|
@ -0,0 +1,181 @@ |
|
|
|
|
|
# Raylib Vulkan Upgrade Plan |
|
|
|
|
|
|
|
|
|
|
|
This document outlines the strategy for integrating Vulkan as a compile-time graphics backend option for raylib. The goal is to maintain the existing raylib API and ease of use while providing an alternative, modern graphics API. |
|
|
|
|
|
|
|
|
|
|
|
## 1. Define Vulkan API Abstraction Layer (`rlvk`) |
|
|
|
|
|
|
|
|
|
|
|
A new abstraction layer, similar to `rlgl` for OpenGL, will be created for Vulkan. This layer, tentatively named `rlvk`, will reside in `src/rlvk.h` and `src/rlvk.c`. |
|
|
|
|
|
|
|
|
|
|
|
**Key Responsibilities of `rlvk`:** |
|
|
|
|
|
|
|
|
|
|
|
* **Initialization & Deinitialization:** |
|
|
|
|
|
* `rlvkInit()`: |
|
|
|
|
|
* Initialize Vulkan loader. |
|
|
|
|
|
* Create Vulkan instance (`vkCreateInstance`). |
|
|
|
|
|
* Setup debug messenger (if `RLGL_ENABLE_OPENGL_DEBUG_CONTEXT` or a new Vulkan equivalent is defined). |
|
|
|
|
|
* Select a suitable physical device (`vkEnumeratePhysicalDevices`, `vkGetPhysicalDeviceProperties`, `vkGetPhysicalDeviceFeatures`, `vkGetPhysicalDeviceQueueFamilyProperties`). |
|
|
|
|
|
* Create a logical device (`vkCreateDevice`) with necessary queues (graphics, present). |
|
|
|
|
|
* Create a Vulkan surface using the platform layer (e.g., via GLFW's `glfwCreateWindowSurface`). |
|
|
|
|
|
* Create the swapchain (`vkCreateSwapchainKHR`). |
|
|
|
|
|
* Create image views for swapchain images (`vkCreateImageView`). |
|
|
|
|
|
* Create a default render pass (`vkCreateRenderPass`). |
|
|
|
|
|
* Create framebuffers for each swapchain image view, associating them with the render pass (`vkCreateFramebuffer`). |
|
|
|
|
|
* Create a command pool (`vkCreateCommandPool`). |
|
|
|
|
|
* Allocate primary command buffers (`vkAllocateCommandBuffers`). |
|
|
|
|
|
* Create synchronization primitives (semaphores for image available/render finished, fences for command buffer execution) (`vkCreateSemaphore`, `vkCreateFence`). |
|
|
|
|
|
* Initialize default resources (e.g., default white texture, default shaders in SPIR-V). |
|
|
|
|
|
* Setup default pipeline state objects (PSO) for common rendering tasks (e.g., 2D textured quads, 3D models). |
|
|
|
|
|
* `rlvkClose()`: |
|
|
|
|
|
* Wait for device to be idle (`vkDeviceWaitIdle`). |
|
|
|
|
|
* Destroy all Vulkan resources in reverse order of creation (synchronization primitives, command buffers, command pool, framebuffers, render pass, image views, swapchain, logical device, surface, debug messenger, instance). |
|
|
|
|
|
|
|
|
|
|
|
* **Core Rendering Loop Functions:** |
|
|
|
|
|
* `rlvkBeginDrawing()`: |
|
|
|
|
|
* Acquire the next available swapchain image (`vkAcquireNextImageKHR`). |
|
|
|
|
|
* Begin the primary command buffer (`vkBeginCommandBuffer`). |
|
|
|
|
|
* Begin the default render pass (`vkCmdBeginRenderPass`). |
|
|
|
|
|
* Set default viewport and scissor. |
|
|
|
|
|
* `rlvkEndDrawing()`: |
|
|
|
|
|
* End the render pass (`vkCmdEndRenderPass`). |
|
|
|
|
|
* End the command buffer (`vkEndCommandBuffer`). |
|
|
|
|
|
* Submit the command buffer to the graphics queue (`vkQueueSubmit`), waiting on the image available semaphore and signaling the render finished semaphore. |
|
|
|
|
|
* Present the rendered image to the swapchain (`vkQueuePresentKHR`), waiting on the render finished semaphore. |
|
|
|
|
|
|
|
|
|
|
|
* **Matrix Operations:** |
|
|
|
|
|
* Maintain projection and modelview matrix stacks similar to `rlgl`. |
|
|
|
|
|
* `rlvkMatrixMode()`, `rlvkPushMatrix()`, `rlvkPopMatrix()`, `rlvkLoadIdentity()`, `rlvkTranslatef()`, `rlvkRotatef()`, `rlvkScalef()`, `rlvkMultMatrixf()`. |
|
|
|
|
|
* These will update internal matrix state, which will then be passed to shaders via UBOs/push constants. |
|
|
|
|
|
|
|
|
|
|
|
* **Viewport and Clipping:** |
|
|
|
|
|
* `rlvkViewport()`: Set dynamic viewport state (`vkCmdSetViewport`). |
|
|
|
|
|
* `rlvkSetClipPlanes()`: Potentially manage via shader logic or dynamic rasterizer state if available/performant. Vulkan does not have direct equivalents to `gl_ClipDistance` in the same way as OpenGL for user-defined clip planes easily manipulated by `rlFrustum`. |
|
|
|
|
|
|
|
|
|
|
|
* **Vertex Buffer Management (Batching System):** |
|
|
|
|
|
* Adapt or reimplement raylib's batching system (`rlRenderBatch`) for Vulkan. |
|
|
|
|
|
* `rlvkLoadRenderBatch()`: Create Vulkan buffers (vertex, index, staging) for batch data. |
|
|
|
|
|
* `rlvkUnloadRenderBatch()`: Destroy Vulkan buffers. |
|
|
|
|
|
* `rlvkDrawRenderBatch()`: |
|
|
|
|
|
* If batch data has changed, update staging buffers and record commands to copy to device-local buffers (`vkCmdCopyBuffer`). |
|
|
|
|
|
* Bind appropriate pipeline (PSO). |
|
|
|
|
|
* Bind descriptor sets (for UBOs, textures). |
|
|
|
|
|
* Bind vertex and index buffers (`vkCmdBindVertexBuffers`, `vkCmdBindIndexBuffer`). |
|
|
|
|
|
* Issue draw calls (`vkCmdDrawIndexed` or `vkCmdDraw`). |
|
|
|
|
|
* `rlvkSetTexture()`: Manage texture binding for the current batch, potentially requiring different descriptor sets or dynamic descriptor updates. |
|
|
|
|
|
|
|
|
|
|
|
* **Immediate Mode Emulation (`rlBegin`, `rlEnd`, `rlVertex3f`, etc.):** |
|
|
|
|
|
* These functions will populate the CPU-side vertex buffers of the active `rlRenderBatch`. |
|
|
|
|
|
* `rlBegin()` will set the primitive topology for the current batch draw call. |
|
|
|
|
|
|
|
|
|
|
|
* **Texture Management:** |
|
|
|
|
|
* `rlvkLoadTexture()`: |
|
|
|
|
|
* Create Vulkan image (`vkCreateImage`) with appropriate format, extent, mip levels, usage flags. |
|
|
|
|
|
* Allocate device memory (`vkAllocateMemory`, `vkBindImageMemory`). |
|
|
|
|
|
* Create image view (`vkCreateImageView`). |
|
|
|
|
|
* Create a default sampler (`vkCreateSampler`). |
|
|
|
|
|
* Transition image layout to `VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL`. |
|
|
|
|
|
* Upload pixel data using a staging buffer and command buffer operations (`vkCmdCopyBufferToImage`). |
|
|
|
|
|
* `rlvkLoadTextureDepth()`: Create depth/stencil attachment. |
|
|
|
|
|
* `rlvkLoadTextureCubemap()`: Similar to `rlvkLoadTexture` but for cubemaps. |
|
|
|
|
|
* `rlvkUpdateTexture()`: Update a region of an existing texture using staging buffers. |
|
|
|
|
|
* `rlvkGenTextureMipmaps()`: Generate mipmaps using `vkCmdBlitImage` if supported, or require pre-generated mipmaps. |
|
|
|
|
|
* `rlvkUnloadTexture()`: Destroy image, image view, sampler, and free device memory. |
|
|
|
|
|
|
|
|
|
|
|
* **Shader Management:** |
|
|
|
|
|
* `rlvkLoadShaderCode()`: Will expect SPIR-V bytecode. |
|
|
|
|
|
* `rlvkLoadShaderProgram()`: Create `VkShaderModule` from SPIR-V, define pipeline layouts, and potentially create initial `VkPipeline` objects. |
|
|
|
|
|
* `rlvkGetLocationUniform()`, `rlvkGetLocationAttrib()`: Manage mapping of uniform/attribute names to SPIR-V binding points/locations. |
|
|
|
|
|
* `rlvkSetUniform()`: Update UBOs or push constants. |
|
|
|
|
|
* `rlvkSetShader()`: Select the active pipeline and descriptor sets. |
|
|
|
|
|
|
|
|
|
|
|
* **Framebuffer Management:** |
|
|
|
|
|
* `rlvkLoadFramebuffer()`: Create `VkFramebuffer` (distinct from swapchain framebuffers, for render textures). |
|
|
|
|
|
* `rlvkFramebufferAttach()`: Attach textures to custom framebuffers. |
|
|
|
|
|
* `rlvkFramebufferComplete()`: Check framebuffer completeness. |
|
|
|
|
|
|
|
|
|
|
|
* **Render State Management:** |
|
|
|
|
|
* `rlvkEnableColorBlend()`, `rlvkDisableColorBlend()`, `rlvkSetBlendMode()`, `rlvkSetBlendFactors()`: Configure `VkPipelineColorBlendStateCreateInfo`. |
|
|
|
|
|
* `rlvkEnableDepthTest()`, `rlvkDisableDepthTest()`: Configure `VkPipelineDepthStencilStateCreateInfo`. |
|
|
|
|
|
* `rlvkEnableDepthMask()`, `rlvkDisableDepthMask()`: Part of `VkPipelineDepthStencilStateCreateInfo`. |
|
|
|
|
|
* `rlvkEnableBackfaceCulling()`, `rlvkDisableBackfaceCulling()`, `rlvkSetCullFace()`: Configure `VkPipelineRasterizationStateCreateInfo`. |
|
|
|
|
|
* `rlvkEnableScissorTest()`, `rlvkDisableScissorTest()`, `rlvkScissor()`: Set dynamic scissor state (`vkCmdSetScissor`). |
|
|
|
|
|
* `rlvkEnableWireMode()`, `rlvkDisableWireMode()`: Set `polygonMode` in `VkPipelineRasterizationStateCreateInfo`. |
|
|
|
|
|
|
|
|
|
|
|
## 2. Core Library Integration (`rcore.c`) |
|
|
|
|
|
|
|
|
|
|
|
* **Conditional Compilation:** |
|
|
|
|
|
* Use `#if defined(GRAPHICS_API_VULKAN)` to conditionally include `rlvk.h` and call `rlvk` functions. |
|
|
|
|
|
* Ensure only one graphics API is active (e.g., `#elif defined(GRAPHICS_API_OPENGL_XX)`). |
|
|
|
|
|
* **`InitWindow()` Modifications:** |
|
|
|
|
|
* If `GRAPHICS_API_VULKAN` is defined: |
|
|
|
|
|
* Call `InitPlatform()` (platform layer, e.g., GLFW, will need Vulkan-specific setup). |
|
|
|
|
|
* Call `rlvkInit()` instead of `rlglInit()`. |
|
|
|
|
|
* Set `isGpuReady = true` upon successful Vulkan initialization. |
|
|
|
|
|
* **`CloseWindow()` Modifications:** |
|
|
|
|
|
* If `GRAPHICS_API_VULKAN` is defined: |
|
|
|
|
|
* Call `rlvkClose()` before `ClosePlatform()`. |
|
|
|
|
|
* **Drawing Function Adaption:** |
|
|
|
|
|
* Functions like `ClearBackground()`, `BeginDrawing()`, `EndDrawing()`, `BeginMode2D()`, `EndMode2D()`, `BeginMode3D()`, `EndMode3D()`, `BeginTextureMode()`, `EndTextureMode()`, `BeginShaderMode()`, `EndShaderMode()`, etc., will need to call their `rlvk` counterparts when `GRAPHICS_API_VULKAN` is active. |
|
|
|
|
|
|
|
|
|
|
|
## 3. Platform Layer Integration (Example: `rcore_desktop_glfw.c`) |
|
|
|
|
|
|
|
|
|
|
|
* **Window Creation:** |
|
|
|
|
|
* When `GRAPHICS_API_VULKAN` is defined: |
|
|
|
|
|
* Call `glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);` before `glfwCreateWindow()`. |
|
|
|
|
|
* **Surface Creation:** |
|
|
|
|
|
* After window creation, if Vulkan is active, call `glfwCreateWindowSurface(vulkanInstance, windowHandle, NULL, &vulkanSurface)` to create the Vulkan rendering surface. This surface handle will be needed by `rlvkInit()`. |
|
|
|
|
|
* **Instance Extensions:** |
|
|
|
|
|
* Query required Vulkan instance extensions from GLFW using `glfwGetRequiredInstanceExtensions()` and pass them to `vkCreateInstance` in `rlvkInit()`. |
|
|
|
|
|
* **Input and Other Callbacks:** |
|
|
|
|
|
* Most input handling and window event callbacks should remain largely unchanged. |
|
|
|
|
|
|
|
|
|
|
|
## 4. Build System Changes (CMake) |
|
|
|
|
|
|
|
|
|
|
|
* **Add CMake Option:** |
|
|
|
|
|
* In the main `CMakeLists.txt` or a dedicated options file (e.g., `cmake/CMakeOptions.txt` or a new `cmake/GraphicsAPI.cmake`), add an option to select Vulkan. This could be a boolean `SUPPORT_VULKAN` or an enum-style option like `GRAPHICS_BACKEND` with values "OpenGL" and "Vulkan". |
|
|
|
|
|
* Example: `option(SUPPORT_VULKAN "Enable Vulkan graphics backend" OFF)` |
|
|
|
|
|
* **Conditional Compilation Define:** |
|
|
|
|
|
* Based on the CMake option, add a compile definition for `GRAPHICS_API_VULKAN` to `src/config.h` or directly to the target compile definitions. |
|
|
|
|
|
* Ensure mutual exclusivity with OpenGL defines (e.g., `GRAPHICS_API_OPENGL_33`). |
|
|
|
|
|
* Example in `src/config.h` (controlled by CMake): |
|
|
|
|
|
```c |
|
|
|
|
|
// Select desired graphics API (OpenGL or Vulkan) |
|
|
|
|
|
// #define GRAPHICS_API_OPENGL_11 |
|
|
|
|
|
// #define GRAPHICS_API_OPENGL_21 |
|
|
|
|
|
// #define GRAPHICS_API_OPENGL_33 |
|
|
|
|
|
// #define GRAPHICS_API_OPENGL_43 |
|
|
|
|
|
// #define GRAPHICS_API_OPENGL_ES2 |
|
|
|
|
|
// #define GRAPHICS_API_OPENGL_ES3 |
|
|
|
|
|
// #define GRAPHICS_API_VULKAN // This would be enabled by CMake |
|
|
|
|
|
``` |
|
|
|
|
|
* **Link Vulkan Libraries:** |
|
|
|
|
|
* When Vulkan is enabled, use `find_package(Vulkan REQUIRED)` to locate the Vulkan SDK. |
|
|
|
|
|
* Link the raylib library against `Vulkan::Vulkan` (for the loader) and potentially `Vulkan::glslang` or `Vulkan::SPIRV-Tools` if shader compilation is handled by CMake. |
|
|
|
|
|
* **Source Files:** |
|
|
|
|
|
* Conditionally compile `src/rlvk.c` when Vulkan is enabled. |
|
|
|
|
|
* **Shader Compilation (SPIR-V):** |
|
|
|
|
|
* If GLSL shaders are to be compiled to SPIR-V at build time: |
|
|
|
|
|
* Integrate a tool like `glslangValidator` as a custom build step. |
|
|
|
|
|
* Define rules to find GLSL shaders (e.g., in `src/shaders/glsl/` or a new `src/shaders/vk/`) and compile them to SPIR-V, placing the output in the build directory for embedding or loading. |
|
|
|
|
|
|
|
|
|
|
|
## 5. Shader Management for Vulkan |
|
|
|
|
|
|
|
|
|
|
|
* **SPIR-V Requirement:** Vulkan shaders must be in SPIR-V binary format. |
|
|
|
|
|
* **Compilation Strategy:** |
|
|
|
|
|
* **Option A (Build-time compilation):** Use `glslangValidator` (or similar) integrated into the CMake build process to compile GLSL shaders to SPIR-V. These SPIR-V files can then be embedded into the executable or loaded at runtime. |
|
|
|
|
|
* **Option B (Pre-compiled SPIR-V):** Require users or developers to provide pre-compiled SPIR-V shaders. |
|
|
|
|
|
* Raylib's default shaders will need to be converted to GLSL suitable for Vulkan (e.g., using explicit binding locations) and then compiled to SPIR-V. |
|
|
|
|
|
* **`rlvkLoadShaderCode()`:** This function in `rlvk.c` will expect paths to SPIR-V files or raw SPIR-V bytecode if embedded. |
|
|
|
|
|
* **Descriptor Sets and Pipeline Layouts:** |
|
|
|
|
|
* `rlvk` will need to manage `VkDescriptorSetLayout`, `VkPipelineLayout`, `VkDescriptorPool`, and `VkDescriptorSet` for binding UBOs and textures to shaders. This is significantly different from OpenGL's `glGetUniformLocation`. |
|
|
|
|
|
|
|
|
|
|
|
## 6. Potential Challenges and Considerations |
|
|
|
|
|
|
|
|
|
|
|
* **API Mapping:** Translating raylib's simple, immediate-mode style OpenGL calls to Vulkan's more complex, explicit API requires careful design of the `rlvk` layer to hide Vulkan's verbosity. |
|
|
|
|
|
* **Performance:** While Vulkan offers potential performance benefits, a naive translation might not achieve them. Efficient batching, command buffer usage, and resource management will be crucial. |
|
|
|
|
|
* **Error Handling:** Vulkan's error reporting is robust but requires more explicit checking. |
|
|
|
|
|
* **Driver Differences:** Vulkan driver quality and feature support can vary. |
|
|
|
|
|
* **Development Complexity:** Implementing a Vulkan backend is a substantial undertaking. |
|
|
|
|
|
* **Shader Management:** Handling SPIR-V and descriptor sets is more involved than GLSL uniform locations. |
|
|
|
|
|
* **Maintaining Simplicity:** A core tenet of raylib is its ease of use. The Vulkan backend should ideally not expose Vulkan's complexity to the end-user. |
|
|
|
|
|
|
|
|
|
|
|
This plan provides a high-level roadmap. Each step, especially the design and implementation of `rlvk`, involves many detailed sub-tasks. |