Browse Source

Update miniaudio.h

pull/1707/head
Ray 3 years ago
parent
commit
0a34a35403
1 changed files with 205 additions and 94 deletions
  1. +205
    -94
      src/external/miniaudio.h

+ 205
- 94
src/external/miniaudio.h View File

@ -1,6 +1,6 @@
/*
Audio playback and capture library. Choice of public domain or MIT-0. See license statements at the end of this file.
miniaudio - v0.10.32 - 2020-02-23
miniaudio - v0.10.33 - 2021-04-04
David Reid - mackron@gmail.com
@ -1510,7 +1510,7 @@ extern "C" {
#define MA_VERSION_MAJOR 0
#define MA_VERSION_MINOR 10
#define MA_VERSION_REVISION 32
#define MA_VERSION_REVISION 33
#define MA_VERSION_STRING MA_XSTRINGIFY(MA_VERSION_MAJOR) "." MA_XSTRINGIFY(MA_VERSION_MINOR) "." MA_XSTRINGIFY(MA_VERSION_REVISION)
#if defined(_MSC_VER) && !defined(__clang__)
@ -5820,7 +5820,7 @@ Offsets a pointer by the specified number of PCM frames.
*/
MA_API void* ma_offset_pcm_frames_ptr(void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels);
MA_API const void* ma_offset_pcm_frames_const_ptr(const void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels);
static MA_INLINE float* ma_offset_pcm_frames_ptr_f32(float* p, ma_uint64 offsetInFrames, ma_uint32 channels) { return (float*)ma_offset_pcm_frames_const_ptr((void*)p, offsetInFrames, ma_format_f32, channels); }
static MA_INLINE float* ma_offset_pcm_frames_ptr_f32(float* p, ma_uint64 offsetInFrames, ma_uint32 channels) { return (float*)ma_offset_pcm_frames_ptr((void*)p, offsetInFrames, ma_format_f32, channels); }
static MA_INLINE const float* ma_offset_pcm_frames_const_ptr_f32(const float* p, ma_uint64 offsetInFrames, ma_uint32 channels) { return (const float*)ma_offset_pcm_frames_const_ptr((const void*)p, offsetInFrames, ma_format_f32, channels); }
@ -6734,22 +6734,45 @@ static MA_INLINE ma_bool32 ma_has_neon(void)
#endif
#endif
#if defined(__has_builtin)
#define MA_COMPILER_HAS_BUILTIN(x) __has_builtin(x)
#else
#define MA_COMPILER_HAS_BUILTIN(x) 0
#endif
#ifndef MA_ASSUME
#if MA_COMPILER_HAS_BUILTIN(__builtin_assume)
#define MA_ASSUME(x) __builtin_assume(x)
#elif MA_COMPILER_HAS_BUILTIN(__builtin_unreachable)
#define MA_ASSUME(x) do { if (!(x)) __builtin_unreachable(); } while (0)
#elif defined(_MSC_VER)
#define MA_ASSUME(x) __assume(x)
#else
#define MA_ASSUME(x) while(0)
#endif
#endif
#ifndef MA_RESTRICT
#if defined(__clang__) || defined(__GNUC__) || defined(_MSC_VER)
#define MA_RESTRICT __restrict
#else
#define MA_RESTRICT
#endif
#endif
#if defined(_MSC_VER) && _MSC_VER >= 1400
#define MA_HAS_BYTESWAP16_INTRINSIC
#define MA_HAS_BYTESWAP32_INTRINSIC
#define MA_HAS_BYTESWAP64_INTRINSIC
#elif defined(__clang__)
#if defined(__has_builtin)
#if __has_builtin(__builtin_bswap16)
#define MA_HAS_BYTESWAP16_INTRINSIC
#endif
#if __has_builtin(__builtin_bswap32)
#define MA_HAS_BYTESWAP32_INTRINSIC
#endif
#if __has_builtin(__builtin_bswap64)
#define MA_HAS_BYTESWAP64_INTRINSIC
#endif
#if MA_COMPILER_HAS_BUILTIN(__builtin_bswap16)
#define MA_HAS_BYTESWAP16_INTRINSIC
#endif
#if MA_COMPILER_HAS_BUILTIN(__builtin_bswap32)
#define MA_HAS_BYTESWAP32_INTRINSIC
#endif
#if MA_COMPILER_HAS_BUILTIN(__builtin_bswap64)
#define MA_HAS_BYTESWAP64_INTRINSIC
#endif
#elif defined(__GNUC__)
#if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
@ -8720,31 +8743,31 @@ typedef unsigned char c89atomic_bool;
#define c89atomic_compiler_fence() c89atomic_thread_fence(c89atomic_memory_order_seq_cst)
#define c89atomic_signal_fence(order) c89atomic_thread_fence(order)
#if defined(C89ATOMIC_HAS_8)
static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_load_explicit_8(volatile c89atomic_uint8* ptr, c89atomic_memory_order order)
static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_load_explicit_8(volatile k">const c89atomic_uint8* ptr, c89atomic_memory_order order)
{
(void)order;
return c89atomic_compare_and_swap_8(ptr, 0, 0);
return c89atomic_compare_and_swap_8(p">(c89atomic_uint8*)ptr, 0, 0);
}
#endif
#if defined(C89ATOMIC_HAS_16)
static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_load_explicit_16(volatile c89atomic_uint16* ptr, c89atomic_memory_order order)
static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_load_explicit_16(volatile k">const c89atomic_uint16* ptr, c89atomic_memory_order order)
{
(void)order;
return c89atomic_compare_and_swap_16(ptr, 0, 0);
return c89atomic_compare_and_swap_16(p">(c89atomic_uint16*)ptr, 0, 0);
}
#endif
#if defined(C89ATOMIC_HAS_32)
static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_load_explicit_32(volatile c89atomic_uint32* ptr, c89atomic_memory_order order)
static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_load_explicit_32(volatile k">const c89atomic_uint32* ptr, c89atomic_memory_order order)
{
(void)order;
return c89atomic_compare_and_swap_32(ptr, 0, 0);
return c89atomic_compare_and_swap_32(p">(c89atomic_uint32*)ptr, 0, 0);
}
#endif
#if defined(C89ATOMIC_HAS_64)
static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_load_explicit_64(volatile c89atomic_uint64* ptr, c89atomic_memory_order order)
static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_load_explicit_64(volatile k">const c89atomic_uint64* ptr, c89atomic_memory_order order)
{
(void)order;
return c89atomic_compare_and_swap_64(ptr, 0, 0);
return c89atomic_compare_and_swap_64(p">(c89atomic_uint64*)ptr, 0, 0);
}
#endif
#if defined(C89ATOMIC_HAS_8)
@ -9552,25 +9575,25 @@ typedef unsigned char c89atomic_bool;
}
#endif
#define c89atomic_signal_fence(order) c89atomic_thread_fence(order)
static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_load_explicit_8(volatile c89atomic_uint8* ptr, c89atomic_memory_order order)
static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_load_explicit_8(volatile k">const c89atomic_uint8* ptr, c89atomic_memory_order order)
{
(void)order;
return c89atomic_compare_and_swap_8(ptr, 0, 0);
return c89atomic_compare_and_swap_8(p">(c89atomic_uint8*)ptr, 0, 0);
}
static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_load_explicit_16(volatile c89atomic_uint16* ptr, c89atomic_memory_order order)
static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_load_explicit_16(volatile k">const c89atomic_uint16* ptr, c89atomic_memory_order order)
{
(void)order;
return c89atomic_compare_and_swap_16(ptr, 0, 0);
return c89atomic_compare_and_swap_16(p">(c89atomic_uint16*)ptr, 0, 0);
}
static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_load_explicit_32(volatile c89atomic_uint32* ptr, c89atomic_memory_order order)
static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_load_explicit_32(volatile k">const c89atomic_uint32* ptr, c89atomic_memory_order order)
{
(void)order;
return c89atomic_compare_and_swap_32(ptr, 0, 0);
return c89atomic_compare_and_swap_32(p">(c89atomic_uint32*)ptr, 0, 0);
}
static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_load_explicit_64(volatile c89atomic_uint64* ptr, c89atomic_memory_order order)
static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_load_explicit_64(volatile k">const c89atomic_uint64* ptr, c89atomic_memory_order order)
{
(void)order;
return c89atomic_compare_and_swap_64(ptr, 0, 0);
return c89atomic_compare_and_swap_64(p">(c89atomic_uint64*)ptr, 0, 0);
}
#define c89atomic_store_explicit_8( dst, src, order) (void)c89atomic_exchange_explicit_8 (dst, src, order)
#define c89atomic_store_explicit_16(dst, src, order) (void)c89atomic_exchange_explicit_16(dst, src, order)
@ -16257,6 +16280,8 @@ static ma_result ma_context_init__wasapi(ma_context* pContext, const ma_context_
return result;
}
MA_ZERO_OBJECT(&pContext->wasapi);
/*
Annoyingly, WASAPI does not allow you to release an IAudioClient object from a different thread
than the one that retrieved it with GetService(). This can result in a deadlock in two
@ -22511,9 +22536,9 @@ static ma_result ma_device_init__pulse(ma_device* pDevice, const ma_device_confi
int error = 0;
const char* devPlayback = NULL;
const char* devCapture = NULL;
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
ma_format format = ma_format_unknown;
ma_uint32 channels = 0;
ma_uint32 sampleRate = 0;
ma_pa_sink_info sinkInfo;
ma_pa_source_info sourceInfo;
ma_pa_sample_spec ss;
@ -22892,7 +22917,7 @@ static ma_result ma_device_data_loop__pulse(ma_device* pDevice)
/* NOTE: Don't start the device here. It'll be done at a higher level. */
/*
Are data is handled through callbacks. All we need to do is iterate over the main loop and let
All data is handled through callbacks. All we need to do is iterate over the main loop and let
the callbacks deal with it.
*/
while (ma_device_get_state(pDevice) == MA_STATE_STARTED) {
@ -23708,7 +23733,8 @@ static ma_result ma_context_init__jack(ma_context* pContext, const ma_context_co
#ifndef MA_NO_RUNTIME_LINKING
const char* libjackNames[] = {
#ifdef MA_WIN32
"libjack.dll"
"libjack.dll",
"libjack64.dll"
#else
"libjack.so",
"libjack.so.0"
@ -25224,6 +25250,8 @@ static ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_
}
}
ma_free(pSampleRateRanges, &pContext->allocationCallbacks);
if (pDeviceInfo->nativeDataFormatCount >= ma_countof(pDeviceInfo->nativeDataFormats)) {
break; /* No more room for any more formats. */
}
@ -26653,7 +26681,7 @@ static ma_result ma_device_init__coreaudio(ma_device* pDevice, const ma_device_c
data.sampleRateIn = pDescriptorPlayback->sampleRate;
MA_COPY_MEMORY(data.channelMapIn, pDescriptorPlayback->channelMap, sizeof(pDescriptorPlayback->channelMap));
data.shareMode = pDescriptorPlayback->shareMode;
data.shareMode = pDescriptorPlayback->shareMode;
data.performanceProfile = pConfig->performanceProfile;
/* In full-duplex mode we want the playback buffer to be the same size as the capture buffer. */
if (pConfig->deviceType == ma_device_type_duplex) {
@ -33543,12 +33571,22 @@ MA_API ma_uint32 ma_scale_buffer_size(ma_uint32 baseBufferSize, float scale)
MA_API ma_uint32 ma_calculate_buffer_size_in_milliseconds_from_frames(ma_uint32 bufferSizeInFrames, ma_uint32 sampleRate)
{
return bufferSizeInFrames / (sampleRate/1000);
/* Prevent a division by zero. */
if (sampleRate == 0) {
return 0;
}
return bufferSizeInFrames*1000 / sampleRate;
}
MA_API ma_uint32 ma_calculate_buffer_size_in_frames_from_milliseconds(ma_uint32 bufferSizeInMilliseconds, ma_uint32 sampleRate)
{
return bufferSizeInMilliseconds * (sampleRate/1000);
/* Prevent a division by zero. */
if (sampleRate == 0) {
return 0;
}
return bufferSizeInMilliseconds*sampleRate / 1000;
}
MA_API void ma_copy_pcm_frames(void* dst, const void* src, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
@ -36280,13 +36318,15 @@ MA_API ma_result ma_biquad_reinit(const ma_biquad_config* pConfig, ma_biquad* pB
static MA_INLINE void ma_biquad_process_pcm_frame_f32__direct_form_2_transposed(ma_biquad* pBQ, float* pY, const float* pX)
{
ma_uint32 c;
const ma_uint32 channels = pBQ->channels;
const float b0 = pBQ->b0.f32;
const float b1 = pBQ->b1.f32;
const float b2 = pBQ->b2.f32;
const float a1 = pBQ->a1.f32;
const float a2 = pBQ->a2.f32;
for (c = 0; c < pBQ->channels; c += 1) {
MA_ASSUME(channels >= MA_MIN_CHANNELS && channels <= MA_MAX_CHANNELS);
for (c = 0; c < channels; c += 1) {
float r1 = pBQ->r1[c].f32;
float r2 = pBQ->r2[c].f32;
float x = pX[c];
@ -36310,13 +36350,15 @@ static MA_INLINE void ma_biquad_process_pcm_frame_f32(ma_biquad* pBQ, float* pY,
static MA_INLINE void ma_biquad_process_pcm_frame_s16__direct_form_2_transposed(ma_biquad* pBQ, ma_int16* pY, const ma_int16* pX)
{
ma_uint32 c;
const ma_uint32 channels = pBQ->channels;
const ma_int32 b0 = pBQ->b0.s32;
const ma_int32 b1 = pBQ->b1.s32;
const ma_int32 b2 = pBQ->b2.s32;
const ma_int32 a1 = pBQ->a1.s32;
const ma_int32 a2 = pBQ->a2.s32;
for (c = 0; c < pBQ->channels; c += 1) {
MA_ASSUME(channels >= MA_MIN_CHANNELS && channels <= MA_MAX_CHANNELS);
for (c = 0; c < channels; c += 1) {
ma_int32 r1 = pBQ->r1[c].s32;
ma_int32 r2 = pBQ->r2[c].s32;
ma_int32 x = pX[c];
@ -36480,10 +36522,12 @@ MA_API ma_result ma_lpf1_reinit(const ma_lpf1_config* pConfig, ma_lpf1* pLPF)
static MA_INLINE void ma_lpf1_process_pcm_frame_f32(ma_lpf1* pLPF, float* pY, const float* pX)
{
ma_uint32 c;
const ma_uint32 channels = pLPF->channels;
const float a = pLPF->a.f32;
const float b = 1 - a;
for (c = 0; c < pLPF->channels; c += 1) {
MA_ASSUME(channels >= MA_MIN_CHANNELS && channels <= MA_MAX_CHANNELS);
for (c = 0; c < channels; c += 1) {
float r1 = pLPF->r1[c].f32;
float x = pX[c];
float y;
@ -36498,10 +36542,12 @@ static MA_INLINE void ma_lpf1_process_pcm_frame_f32(ma_lpf1* pLPF, float* pY, co
static MA_INLINE void ma_lpf1_process_pcm_frame_s16(ma_lpf1* pLPF, ma_int16* pY, const ma_int16* pX)
{
ma_uint32 c;
const ma_uint32 channels = pLPF->channels;
const ma_int32 a = pLPF->a.s32;
const ma_int32 b = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - a);
for (c = 0; c < pLPF->channels; c += 1) {
MA_ASSUME(channels >= MA_MIN_CHANNELS && channels <= MA_MAX_CHANNELS);
for (c = 0; c < channels; c += 1) {
ma_int32 r1 = pLPF->r1[c].s32;
ma_int32 x = pX[c];
ma_int32 y;
@ -36987,10 +37033,12 @@ MA_API ma_result ma_hpf1_reinit(const ma_hpf1_config* pConfig, ma_hpf1* pHPF)
static MA_INLINE void ma_hpf1_process_pcm_frame_f32(ma_hpf1* pHPF, float* pY, const float* pX)
{
ma_uint32 c;
const ma_uint32 channels = pHPF->channels;
const float a = 1 - pHPF->a.f32;
const float b = 1 - a;
for (c = 0; c < pHPF->channels; c += 1) {
MA_ASSUME(channels >= MA_MIN_CHANNELS && channels <= MA_MAX_CHANNELS);
for (c = 0; c < channels; c += 1) {
float r1 = pHPF->r1[c].f32;
float x = pX[c];
float y;
@ -37005,10 +37053,12 @@ static MA_INLINE void ma_hpf1_process_pcm_frame_f32(ma_hpf1* pHPF, float* pY, co
static MA_INLINE void ma_hpf1_process_pcm_frame_s16(ma_hpf1* pHPF, ma_int16* pY, const ma_int16* pX)
{
ma_uint32 c;
const ma_uint32 channels = pHPF->channels;
const ma_int32 a = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - pHPF->a.s32);
const ma_int32 b = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - a);
for (c = 0; c < pHPF->channels; c += 1) {
MA_ASSUME(channels >= MA_MIN_CHANNELS && channels <= MA_MAX_CHANNELS);
for (c = 0; c < channels; c += 1) {
ma_int32 r1 = pHPF->r1[c].s32;
ma_int32 x = pX[c];
ma_int32 y;
@ -38341,10 +38391,11 @@ static MA_INLINE ma_int16 ma_linear_resampler_mix_s16(ma_int16 x, ma_int16 y, ma
return (ma_int16)(r >> shift);
}
static void ma_linear_resampler_interpolate_frame_s16(ma_linear_resampler* pResampler, ma_int16* pFrameOut)
static void ma_linear_resampler_interpolate_frame_s16(ma_linear_resampler* pResampler, ma_int16* MA_RESTRICT pFrameOut)
{
ma_uint32 c;
ma_uint32 a;
const ma_uint32 channels = pResampler->config.channels;
const ma_uint32 shift = 12;
MA_ASSERT(pResampler != NULL);
@ -38352,24 +38403,27 @@ static void ma_linear_resampler_interpolate_frame_s16(ma_linear_resampler* pResa
a = (pResampler->inTimeFrac << shift) / pResampler->config.sampleRateOut;
for (c = 0; c < pResampler->config.channels; c += 1) {
MA_ASSUME(channels >= MA_MIN_CHANNELS && channels <= MA_MAX_CHANNELS);
for (c = 0; c < channels; c += 1) {
ma_int16 s = ma_linear_resampler_mix_s16(pResampler->x0.s16[c], pResampler->x1.s16[c], a, shift);
pFrameOut[c] = s;
}
}
static void ma_linear_resampler_interpolate_frame_f32(ma_linear_resampler* pResampler, float* pFrameOut)
static void ma_linear_resampler_interpolate_frame_f32(ma_linear_resampler* pResampler, float* MA_RESTRICT pFrameOut)
{
ma_uint32 c;
float a;
const ma_uint32 channels = pResampler->config.channels;
MA_ASSERT(pResampler != NULL);
MA_ASSERT(pFrameOut != NULL);
a = (float)pResampler->inTimeFrac / pResampler->config.sampleRateOut;
for (c = 0; c < pResampler->config.channels; c += 1) {
MA_ASSUME(channels >= MA_MIN_CHANNELS && channels <= MA_MAX_CHANNELS);
for (c = 0; c < channels; c += 1) {
float s = ma_mix_f32_fast(pResampler->x0.f32[c], pResampler->x1.f32[c], a);
pFrameOut[c] = s;
}
@ -44778,7 +44832,7 @@ extern "C" {
#define DRFLAC_XSTRINGIFY(x) DRFLAC_STRINGIFY(x)
#define DRFLAC_VERSION_MAJOR 0
#define DRFLAC_VERSION_MINOR 12
#define DRFLAC_VERSION_REVISION 28
#define DRFLAC_VERSION_REVISION 29
#define DRFLAC_VERSION_STRING DRFLAC_XSTRINGIFY(DRFLAC_VERSION_MAJOR) "." DRFLAC_XSTRINGIFY(DRFLAC_VERSION_MINOR) "." DRFLAC_XSTRINGIFY(DRFLAC_VERSION_REVISION)
#include <stddef.h>
typedef signed char drflac_int8;
@ -48677,20 +48731,22 @@ static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__white(ma_noise* pNoise, voi
{
ma_uint64 iFrame;
ma_uint32 iChannel;
const ma_uint32 channels = pNoise->config.channels;
MA_ASSUME(channels >= MA_MIN_CHANNELS && channels <= MA_MAX_CHANNELS);
if (pNoise->config.format == ma_format_f32) {
float* pFramesOutF32 = (float*)pFramesOut;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_noise_f32_white(pNoise);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = s;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
pFramesOutF32[iFrame*channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = ma_noise_f32_white(pNoise);
for (iChannel = 0; iChannel < channels; iChannel += 1) {
pFramesOutF32[iFrame*channels + iChannel] = ma_noise_f32_white(pNoise);
}
}
}
@ -48699,31 +48755,31 @@ static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__white(ma_noise* pNoise, voi
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_int16 s = ma_noise_s16_white(pNoise);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = s;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
pFramesOutS16[iFrame*channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = ma_noise_s16_white(pNoise);
for (iChannel = 0; iChannel < channels; iChannel += 1) {
pFramesOutS16[iFrame*channels + iChannel] = ma_noise_s16_white(pNoise);
}
}
}
} else {
ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format);
ma_uint32 bpf = bps * pNoise->config.channels;
k">const ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format);
k">const ma_uint32 bpf = bps * channels;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_noise_f32_white(pNoise);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
for (iChannel = 0; iChannel < channels; iChannel += 1) {
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
for (iChannel = 0; iChannel < channels; iChannel += 1) {
float s = ma_noise_f32_white(pNoise);
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
@ -48794,20 +48850,22 @@ static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__pink(ma_noise* pNoise, void
{
ma_uint64 iFrame;
ma_uint32 iChannel;
const ma_uint32 channels = pNoise->config.channels;
MA_ASSUME(channels >= MA_MIN_CHANNELS && channels <= MA_MAX_CHANNELS);
if (pNoise->config.format == ma_format_f32) {
float* pFramesOutF32 = (float*)pFramesOut;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_noise_f32_pink(pNoise, 0);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = s;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
pFramesOutF32[iFrame*channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = ma_noise_f32_pink(pNoise, iChannel);
for (iChannel = 0; iChannel < channels; iChannel += 1) {
pFramesOutF32[iFrame*channels + iChannel] = ma_noise_f32_pink(pNoise, iChannel);
}
}
}
@ -48816,31 +48874,31 @@ static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__pink(ma_noise* pNoise, void
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_int16 s = ma_noise_s16_pink(pNoise, 0);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = s;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
pFramesOutS16[iFrame*channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = ma_noise_s16_pink(pNoise, iChannel);
for (iChannel = 0; iChannel < channels; iChannel += 1) {
pFramesOutS16[iFrame*channels + iChannel] = ma_noise_s16_pink(pNoise, iChannel);
}
}
}
} else {
ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format);
ma_uint32 bpf = bps * pNoise->config.channels;
k">const ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format);
k">const ma_uint32 bpf = bps * channels;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_noise_f32_pink(pNoise, 0);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
for (iChannel = 0; iChannel < channels; iChannel += 1) {
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
for (iChannel = 0; iChannel < channels; iChannel += 1) {
float s = ma_noise_f32_pink(pNoise, iChannel);
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
@ -48874,20 +48932,22 @@ static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__brownian(ma_noise* pNoise,
{
ma_uint64 iFrame;
ma_uint32 iChannel;
const ma_uint32 channels = pNoise->config.channels;
MA_ASSUME(channels >= MA_MIN_CHANNELS && channels <= MA_MAX_CHANNELS);
if (pNoise->config.format == ma_format_f32) {
float* pFramesOutF32 = (float*)pFramesOut;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_noise_f32_brownian(pNoise, 0);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = s;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
pFramesOutF32[iFrame*channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = ma_noise_f32_brownian(pNoise, iChannel);
for (iChannel = 0; iChannel < channels; iChannel += 1) {
pFramesOutF32[iFrame*channels + iChannel] = ma_noise_f32_brownian(pNoise, iChannel);
}
}
}
@ -48896,31 +48956,31 @@ static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__brownian(ma_noise* pNoise,
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_int16 s = ma_noise_s16_brownian(pNoise, 0);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = s;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
pFramesOutS16[iFrame*channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = ma_noise_s16_brownian(pNoise, iChannel);
for (iChannel = 0; iChannel < channels; iChannel += 1) {
pFramesOutS16[iFrame*channels + iChannel] = ma_noise_s16_brownian(pNoise, iChannel);
}
}
}
} else {
ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format);
ma_uint32 bpf = bps * pNoise->config.channels;
k">const ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format);
k">const ma_uint32 bpf = bps * channels;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_noise_f32_brownian(pNoise, 0);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
for (iChannel = 0; iChannel < channels; iChannel += 1) {
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
for (iChannel = 0; iChannel < channels; iChannel += 1) {
float s = ma_noise_f32_brownian(pNoise, iChannel);
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
@ -52946,6 +53006,27 @@ static DRFLAC_INLINE drflac_bool32 drflac_has_sse41(void)
#if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
#define DRFLAC_HAS_BYTESWAP16_INTRINSIC
#endif
#elif defined(__WATCOMC__) && defined(__386__)
#define DRFLAC_HAS_BYTESWAP16_INTRINSIC
#define DRFLAC_HAS_BYTESWAP32_INTRINSIC
#define DRFLAC_HAS_BYTESWAP64_INTRINSIC
extern __inline drflac_uint16 _watcom_bswap16(drflac_uint16);
extern __inline drflac_uint32 _watcom_bswap32(drflac_uint32);
extern __inline drflac_uint64 _watcom_bswap64(drflac_uint64);
#pragma aux _watcom_bswap16 = \
"xchg al, ah" \
parm [ax] \
modify [ax];
#pragma aux _watcom_bswap32 = \
"bswap eax" \
parm [eax] \
modify [eax];
#pragma aux _watcom_bswap64 = \
"bswap eax" \
"bswap edx" \
"xchg eax,edx" \
parm [eax edx] \
modify [eax edx];
#endif
#ifndef DRFLAC_ASSERT
#include <assert.h>
@ -53127,6 +53208,8 @@ static DRFLAC_INLINE drflac_uint16 drflac__swap_endian_uint16(drflac_uint16 n)
return _byteswap_ushort(n);
#elif defined(__GNUC__) || defined(__clang__)
return __builtin_bswap16(n);
#elif defined(__WATCOMC__) && defined(__386__)
return _watcom_bswap16(n);
#else
#error "This compiler does not support the byte swap intrinsic."
#endif
@ -53154,6 +53237,8 @@ static DRFLAC_INLINE drflac_uint32 drflac__swap_endian_uint32(drflac_uint32 n)
#else
return __builtin_bswap32(n);
#endif
#elif defined(__WATCOMC__) && defined(__386__)
return _watcom_bswap32(n);
#else
#error "This compiler does not support the byte swap intrinsic."
#endif
@ -53171,6 +53256,8 @@ static DRFLAC_INLINE drflac_uint64 drflac__swap_endian_uint64(drflac_uint64 n)
return _byteswap_uint64(n);
#elif defined(__GNUC__) || defined(__clang__)
return __builtin_bswap64(n);
#elif defined(__WATCOMC__) && defined(__386__)
return _watcom_bswap64(n);
#else
#error "This compiler does not support the byte swap intrinsic."
#endif
@ -53788,6 +53875,9 @@ static drflac_bool32 drflac__find_and_seek_to_next_sync_code(drflac_bs* bs)
#if defined(_MSC_VER) && _MSC_VER >= 1400 && (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(__clang__)
#define DRFLAC_IMPLEMENT_CLZ_MSVC
#endif
#if defined(__WATCOMC__) && defined(__386__)
#define DRFLAC_IMPLEMENT_CLZ_WATCOM
#endif
static DRFLAC_INLINE drflac_uint32 drflac__clz_software(drflac_cache_t x)
{
drflac_uint32 n;
@ -53900,6 +53990,15 @@ static DRFLAC_INLINE drflac_uint32 drflac__clz_msvc(drflac_cache_t x)
return sizeof(x)*8 - n - 1;
}
#endif
#ifdef DRFLAC_IMPLEMENT_CLZ_WATCOM
static __inline drflac_uint32 drflac__clz_watcom (drflac_uint32);
#pragma aux drflac__clz_watcom = \
"bsr eax, eax" \
"xor eax, 31" \
parm [eax] nomemory \
value [eax] \
modify exact [eax] nomemory;
#endif
static DRFLAC_INLINE drflac_uint32 drflac__clz(drflac_cache_t x)
{
#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT
@ -53910,6 +54009,8 @@ static DRFLAC_INLINE drflac_uint32 drflac__clz(drflac_cache_t x)
{
#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC
return drflac__clz_msvc(x);
#elif defined(DRFLAC_IMPLEMENT_CLZ_WATCOM)
return (x == 0) ? sizeof(x)*8 : drflac__clz_watcom(x);
#else
return drflac__clz_software(x);
#endif
@ -54226,7 +54327,6 @@ static drflac_bool32 drflac__decode_samples_with_residual__rice__reference(drfla
{
drflac_uint32 i;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(count > 0);
DRFLAC_ASSERT(pSamplesOut != NULL);
for (i = 0; i < count; ++i) {
drflac_uint32 zeroCounter = 0;
@ -54495,7 +54595,6 @@ static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar_zeroorde
drflac_uint32 riceParamMask;
drflac_uint32 i;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(count > 0);
DRFLAC_ASSERT(pSamplesOut != NULL);
(void)bitsPerSample;
(void)order;
@ -54530,7 +54629,6 @@ static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar(drflac_b
const drflac_int32* pSamplesOutEnd;
drflac_uint32 i;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(count > 0);
DRFLAC_ASSERT(pSamplesOut != NULL);
if (order == 0) {
return drflac__decode_samples_with_residual__rice__scalar_zeroorder(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
@ -54949,7 +55047,6 @@ static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41_64(drflac
static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
{
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(count > 0);
DRFLAC_ASSERT(pSamplesOut != NULL);
if (order > 0 && order <= 12) {
if (bitsPerSample+shift > 32) {
@ -55300,7 +55397,6 @@ static drflac_bool32 drflac__decode_samples_with_residual__rice__neon_64(drflac_
static drflac_bool32 drflac__decode_samples_with_residual__rice__neon(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
{
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(count > 0);
DRFLAC_ASSERT(pSamplesOut != NULL);
if (order > 0 && order <= 12) {
if (bitsPerSample+shift > 32) {
@ -55336,7 +55432,6 @@ static drflac_bool32 drflac__read_and_seek_residual__rice(drflac_bs* bs, drflac_
{
drflac_uint32 i;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(count > 0);
for (i = 0; i < count; ++i) {
if (!drflac__seek_rice_parts(bs, riceParam)) {
return DRFLAC_FALSE;
@ -55348,7 +55443,6 @@ static drflac_bool32 drflac__decode_samples_with_residual__unencoded(drflac_bs*
{
drflac_uint32 i;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(count > 0);
DRFLAC_ASSERT(unencodedBitsPerSample <= 31);
DRFLAC_ASSERT(pSamplesOut != NULL);
for (i = 0; i < count; ++i) {
@ -55389,7 +55483,7 @@ static drflac_bool32 drflac__decode_samples_with_residual(drflac_bs* bs, drflac_
if (partitionOrder > 8) {
return DRFLAC_FALSE;
}
if ((blockSize / (1 << partitionOrder)) <= order) {
if ((blockSize / (1 << partitionOrder)) < order) {
return DRFLAC_FALSE;
}
samplesInPartition = (blockSize / (1 << partitionOrder)) - order;
@ -60534,6 +60628,7 @@ DRFLAC_API drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 p
return drflac__seek_to_first_frame(pFlac);
} else {
drflac_bool32 wasSuccessful = DRFLAC_FALSE;
drflac_uint64 originalPCMFrame = pFlac->currentPCMFrame;
if (pcmFrameIndex > pFlac->totalPCMFrameCount) {
pcmFrameIndex = pFlac->totalPCMFrameCount;
}
@ -60574,7 +60669,13 @@ DRFLAC_API drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 p
wasSuccessful = drflac__seek_to_pcm_frame__brute_force(pFlac, pcmFrameIndex);
}
}
pFlac->currentPCMFrame = pcmFrameIndex;
if (wasSuccessful) {
pFlac->currentPCMFrame = pcmFrameIndex;
} else {
if (drflac_seek_to_pcm_frame(pFlac, originalPCMFrame) == DRFLAC_FALSE) {
drflac_seek_to_pcm_frame(pFlac, 0);
}
}
return wasSuccessful;
}
}
@ -64470,7 +64571,17 @@ The following miscellaneous changes have also been made.
/*
REVISION HISTORY
================
v0.10.32 - 2020-02-23
v0.10.33 - 2021-04-04
- Core Audio: Fix a memory leak.
- Core Audio: Fix a bug where the performance profile is not being used by playback devices.
- JACK: Fix loading of 64-bit JACK on Windows.
- Fix a calculation error and add a safety check to the following APIs to prevent a division by zero:
- ma_calculate_buffer_size_in_milliseconds_from_frames()
- ma_calculate_buffer_size_in_frames_from_milliseconds()
- Fix compilation errors relating to c89atomic.
- Update FLAC decoder.
v0.10.32 - 2021-02-23
- WASAPI: Fix a deadlock in exclusive mode.
- WASAPI: No longer return an error from ma_context_get_device_info() when an exclusive mode format
cannot be retrieved.

Loading…
Cancel
Save