Bladeren bron

WARNING: Redesigned structs

- Mesh, Shader, Material structs have been reviewed to minimize size when passed by value, all required code has been reviewed.
 - GetCollisionRayModel() reviewed to avoid pointer, not required because model is not modified inside the function
 - UnloadMesh() reviewed, pointer not required
 - CheckCollisionRay*() parameters name reviewed
pull/931/head
Ray 5 jaren geleden
bovenliggende
commit
3d5fa81bf2
5 gewijzigde bestanden met toevoegingen van 108 en 84 verwijderingen
  1. +1
    -1
      examples/models/models_mesh_picking.c
  2. +1
    -1
      examples/models/models_obj_viewer.c
  3. +60
    -41
      src/models.c
  4. +9
    -13
      src/raylib.h
  5. +37
    -28
      src/rlgl.h

+ 1
- 1
examples/models/models_mesh_picking.c Bestand weergeven

@ -105,7 +105,7 @@ int main(void)
// Check ray collision against model
// NOTE: It considers model.transform matrix!
meshHitInfo = GetCollisionRayModel(ray, o">&tower);
meshHitInfo = GetCollisionRayModel(ray, tower);
if ((meshHitInfo.hit) && (meshHitInfo.distance < nearestHit.distance))
{

+ 1
- 1
examples/models/models_obj_viewer.c Bestand weergeven

@ -54,7 +54,7 @@ int main(void)
{
if (IsFileExtension(droppedFiles[0], ".obj"))
{
for (int i = 0; i < model.meshCount; i++) UnloadMesh(o">&model.meshes[i]);
for (int i = 0; i < model.meshCount; i++) UnloadMesh(model.meshes[i]);
model.meshes = LoadMeshes(droppedFiles[0], &model.meshCount);
bounds = MeshBoundingBox(model.meshes[0]);
}

+ 60
- 41
src/models.c Bestand weergeven

@ -71,7 +71,7 @@
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
o">// ...
cp">#define MAX_MESH_VBO 7 // Maximum number of vbo per mesh
//----------------------------------------------------------------------------------
// Types and Structures Definition
@ -702,7 +702,7 @@ Model LoadModelFromMesh(Mesh mesh)
// Unload model from memory (RAM and/or VRAM)
void UnloadModel(Model model)
{
for (int i = 0; i < model.meshCount; i++) UnloadMesh(o">&model.meshes[i]);
for (int i = 0; i < model.meshCount; i++) UnloadMesh(model.meshes[i]);
for (int i = 0; i < model.materialCount; i++) UnloadMaterial(model.materials[i]);
RL_FREE(model.meshes);
@ -729,9 +729,10 @@ Mesh *LoadMeshes(const char *fileName, int *meshCount)
}
// Unload mesh from memory (RAM and/or VRAM)
void UnloadMesh(Mesh o">*mesh)
void UnloadMesh(Mesh mesh)
{
rlUnloadMesh(mesh);
RL_FREE(mesh.vboId);
}
// Export mesh data to file
@ -824,6 +825,7 @@ Material *LoadMaterials(const char *fileName, int *materialCount)
Material LoadMaterialDefault(void)
{
Material material = { 0 };
material.maps = (MaterialMap *)RL_CALLOC(MAX_MATERIAL_MAPS*sizeof(MaterialMap), 1);
material.shader = GetShaderDefault();
material.maps[MAP_DIFFUSE].texture = GetTextureDefault(); // White texture (1x1 pixel)
@ -847,6 +849,8 @@ void UnloadMaterial(Material material)
{
if (material.maps[i].texture.id != GetTextureDefault().id) rlDeleteTextures(material.maps[i].texture.id);
}
RL_FREE(material.maps);
}
// Set texture for a material map type (MAP_DIFFUSE, MAP_SPECULAR...)
@ -1173,6 +1177,7 @@ bool IsModelAnimationValid(Model model, ModelAnimation anim)
Mesh GenMeshPoly(int sides, float radius)
{
Mesh mesh = { 0 };
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO*sizeof(unsigned int), 1);
int vertexCount = sides*3;
// Vertices definition
@ -1235,6 +1240,7 @@ Mesh GenMeshPoly(int sides, float radius)
Mesh GenMeshPlane(float width, float length, int resX, int resZ)
{
Mesh mesh = { 0 };
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO*sizeof(unsigned int), 1);
#define CUSTOM_MESH_GEN_PLANE
#if defined(CUSTOM_MESH_GEN_PLANE)
@ -1337,6 +1343,7 @@ Mesh GenMeshPlane(float width, float length, int resX, int resZ)
mesh.vertices = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(plane->ntriangles*3*2*sizeof(float));
mesh.normals = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO*sizeof(unsigned int));
mesh.vertexCount = plane->ntriangles*3;
mesh.triangleCount = plane->ntriangles;
@ -1368,6 +1375,7 @@ Mesh GenMeshPlane(float width, float length, int resX, int resZ)
Mesh GenMeshCube(float width, float height, float length)
{
Mesh mesh = { 0 };
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO*sizeof(unsigned int), 1);
#define CUSTOM_MESH_GEN_CUBE
#if defined(CUSTOM_MESH_GEN_CUBE)
@ -1533,6 +1541,7 @@ par_shapes_mesh* par_shapes_create_icosahedron(); // 20 sides polyhedron
RLAPI Mesh GenMeshSphere(float radius, int rings, int slices)
{
Mesh mesh = { 0 };
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO*sizeof(unsigned int), 1);
par_shapes_mesh *sphere = par_shapes_create_parametric_sphere(slices, rings);
par_shapes_scale(sphere, radius, radius, radius);
@ -1571,6 +1580,7 @@ RLAPI Mesh GenMeshSphere(float radius, int rings, int slices)
RLAPI Mesh GenMeshHemiSphere(float radius, int rings, int slices)
{
Mesh mesh = { 0 };
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO*sizeof(unsigned int), 1);
par_shapes_mesh *sphere = par_shapes_create_hemisphere(slices, rings);
par_shapes_scale(sphere, radius, radius, radius);
@ -1609,6 +1619,7 @@ RLAPI Mesh GenMeshHemiSphere(float radius, int rings, int slices)
Mesh GenMeshCylinder(float radius, float height, int slices)
{
Mesh mesh = { 0 };
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO*sizeof(unsigned int), 1);
// Instance a cylinder that sits on the Z=0 plane using the given tessellation
// levels across the UV domain. Think of "slices" like a number of pizza
@ -1667,6 +1678,7 @@ Mesh GenMeshCylinder(float radius, float height, int slices)
Mesh GenMeshTorus(float radius, float size, int radSeg, int sides)
{
Mesh mesh = { 0 };
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO*sizeof(unsigned int), 1);
if (radius > 1.0f) radius = 1.0f;
else if (radius < 0.1f) radius = 0.1f;
@ -1709,6 +1721,7 @@ Mesh GenMeshTorus(float radius, float size, int radSeg, int sides)
Mesh GenMeshKnot(float radius, float size, int radSeg, int sides)
{
Mesh mesh = { 0 };
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO*sizeof(unsigned int), 1);
if (radius > 3.0f) radius = 3.0f;
else if (radius < 0.5f) radius = 0.5f;
@ -1860,13 +1873,14 @@ Mesh GenMeshHeightmap(Image heightmap, Vector3 size)
Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize)
{
Mesh mesh = { 0 };
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO*sizeof(unsigned int), 1);
Color *cubicmapPixels = GetImageData(cubicmap);
int mapWidth = cubicmap.width;
int mapHeight = cubicmap.height;
// NOTE: Max possible number of triangles numCubes * (12 triangles by cube)
// NOTE: Max possible number of triangles numCubes*(12 triangles by cube)
int maxTriangles = cubicmap.width*cubicmap.height*12;
int vCounter = 0; // Used to count vertices
@ -2478,11 +2492,11 @@ bool CheckCollisionSpheres(Vector3 centerA, float radiusA, Vector3 centerB, floa
// Simple way to check for collision, just checking distance between two points
// Unfortunately, sqrtf() is a costly operation, so we avoid it with following solution
/*
float dx = centerA.x - centerB.x; // X distance between centers
float dy = centerA.y - centerB.y; // Y distance between centers
float dz = centerA.z - centerB.z; // Z distance between centers
float dx = centerA.x - centerB.x; // X distance between centers
float dy = centerA.y - centerB.y; // Y distance between centers
float dz = centerA.z - centerB.z; // Z distance between centers
float distance = sqrtf(dx*dx + dy*dy + dz*dz); // Distance between centers
float distance = sqrtf(dx*dx + dy*dy + dz*dz); // Distance between centers
if (distance <= (radiusA + radiusB)) collision = true;
*/
@ -2510,35 +2524,35 @@ bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2)
}
// Detect collision between box and sphere
bool CheckCollisionBoxSphere(BoundingBox box, Vector3 centerSphere, float radiusSphere)
bool CheckCollisionBoxSphere(BoundingBox box, Vector3 center, float radius)
{
bool collision = false;
float dmin = 0;
if (centerSphere.x < box.min.x) dmin += powf(centerSphere.x - box.min.x, 2);
else if (centerSphere.x > box.max.x) dmin += powf(centerSphere.x - box.max.x, 2);
if (center.x < box.min.x) dmin += powf(center.x - box.min.x, 2);
else if (center.x > box.max.x) dmin += powf(center.x - box.max.x, 2);
if (centerSphere.y < box.min.y) dmin += powf(centerSphere.y - box.min.y, 2);
else if (centerSphere.y > box.max.y) dmin += powf(centerSphere.y - box.max.y, 2);
if (center.y < box.min.y) dmin += powf(center.y - box.min.y, 2);
else if (center.y > box.max.y) dmin += powf(center.y - box.max.y, 2);
if (centerSphere.z < box.min.z) dmin += powf(centerSphere.z - box.min.z, 2);
else if (centerSphere.z > box.max.z) dmin += powf(centerSphere.z - box.max.z, 2);
if (center.z < box.min.z) dmin += powf(center.z - box.min.z, 2);
else if (center.z > box.max.z) dmin += powf(center.z - box.max.z, 2);
if (dmin <= (radiusSphere*radiusSphere)) collision = true;
if (dmin <= (radius*radius)) collision = true;
return collision;
}
// Detect collision between ray and sphere
bool CheckCollisionRaySphere(Ray ray, Vector3 spherePosition, float sphereRadius)
bool CheckCollisionRaySphere(Ray ray, Vector3 center, float radius)
{
bool collision = false;
Vector3 raySpherePos = Vector3Subtract(spherePosition, ray.position);
Vector3 raySpherePos = Vector3Subtract(center, ray.position);
float distance = Vector3Length(raySpherePos);
float vector = Vector3DotProduct(raySpherePos, ray.direction);
float d = sphereRadius*sphereRadius - (distance*distance - vector*vector);
float d = radius*radius - (distance*distance - vector*vector);
if (d >= 0.0f) collision = true;
@ -2546,21 +2560,21 @@ bool CheckCollisionRaySphere(Ray ray, Vector3 spherePosition, float sphereRadius
}
// Detect collision between ray and sphere with extended parameters and collision point detection
bool CheckCollisionRaySphereEx(Ray ray, Vector3 spherePosition, float sphereRadius, Vector3 *collisionPoint)
bool CheckCollisionRaySphereEx(Ray ray, Vector3 center, float radius, Vector3 *collisionPoint)
{
bool collision = false;
Vector3 raySpherePos = Vector3Subtract(spherePosition, ray.position);
Vector3 raySpherePos = Vector3Subtract(center, ray.position);
float distance = Vector3Length(raySpherePos);
float vector = Vector3DotProduct(raySpherePos, ray.direction);
float d = sphereRadius*sphereRadius - (distance*distance - vector*vector);
float d = radius*radius - (distance*distance - vector*vector);
if (d >= 0.0f) collision = true;
// Check if ray origin is inside the sphere to calculate the correct collision point
float collisionDistance = 0;
if (distance < sphereRadius) collisionDistance = vector + sqrtf(d);
if (distance < radius) collisionDistance = vector + sqrtf(d);
else collisionDistance = vector - sqrtf(d);
// Calculate collision point
@ -2594,29 +2608,29 @@ bool CheckCollisionRayBox(Ray ray, BoundingBox box)
}
// Get collision info between ray and model
RayHitInfo GetCollisionRayModel(Ray ray, Model o">*model)
RayHitInfo GetCollisionRayModel(Ray ray, Model model)
{
RayHitInfo result = { 0 };
for (int m = 0; m < modelo">->meshCount; m++)
for (int m = 0; m < modelp">.meshCount; m++)
{
// Check if meshhas vertex data on CPU for testing
if (modelo">->meshes[m].vertices != NULL)
if (modelp">.meshes[m].vertices != NULL)
{
// model->mesh.triangleCount may not be set, vertexCount is more reliable
int triangleCount = modelo">->meshes[m].vertexCount/3;
int triangleCount = modelp">.meshes[m].vertexCount/3;
// Test against all triangles in mesh
for (int i = 0; i < triangleCount; i++)
{
Vector3 a, b, c;
Vector3 *vertdata = (Vector3 *)modelo">->meshes[m].vertices;
Vector3 *vertdata = (Vector3 *)modelp">.meshes[m].vertices;
if (modelo">->meshes[m].indices)
if (modelp">.meshes[m].indices)
{
a = vertdata[modelo">->meshes[m].indices[i*3 + 0]];
b = vertdata[modelo">->meshes[m].indices[i*3 + 1]];
c = vertdata[modelo">->meshes[m].indices[i*3 + 2]];
a = vertdata[modelp">.meshes[m].indices[i*3 + 0]];
b = vertdata[modelp">.meshes[m].indices[i*3 + 1]];
c = vertdata[modelp">.meshes[m].indices[i*3 + 2]];
}
else
{
@ -2625,9 +2639,9 @@ RayHitInfo GetCollisionRayModel(Ray ray, Model *model)
c = vertdata[i*3 + 2];
}
a = Vector3Transform(a, modelo">->transform);
b = Vector3Transform(b, modelo">->transform);
c = Vector3Transform(c, modelo">->transform);
a = Vector3Transform(a, modelp">.transform);
b = Vector3Transform(b, modelp">.transform);
c = Vector3Transform(c, modelp">.transform);
RayHitInfo triHitInfo = GetCollisionRayTriangle(ray, a, b, c);
@ -2800,6 +2814,7 @@ static Model LoadOBJ(const char *fileName)
mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO*sizeof(unsigned int), 1);
int vCount = 0;
int vtCount = 0;
@ -3068,6 +3083,8 @@ static Model LoadIQM(const char *fileName)
// NOTE: Animated vertex should be re-uploaded to GPU (if not using GPU skinning)
model.meshes[i].animVertices = RL_MALLOC(sizeof(float)*model.meshes[i].vertexCount*3);
model.meshes[i].animNormals = RL_MALLOC(sizeof(float)*model.meshes[i].vertexCount*3);
model.meshes[i].vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO*sizeof(unsigned int), 1);
}
// Triangles data processing
@ -3386,8 +3403,10 @@ static Model LoadGLTF(const char *fileName)
model.meshCount = primitivesCount;
model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh));
model.materialCount = data->materials_count + 1;
model.materials = RL_MALLOC(model.materialCount * sizeof(Material));
model.meshMaterial = RL_MALLOC(model.meshCount * sizeof(int));
model.materials = RL_MALLOC(model.materialCount*sizeof(Material));
model.meshMaterial = RL_MALLOC(model.meshCount*sizeof(int));
for (int i = 0; i < model.meshCount; i++) model.meshes[i].vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO*sizeof(unsigned int), 1);
for (int i = 0; i < model.materialCount - 1; i++)
{
@ -3397,10 +3416,10 @@ static Model LoadGLTF(const char *fileName)
if (data->materials[i].pbr_metallic_roughness.base_color_factor)
{
tint.r = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[0] * 255.99f);
tint.g = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[1] * 255.99f);
tint.b = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[2] * 255.99f);
tint.a = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[3] * 255.99f);
tint.r = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[0]*255.99f);
tint.g = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[1]*255.99f);
tint.b = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[2]*255.99f);
tint.a = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[3]*255.99f);
}
else
{

+ 9
- 13
src/raylib.h Bestand weergeven

@ -96,10 +96,6 @@
#define MAX_TOUCH_POINTS 10 // Maximum number of touch points supported
// Shader and material limits
#define MAX_SHADER_LOCATIONS 32 // Maximum number of predefined locations stored in shader struct
#define MAX_MATERIAL_MAPS 12 // Maximum number of texture maps stored in shader struct
// Allow custom memory allocators
#ifndef RL_MALLOC
#define RL_MALLOC(sz) malloc(sz)
@ -322,13 +318,13 @@ typedef struct Mesh {
// OpenGL identifiers
unsigned int vaoId; // OpenGL Vertex Array Object id
unsigned int n">vboId[7]; // OpenGL Vertex Buffer Objects id (default vertex data)
unsigned int o">*vboId; // OpenGL Vertex Buffer Objects id (default vertex data)
} Mesh;
// Shader type (generic)
typedef struct Shader {
unsigned int id; // Shader program id
int n">locs[MAX_SHADER_LOCATIONS]; // Shader locations array
unsigned int id; // Shader program id
int o">*locs; // Shader locations array (MAX_SHADER_LOCATIONS)
} Shader;
// Material texture map
@ -341,7 +337,7 @@ typedef struct MaterialMap {
// Material type (generic)
typedef struct Material {
Shader shader; // Material shader
MaterialMap n">maps[MAX_MATERIAL_MAPS]; // Material maps
MaterialMap o">*maps; // Material maps array (MAX_MATERIAL_MAPS)
float *params; // Material generic parameters (if required)
} Material;
@ -1240,7 +1236,7 @@ RLAPI void UnloadModel(Model model);
// Mesh loading/unloading functions
RLAPI Mesh *LoadMeshes(const char *fileName, int *meshCount); // Load meshes from model file
RLAPI void ExportMesh(Mesh mesh, const char *fileName); // Export mesh data to file
RLAPI void UnloadMesh(Mesh o">*mesh); // Unload mesh from memory (RAM and/or VRAM)
RLAPI void UnloadMesh(Mesh mesh); // Unload mesh from memory (RAM and/or VRAM)
// Material loading/unloading functions
RLAPI Material *LoadMaterials(const char *fileName, int *materialCount); // Load materials from model file
@ -1284,11 +1280,11 @@ RLAPI void DrawBillboardRec(Camera camera, Texture2D texture, Rectangle sourceRe
// Collision detection functions
RLAPI bool CheckCollisionSpheres(Vector3 centerA, float radiusA, Vector3 centerB, float radiusB); // Detect collision between two spheres
RLAPI bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2); // Detect collision between two bounding boxes
RLAPI bool CheckCollisionBoxSphere(BoundingBox box, Vector3 centerSphere, float radiusSphere); // Detect collision between box and sphere
RLAPI bool CheckCollisionRaySphere(Ray ray, Vector3 spherePosition, float sphereRadius); // Detect collision between ray and sphere
RLAPI bool CheckCollisionRaySphereEx(Ray ray, Vector3 spherePosition, float sphereRadius, Vector3 *collisionPoint); // Detect collision between ray and sphere, returns collision point
RLAPI bool CheckCollisionBoxSphere(BoundingBox box, Vector3 center, float radius); // Detect collision between box and sphere
RLAPI bool CheckCollisionRaySphere(Ray ray, Vector3 center, float radius); // Detect collision between ray and sphere
RLAPI bool CheckCollisionRaySphereEx(Ray ray, Vector3 center, float radius, Vector3 *collisionPoint); // Detect collision between ray and sphere, returns collision point
RLAPI bool CheckCollisionRayBox(Ray ray, BoundingBox box); // Detect collision between ray and box
RLAPI RayHitInfo GetCollisionRayModel(Ray ray, Model o">*model); // Get collision info between ray and model
RLAPI RayHitInfo GetCollisionRayModel(Ray ray, Model model); // Get collision info between ray and model
RLAPI RayHitInfo GetCollisionRayTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3); // Get collision info between ray and triangle
RLAPI RayHitInfo GetCollisionRayGround(Ray ray, float groundHeight); // Get collision info between ray and ground plane (Y-normal plane)

+ 37
- 28
src/rlgl.h Bestand weergeven

@ -131,6 +131,10 @@
#define MAX_MATRIX_STACK_SIZE 32 // Max size of Matrix stack
#define MAX_DRAWCALL_REGISTERED 256 // Max draws by state changes (mode, texture)
// Shader and material limits
#define MAX_SHADER_LOCATIONS 32 // Maximum number of predefined locations stored in shader struct
#define MAX_MATERIAL_MAPS 12 // Maximum number of texture maps stored in shader struct
// Texture parameters (equivalent to OpenGL defines)
#define RL_TEXTURE_WRAP_S 0x2802 // GL_TEXTURE_WRAP_S
#define RL_TEXTURE_WRAP_T 0x2803 // GL_TEXTURE_WRAP_T
@ -228,7 +232,7 @@ typedef unsigned char byte;
// OpenGL identifiers
unsigned int vaoId; // OpenGL Vertex Array Object id
unsigned int n">vboId[7]; // OpenGL Vertex Buffer Objects id (7 types of vertex data)
unsigned int o">*vboId; // OpenGL Vertex Buffer Objects id (7 types of vertex data)
} Mesh;
// Shader and material limits
@ -237,8 +241,8 @@ typedef unsigned char byte;
// Shader type (generic)
typedef struct Shader {
unsigned int id; // Shader program id
int n">locs[MAX_SHADER_LOCATIONS]; // Shader locations array
unsigned int id; // Shader program id
int o">*locs; // Shader locations array (MAX_SHADER_LOCATIONS)
} Shader;
// Material texture map
@ -251,7 +255,7 @@ typedef unsigned char byte;
// Material type (generic)
typedef struct Material {
Shader shader; // Material shader
MaterialMap n">maps[MAX_MATERIAL_MAPS]; // Material maps
MaterialMap o">*maps; // Material maps (MAX_MATERIAL_MAPS)
float *params; // Material generic parameters (if required)
} Material;
@ -499,7 +503,7 @@ RLAPI bool rlRenderTextureComplete(RenderTexture target); // Ver
RLAPI void rlLoadMesh(Mesh *mesh, bool dynamic); // Upload vertex data into GPU and provided VAO/VBO ids
RLAPI void rlUpdateMesh(Mesh mesh, int buffer, int numVertex); // Update vertex data on GPU (upload new data to one buffer)
RLAPI void rlDrawMesh(Mesh mesh, Material material, Matrix transform); // Draw a 3d mesh with material and transform
RLAPI void rlUnloadMesh(Mesh o">*mesh); // Unload mesh data from CPU and GPU
RLAPI void rlUnloadMesh(Mesh mesh); // Unload mesh data from CPU and GPU
// NOTE: There is a set of shader related functions that are available to end user,
// to avoid creating function wrappers through core module, they have been directly declared in raylib.h
@ -2757,30 +2761,30 @@ void rlDrawMesh(Mesh mesh, Material material, Matrix transform)
}
// Unload mesh data from CPU and GPU
void rlUnloadMesh(Mesh o">*mesh)
void rlUnloadMesh(Mesh mesh)
{
RL_FREE(mesho">->vertices);
RL_FREE(mesho">->texcoords);
RL_FREE(mesho">->normals);
RL_FREE(mesho">->colors);
RL_FREE(mesho">->tangents);
RL_FREE(mesho">->texcoords2);
RL_FREE(mesho">->indices);
RL_FREE(mesho">->animVertices);
RL_FREE(mesho">->animNormals);
RL_FREE(mesho">->boneWeights);
RL_FREE(mesho">->boneIds);
rlDeleteBuffers(mesho">->vboId[0]); // vertex
rlDeleteBuffers(mesho">->vboId[1]); // texcoords
rlDeleteBuffers(mesho">->vboId[2]); // normals
rlDeleteBuffers(mesho">->vboId[3]); // colors
rlDeleteBuffers(mesho">->vboId[4]); // tangents
rlDeleteBuffers(mesho">->vboId[5]); // texcoords2
rlDeleteBuffers(mesho">->vboId[6]); // indices
rlDeleteVertexArrays(mesho">->vaoId);
RL_FREE(meshp">.vertices);
RL_FREE(meshp">.texcoords);
RL_FREE(meshp">.normals);
RL_FREE(meshp">.colors);
RL_FREE(meshp">.tangents);
RL_FREE(meshp">.texcoords2);
RL_FREE(meshp">.indices);
RL_FREE(meshp">.animVertices);
RL_FREE(meshp">.animNormals);
RL_FREE(meshp">.boneWeights);
RL_FREE(meshp">.boneIds);
rlDeleteBuffers(meshp">.vboId[0]); // vertex
rlDeleteBuffers(meshp">.vboId[1]); // texcoords
rlDeleteBuffers(meshp">.vboId[2]); // normals
rlDeleteBuffers(meshp">.vboId[3]); // colors
rlDeleteBuffers(meshp">.vboId[4]); // tangents
rlDeleteBuffers(meshp">.vboId[5]); // texcoords2
rlDeleteBuffers(meshp">.vboId[6]); // indices
rlDeleteVertexArrays(meshp">.vaoId);
}
// Read screen pixel data (color buffer)
@ -2953,6 +2957,7 @@ char *LoadText(const char *fileName)
Shader LoadShader(const char *vsFileName, const char *fsFileName)
{
Shader shader = { 0 };
shader.locs = (int *)RL_CALLOC(MAX_SHADER_LOCATIONS*sizeof(int), 1);
char *vShaderStr = NULL;
char *fShaderStr = NULL;
@ -2973,6 +2978,7 @@ Shader LoadShader(const char *vsFileName, const char *fsFileName)
Shader LoadShaderCode(char *vsCode, char *fsCode)
{
Shader shader = { 0 };
shader.locs = (int *)RL_CALLOC(MAX_SHADER_LOCATIONS*sizeof(int), 1);
// NOTE: All locations must be reseted to -1 (no location)
for (int i = 0; i < MAX_SHADER_LOCATIONS; i++) shader.locs[i] = -1;
@ -3038,6 +3044,8 @@ void UnloadShader(Shader shader)
rlDeleteShader(shader.id);
TraceLog(LOG_INFO, "[SHDR ID %i] Unloaded shader program data", shader.id);
}
RL_FREE(shader.locs);
}
// Begin custom shader mode
@ -3861,6 +3869,7 @@ static unsigned int LoadShaderProgram(unsigned int vShaderId, unsigned int fShad
static Shader LoadShaderDefault(void)
{
Shader shader = { 0 };
shader.locs = (int *)RL_CALLOC(MAX_SHADER_LOCATIONS*sizeof(int), 1);
// NOTE: All locations must be reseted to -1 (no location)
for (int i = 0; i < MAX_SHADER_LOCATIONS; i++) shader.locs[i] = -1;

Laden…
Annuleren
Opslaan