mat) { - Vector2 result = { 0 }; + Vector2 result = Vector2Zero(); float x = v.x; float y = v.y; @@ -422,7 +422,7 @@ RMAPI Vector2 Vector2Transform(Vector2 v, Matrix mat) // Calculate linear interpolation between two vectors RMAPI Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount) { - Vector2 result = { 0 }; + Vector2 result = Vector2Zero(); result.x = v1.x + amount*(v2.x - v1.x); result.y = v1.y + amount*(v2.y - v1.y); @@ -433,7 +433,7 @@ RMAPI Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount) // Calculate reflected vector to normal RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal) { - Vector2 result = { 0 }; + Vector2 result = Vector2Zero(); float dotProduct = (v.x*normal.x + v.y*normal.y); // Dot product @@ -446,7 +446,7 @@ RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal) // Get min value for each pair of components RMAPI Vector2 Vector2Min(Vector2 v1, Vector2 v2) { - Vector2 result = { 0 }; + Vector2 result = Vector2Zero(); result.x = fminf(v1.x, v2.x); result.y = fminf(v1.y, v2.y); @@ -457,7 +457,7 @@ RMAPI Vector2 Vector2Min(Vector2 v1, Vector2 v2) // Get max value for each pair of components RMAPI Vector2 Vector2Max(Vector2 v1, Vector2 v2) { - Vector2 result = { 0 }; + Vector2 result = Vector2Zero(); result.x = fmaxf(v1.x, v2.x); result.y = fmaxf(v1.y, v2.y); @@ -468,7 +468,7 @@ RMAPI Vector2 Vector2Max(Vector2 v1, Vector2 v2) // Rotate vector by angle RMAPI Vector2 Vector2Rotate(Vector2 v, float angle) { - Vector2 result = { 0 }; + Vector2 result = Vector2Zero(); float cosres = cosf(angle); float sinres = sinf(angle); @@ -482,7 +482,7 @@ RMAPI Vector2 Vector2Rotate(Vector2 v, float angle) // Move Vector towards target RMAPI Vector2 Vector2MoveTowards(Vector2 v, Vector2 target, float maxDistance) { - Vector2 result = { 0 }; + Vector2 result = Vector2Zero(); float dx = target.x - v.x; float dy = target.y - v.y; @@ -510,7 +510,7 @@ RMAPI Vector2 Vector2Invert(Vector2 v) // min and max values specified by the given vectors RMAPI Vector2 Vector2Clamp(Vector2 v, Vector2 min, Vector2 max) { - Vector2 result = { 0 }; + Vector2 result = Vector2Zero(); result.x = fminf(max.x, fmaxf(min.x, v.x)); result.y = fminf(max.y, fmaxf(min.y, v.y)); @@ -565,7 +565,7 @@ RMAPI int Vector2Equals(Vector2 p, Vector2 q) // to the refractive index of the medium on the other side of the surface RMAPI Vector2 Vector2Refract(Vector2 v, Vector2 n, float r) { - Vector2 result = { 0 }; + Vector2 result = Vector2Zero(); float dot = v.x*n.x + v.y*n.y; float d = 1.0f - r*r*(1.0f - dot*dot); @@ -662,7 +662,7 @@ RMAPI Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2) // Calculate one vector perpendicular vector RMAPI Vector3 Vector3Perpendicular(Vector3 v) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); float min = fabsf(v.x); Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f}; @@ -788,7 +788,7 @@ RMAPI Vector3 Vector3Normalize(Vector3 v) //Calculate the projection of the vector v1 on to v2 RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z); @@ -805,7 +805,7 @@ RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2) //Calculate the rejection of the vector v1 on to v2 RMAPI Vector3 Vector3Reject(Vector3 v1, Vector3 v2) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z); @@ -857,7 +857,7 @@ RMAPI void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2) // Transforms a Vector3 by a given Matrix RMAPI Vector3 Vector3Transform(Vector3 v, Matrix mat) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); float x = v.x; float y = v.y; @@ -873,7 +873,7 @@ RMAPI Vector3 Vector3Transform(Vector3 v, Matrix mat) // Transform a vector by quaternion rotation RMAPI Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y); result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z); @@ -937,7 +937,7 @@ RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle) // Move Vector towards target RMAPI Vector3 Vector3MoveTowards(Vector3 v, Vector3 target, float maxDistance) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); float dx = target.x - v.x; float dy = target.y - v.y; @@ -958,7 +958,7 @@ RMAPI Vector3 Vector3MoveTowards(Vector3 v, Vector3 target, float maxDistance) // Calculate linear interpolation between two vectors RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); result.x = v1.x + amount*(v2.x - v1.x); result.y = v1.y + amount*(v2.y - v1.y); @@ -971,7 +971,7 @@ RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount) // as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic RMAPI Vector3 Vector3CubicHermite(Vector3 v1, Vector3 tangent1, Vector3 v2, Vector3 tangent2, float amount) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); float amountPow2 = amount*amount; float amountPow3 = amount*amount*amount; @@ -986,7 +986,7 @@ RMAPI Vector3 Vector3CubicHermite(Vector3 v1, Vector3 tangent1, Vector3 v2, Vect // Calculate reflected vector to normal RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); // I is the original vector // N is the normal of the incident plane @@ -1004,7 +1004,7 @@ RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal) // Get min value for each pair of components RMAPI Vector3 Vector3Min(Vector3 v1, Vector3 v2) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); result.x = fminf(v1.x, v2.x); result.y = fminf(v1.y, v2.y); @@ -1016,7 +1016,7 @@ RMAPI Vector3 Vector3Min(Vector3 v1, Vector3 v2) // Get max value for each pair of components RMAPI Vector3 Vector3Max(Vector3 v1, Vector3 v2) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); result.x = fmaxf(v1.x, v2.x); result.y = fmaxf(v1.y, v2.y); @@ -1029,7 +1029,7 @@ RMAPI Vector3 Vector3Max(Vector3 v1, Vector3 v2) // NOTE: Assumes P is on the plane of the triangle RMAPI Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); Vector3 v0 = { b.x - a.x, b.y - a.y, b.z - a.z }; // Vector3Subtract(b, a) Vector3 v1 = { c.x - a.x, c.y - a.y, c.z - a.z }; // Vector3Subtract(c, a) @@ -1053,7 +1053,7 @@ RMAPI Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c) // NOTE: We are avoiding calling other raymath functions despite available RMAPI Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); // Calculate unprojected matrix (multiply view matrix by projection matrix) and invert it Matrix matViewProj = { // MatrixMultiply(view, projection); @@ -1136,7 +1136,7 @@ RMAPI Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view) // Get Vector3 as float array RMAPI float3 Vector3ToFloatV(Vector3 v) { - float3 buffer = { 0 }; + float3 buffer = { 0, 0, 0 }; buffer.v[0] = v.x; buffer.v[1] = v.y; @@ -1157,7 +1157,7 @@ RMAPI Vector3 Vector3Invert(Vector3 v) // min and max values specified by the given vectors RMAPI Vector3 Vector3Clamp(Vector3 v, Vector3 min, Vector3 max) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); result.x = fminf(max.x, fmaxf(min.x, v.x)); result.y = fminf(max.y, fmaxf(min.y, v.y)); @@ -1215,7 +1215,7 @@ RMAPI int Vector3Equals(Vector3 p, Vector3 q) // to the refractive index of the medium on the other side of the surface RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r) { - Vector3 result = { 0 }; + Vector3 result = Vector3Zero(); float dot = v.x*n.x + v.y*n.y + v.z*n.z; float d = 1.0f - r*r*(1.0f - dot*dot); @@ -1361,7 +1361,7 @@ RMAPI Vector4 Vector4Divide(Vector4 v1, Vector4 v2) // Normalize provided vector RMAPI Vector4 Vector4Normalize(Vector4 v) { - Vector4 result = { 0 }; + Vector4 result = Vector4Zero(); float length = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w)); if (length > 0) @@ -1379,7 +1379,7 @@ RMAPI Vector4 Vector4Normalize(Vector4 v) // Get min value for each pair of components RMAPI Vector4 Vector4Min(Vector4 v1, Vector4 v2) { - Vector4 result = { 0 }; + Vector4 result = Vector4Zero(); result.x = fminf(v1.x, v2.x); result.y = fminf(v1.y, v2.y); @@ -1392,7 +1392,7 @@ RMAPI Vector4 Vector4Min(Vector4 v1, Vector4 v2) // Get max value for each pair of components RMAPI Vector4 Vector4Max(Vector4 v1, Vector4 v2) { - Vector4 result = { 0 }; + Vector4 result = Vector4Zero(); result.x = fmaxf(v1.x, v2.x); result.y = fmaxf(v1.y, v2.y); @@ -1405,7 +1405,7 @@ RMAPI Vector4 Vector4Max(Vector4 v1, Vector4 v2) // Calculate linear interpolation between two vectors RMAPI Vector4 Vector4Lerp(Vector4 v1, Vector4 v2, float amount) { - Vector4 result = { 0 }; + Vector4 result = Vector4Zero(); result.x = v1.x + amount*(v2.x - v1.x); result.y = v1.y + amount*(v2.y - v1.y); @@ -1418,7 +1418,7 @@ RMAPI Vector4 Vector4Lerp(Vector4 v1, Vector4 v2, float amount) // Move Vector towards target RMAPI Vector4 Vector4MoveTowards(Vector4 v, Vector4 target, float maxDistance) { - Vector4 result = { 0 }; + Vector4 result = Vector4Zero(); float dx = target.x - v.x; float dy = target.y - v.y; @@ -1464,6 +1464,16 @@ RMAPI int Vector4Equals(Vector4 p, Vector4 q) // Module Functions Definition - Matrix math //---------------------------------------------------------------------------------- +// Matrix with components value 0.0f +RMAPI Matrix MatrixZero(void) +{ + Matrix result = { 0.0f, 0.0f, 0.0f, 0.0f, + 0.0f, 0.0f, 0.0f, 0.0f, + 0.0f, 0.0f, 0.0f, 0.0f, + 0.0f, 0.0f, 0.0f, 0.0f }; + return result; +} + // Compute matrix determinant RMAPI float MatrixDeterminant(Matrix mat) { @@ -1512,7 +1522,7 @@ RMAPI float MatrixTrace(Matrix mat) // Transposes provided matrix RMAPI Matrix MatrixTranspose(Matrix mat) { - Matrix result = { 0 }; + Matrix result = MatrixZero(); result.m0 = mat.m0; result.m1 = mat.m4; @@ -1537,7 +1547,7 @@ RMAPI Matrix MatrixTranspose(Matrix mat) // Invert provided matrix RMAPI Matrix MatrixInvert(Matrix mat) { - Matrix result = { 0 }; + Matrix result = MatrixZero(); // Cache the matrix values (speed optimization) float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; @@ -1595,7 +1605,7 @@ RMAPI Matrix MatrixIdentity(void) // Add two matrices RMAPI Matrix MatrixAdd(Matrix left, Matrix right) { - Matrix result = { 0 }; + Matrix result = MatrixZero(); result.m0 = left.m0 + right.m0; result.m1 = left.m1 + right.m1; @@ -1620,7 +1630,7 @@ RMAPI Matrix MatrixAdd(Matrix left, Matrix right) // Subtract two matrices (left - right) RMAPI Matrix MatrixSubtract(Matrix left, Matrix right) { - Matrix result = { 0 }; + Matrix result = MatrixZero(); result.m0 = left.m0 - right.m0; result.m1 = left.m1 - right.m1; @@ -1646,7 +1656,7 @@ RMAPI Matrix MatrixSubtract(Matrix left, Matrix right) // NOTE: When multiplying matrices... the order matters! RMAPI Matrix MatrixMultiply(Matrix left, Matrix right) { - Matrix result = { 0 }; + Matrix result = MatrixZero(); result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12; result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13; @@ -1683,7 +1693,7 @@ RMAPI Matrix MatrixTranslate(float x, float y, float z) // NOTE: Angle should be provided in radians RMAPI Matrix MatrixRotate(Vector3 axis, float angle) { - Matrix result = { 0 }; + Matrix result = MatrixZero(); float x = axis.x, y = axis.y, z = axis.z; @@ -1820,7 +1830,7 @@ RMAPI Matrix MatrixRotateXYZ(Vector3 angle) // NOTE: Angle must be provided in radians RMAPI Matrix MatrixRotateZYX(Vector3 angle) { - Matrix result = { 0 }; + Matrix result = MatrixZero(); float cz = cosf(angle.z); float sz = sinf(angle.z); @@ -1866,7 +1876,7 @@ RMAPI Matrix MatrixScale(float x, float y, float z) // Get perspective projection matrix RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double nearPlane, double farPlane) { - Matrix result = { 0 }; + Matrix result = MatrixZero(); float rl = (float)(right - left); float tb = (float)(top - bottom); @@ -1899,7 +1909,7 @@ RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, // NOTE: Fovy angle must be provided in radians RMAPI Matrix MatrixPerspective(double fovY, double aspect, double nearPlane, double farPlane) { - Matrix result = { 0 }; + Matrix result = MatrixZero(); double top = nearPlane*tan(fovY*0.5); double bottom = -top; @@ -1925,7 +1935,7 @@ RMAPI Matrix MatrixPerspective(double fovY, double aspect, double nearPlane, dou // Get orthographic projection matrix RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, double nearPlane, double farPlane) { - Matrix result = { 0 }; + Matrix result = MatrixZero(); float rl = (float)(right - left); float tb = (float)(top - bottom); @@ -1954,7 +1964,7 @@ RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, d // Get camera look-at matrix (view matrix) RMAPI Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) { - Matrix result = { 0 }; + Matrix result = MatrixZero(); float length = 0.0f; float ilength = 0.0f; @@ -2009,7 +2019,7 @@ RMAPI Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) // Get float array of matrix data RMAPI float16 MatrixToFloatV(Matrix mat) { - float16 result = { 0 }; + float16 result; result.v[0] = mat.m0; result.v[1] = mat.m1; @@ -2086,7 +2096,7 @@ RMAPI float QuaternionLength(Quaternion q) // Normalize provided quaternion RMAPI Quaternion QuaternionNormalize(Quaternion q) { - Quaternion result = { 0 }; + Quaternion result = QuaternionIdentity(); float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); if (length == 0.0f) length = 1.0f; @@ -2123,7 +2133,7 @@ RMAPI Quaternion QuaternionInvert(Quaternion q) // Calculate two quaternion multiplication RMAPI Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2) { - Quaternion result = { 0 }; + Quaternion result = QuaternionIdentity(); float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w; float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w; @@ -2139,7 +2149,7 @@ RMAPI Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2) // Scale quaternion by float value RMAPI Quaternion QuaternionScale(Quaternion q, float mul) { - Quaternion result = { 0 }; + Quaternion result = QuaternionIdentity(); result.x = q.x*mul; result.y = q.y*mul; @@ -2160,7 +2170,7 @@ RMAPI Quaternion QuaternionDivide(Quaternion q1, Quaternion q2) // Calculate linear interpolation between two quaternions RMAPI Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount) { - Quaternion result = { 0 }; + Quaternion result = QuaternionIdentity(); result.x = q1.x + amount*(q2.x - q1.x); result.y = q1.y + amount*(q2.y - q1.y); @@ -2173,7 +2183,7 @@ RMAPI Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount) // Calculate slerp-optimized interpolation between two quaternions RMAPI Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount) { - Quaternion result = { 0 }; + Quaternion result = QuaternionIdentity(); // QuaternionLerp(q1, q2, amount) result.x = q1.x + amount*(q2.x - q1.x); @@ -2198,7 +2208,7 @@ RMAPI Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount) // Calculates spherical linear interpolation between two quaternions RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount) { - Quaternion result = { 0 }; + Quaternion result = QuaternionIdentity(); #if !defined(EPSILON) #define EPSILON 0.000001f @@ -2257,7 +2267,7 @@ RMAPI Quaternion QuaternionCubicHermiteSpline(Quaternion q1, Quaternion outTange Quaternion p1 = QuaternionScale(q2, h01); Quaternion m1 = QuaternionScale(inTangent2, h11); - Quaternion result = { 0 }; + Quaternion result; result = QuaternionAdd(p0, m0); result = QuaternionAdd(result, p1); @@ -2270,7 +2280,7 @@ RMAPI Quaternion QuaternionCubicHermiteSpline(Quaternion q1, Quaternion outTange // Calculate quaternion based on the rotation from one vector to another RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to) { - Quaternion result = { 0 }; + Quaternion result; float cos2Theta = (from.x*to.x + from.y*to.y + from.z*to.z); // Vector3DotProduct(from, to) Vector3 cross = { from.y*to.z - from.z*to.y, from.z*to.x - from.x*to.z, from.x*to.y - from.y*to.x }; // Vector3CrossProduct(from, to) @@ -2298,7 +2308,7 @@ RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to) // Get a quaternion for a given rotation matrix RMAPI Quaternion QuaternionFromMatrix(Matrix mat) { - Quaternion result = { 0 }; + Quaternion result; float fourWSquaredMinus1 = mat.m0 + mat.m5 + mat.m10; float fourXSquaredMinus1 = mat.m0 - mat.m5 - mat.m10; @@ -2478,7 +2488,7 @@ RMAPI void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle // NOTE: Rotation order is ZYX RMAPI Quaternion QuaternionFromEuler(float pitch, float yaw, float roll) { - Quaternion result = { 0 }; + Quaternion result; float x0 = cosf(pitch*0.5f); float x1 = sinf(pitch*0.5f); @@ -2499,7 +2509,7 @@ RMAPI Quaternion QuaternionFromEuler(float pitch, float yaw, float roll) // NOTE: Angles are returned in a Vector3 struct in radians RMAPI Vector3 QuaternionToEuler(Quaternion q) { - Vector3 result = { 0 }; + Vector3 result; // Roll (x-axis rotation) float x0 = 2.0f*(q.w*q.x + q.y*q.z); @@ -2523,7 +2533,7 @@ RMAPI Vector3 QuaternionToEuler(Quaternion q) // Transform a quaternion given a transformation matrix RMAPI Quaternion QuaternionTransform(Quaternion q, Matrix mat) { - Quaternion result = { 0 }; + Quaternion result; result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w; result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w;