@ -0,0 +1,161 @@ | |||
#version 100 | |||
precision mediump float; | |||
varying vec3 fragPosition; | |||
varying vec2 fragTexCoord; | |||
varying vec4 fragColor; | |||
varying vec3 fragNormal; | |||
uniform sampler2D texture0; | |||
uniform sampler2D texture1; | |||
uniform sampler2D texture2; | |||
uniform vec4 colAmbient; | |||
uniform vec4 colDiffuse; | |||
uniform vec4 colSpecular; | |||
uniform float glossiness; | |||
uniform int useNormal; | |||
uniform int useSpecular; | |||
uniform mat4 modelMatrix; | |||
uniform vec3 viewDir; | |||
struct Light { | |||
int enabled; | |||
int type; | |||
vec3 position; | |||
vec3 direction; | |||
vec4 diffuse; | |||
float intensity; | |||
float radius; | |||
float coneAngle; | |||
}; | |||
const int maxLights = 8; | |||
uniform Light lights[maxLights]; | |||
vec3 ComputeLightPoint(Light l, vec3 n, vec3 v, float s) | |||
{ | |||
/* | |||
vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1.0)); | |||
vec3 surfaceToLight = l.position - surfacePos; | |||
// Diffuse shading | |||
float brightness = clamp(float(dot(n, surfaceToLight)/(length(surfaceToLight)*length(n))), 0.0, 1.0); | |||
float diff = 1.0/dot(surfaceToLight/l.radius, surfaceToLight/l.radius)*brightness*l.intensity; | |||
// Specular shading | |||
float spec = 0.0; | |||
if (diff > 0.0) | |||
{ | |||
vec3 h = normalize(-l.direction + v); | |||
spec = pow(dot(n, h), 3.0 + glossiness)*s; | |||
} | |||
return (diff*l.diffuse.rgb + spec*colSpecular.rgb); | |||
*/ | |||
return vec3(0.5); | |||
} | |||
vec3 ComputeLightDirectional(Light l, vec3 n, vec3 v, float s) | |||
{ | |||
/* | |||
vec3 lightDir = normalize(-l.direction); | |||
// Diffuse shading | |||
float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity; | |||
// Specular shading | |||
float spec = 0.0; | |||
if (diff > 0.0) | |||
{ | |||
vec3 h = normalize(lightDir + v); | |||
spec = pow(dot(n, h), 3.0 + glossiness)*s; | |||
} | |||
// Combine results | |||
return (diff*l.intensity*l.diffuse.rgb + spec*colSpecular.rgb); | |||
*/ | |||
return vec3(0.5); | |||
} | |||
vec3 ComputeLightSpot(Light l, vec3 n, vec3 v, float s) | |||
{ | |||
/* | |||
vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1)); | |||
vec3 lightToSurface = normalize(surfacePos - l.position); | |||
vec3 lightDir = normalize(-l.direction); | |||
// Diffuse shading | |||
float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity; | |||
// Spot attenuation | |||
float attenuation = clamp(float(dot(n, lightToSurface)), 0.0, 1.0); | |||
attenuation = dot(lightToSurface, -lightDir); | |||
float lightToSurfaceAngle = degrees(acos(attenuation)); | |||
if (lightToSurfaceAngle > l.coneAngle) attenuation = 0.0; | |||
float falloff = (l.coneAngle - lightToSurfaceAngle)/l.coneAngle; | |||
// Combine diffuse and attenuation | |||
float diffAttenuation = diff*attenuation; | |||
// Specular shading | |||
float spec = 0.0; | |||
if (diffAttenuation > 0.0) | |||
{ | |||
vec3 h = normalize(lightDir + v); | |||
spec = pow(dot(n, h), 3.0 + glossiness)*s; | |||
} | |||
return (falloff*(diffAttenuation*l.diffuse.rgb + spec*colSpecular.rgb)); | |||
*/ | |||
return vec3(0.5); | |||
} | |||
void main() | |||
{ | |||
// Calculate fragment normal in screen space | |||
// NOTE: important to multiply model matrix by fragment normal to apply model transformation (rotation and scale) | |||
mat3 normalMatrix = mat3(modelMatrix); | |||
vec3 normal = normalize(normalMatrix*fragNormal); | |||
// Normalize normal and view direction vectors | |||
vec3 n = normalize(normal); | |||
vec3 v = normalize(viewDir); | |||
// Calculate diffuse texture color fetching | |||
vec4 texelColor = texture2D(texture0, fragTexCoord); | |||
vec3 lighting = colAmbient.rgb; | |||
// Calculate normal texture color fetching or set to maximum normal value by default | |||
if (useNormal == 1) | |||
{ | |||
n *= texture2D(texture1, fragTexCoord).rgb; | |||
n = normalize(n); | |||
} | |||
// Calculate specular texture color fetching or set to maximum specular value by default | |||
float spec = 1.0; | |||
if (useSpecular == 1) spec *= normalize(texture2D(texture2, fragTexCoord).r); | |||
for (int i = 0; i < maxLights; i++) | |||
{ | |||
// Check if light is enabled | |||
if (lights[i].enabled == 1) | |||
{ | |||
// Calculate lighting based on light type | |||
if(lights[i].type == 0) lighting += ComputeLightPoint(lights[i], n, v, spec); | |||
else if(lights[i].type == 1) lighting += ComputeLightDirectional(lights[i], n, v, spec); | |||
else if(lights[i].type == 2) lighting += ComputeLightSpot(lights[i], n, v, spec); | |||
// NOTE: It seems that too many ComputeLight*() operations inside for loop breaks the shader on RPI | |||
} | |||
} | |||
// Calculate final fragment color | |||
gl_FragColor = vec4(texelColor.rgb*lighting*colDiffuse.rgb, texelColor.a*colDiffuse.a); | |||
} |
@ -0,0 +1,23 @@ | |||
#version 100 | |||
attribute vec3 vertexPosition; | |||
attribute vec3 vertexNormal; | |||
attribute vec2 vertexTexCoord; | |||
attribute vec4 vertexColor; | |||
varying vec3 fragPosition; | |||
varying vec2 fragTexCoord; | |||
varying vec4 fragColor; | |||
varying vec3 fragNormal; | |||
uniform mat4 mvpMatrix; | |||
void main() | |||
{ | |||
fragPosition = vertexPosition; | |||
fragTexCoord = vertexTexCoord; | |||
fragColor = vertexColor; | |||
fragNormal = vertexNormal; | |||
gl_Position = mvpMatrix*vec4(vertexPosition, 1.0); | |||
} |
@ -0,0 +1,150 @@ | |||
#version 330 | |||
in vec3 fragPosition; | |||
in vec2 fragTexCoord; | |||
in vec4 fragColor; | |||
in vec3 fragNormal; | |||
out vec4 finalColor; | |||
uniform sampler2D texture0; | |||
uniform sampler2D texture1; | |||
uniform sampler2D texture2; | |||
uniform vec4 colAmbient; | |||
uniform vec4 colDiffuse; | |||
uniform vec4 colSpecular; | |||
uniform float glossiness; | |||
uniform int useNormal; | |||
uniform int useSpecular; | |||
uniform mat4 modelMatrix; | |||
uniform vec3 viewDir; | |||
struct Light { | |||
int enabled; | |||
int type; | |||
vec3 position; | |||
vec3 direction; | |||
vec4 diffuse; | |||
float intensity; | |||
float radius; | |||
float coneAngle; | |||
}; | |||
const int maxLights = 8; | |||
uniform Light lights[maxLights]; | |||
vec3 ComputeLightPoint(Light l, vec3 n, vec3 v, float s) | |||
{ | |||
vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1)); | |||
vec3 surfaceToLight = l.position - surfacePos; | |||
// Diffuse shading | |||
float brightness = clamp(float(dot(n, surfaceToLight)/(length(surfaceToLight)*length(n))), 0.0, 1.0); | |||
float diff = 1.0/dot(surfaceToLight/l.radius, surfaceToLight/l.radius)*brightness*l.intensity; | |||
// Specular shading | |||
float spec = 0.0; | |||
if (diff > 0.0) | |||
{ | |||
vec3 h = normalize(-l.direction + v); | |||
spec = pow(dot(n, h), 3.0 + glossiness)*s; | |||
} | |||
return (diff*l.diffuse.rgb + spec*colSpecular.rgb); | |||
} | |||
vec3 ComputeLightDirectional(Light l, vec3 n, vec3 v, float s) | |||
{ | |||
vec3 lightDir = normalize(-l.direction); | |||
// Diffuse shading | |||
float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity; | |||
// Specular shading | |||
float spec = 0.0; | |||
if (diff > 0.0) | |||
{ | |||
vec3 h = normalize(lightDir + v); | |||
spec = pow(dot(n, h), 3.0 + glossiness)*s; | |||
} | |||
// Combine results | |||
return (diff*l.intensity*l.diffuse.rgb + spec*colSpecular.rgb); | |||
} | |||
vec3 ComputeLightSpot(Light l, vec3 n, vec3 v, float s) | |||
{ | |||
vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1)); | |||
vec3 lightToSurface = normalize(surfacePos - l.position); | |||
vec3 lightDir = normalize(-l.direction); | |||
// Diffuse shading | |||
float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity; | |||
// Spot attenuation | |||
float attenuation = clamp(float(dot(n, lightToSurface)), 0.0, 1.0); | |||
attenuation = dot(lightToSurface, -lightDir); | |||
float lightToSurfaceAngle = degrees(acos(attenuation)); | |||
if (lightToSurfaceAngle > l.coneAngle) attenuation = 0.0; | |||
float falloff = (l.coneAngle - lightToSurfaceAngle)/l.coneAngle; | |||
// Combine diffuse and attenuation | |||
float diffAttenuation = diff*attenuation; | |||
// Specular shading | |||
float spec = 0.0; | |||
if (diffAttenuation > 0.0) | |||
{ | |||
vec3 h = normalize(lightDir + v); | |||
spec = pow(dot(n, h), 3.0 + glossiness)*s; | |||
} | |||
return (falloff*(diffAttenuation*l.diffuse.rgb + spec*colSpecular.rgb)); | |||
} | |||
void main() | |||
{ | |||
// Calculate fragment normal in screen space | |||
// NOTE: important to multiply model matrix by fragment normal to apply model transformation (rotation and scale) | |||
mat3 normalMatrix = mat3(modelMatrix); | |||
vec3 normal = normalize(normalMatrix*fragNormal); | |||
// Normalize normal and view direction vectors | |||
vec3 n = normalize(normal); | |||
vec3 v = normalize(viewDir); | |||
// Calculate diffuse texture color fetching | |||
vec4 texelColor = texture(texture0, fragTexCoord); | |||
vec3 lighting = colAmbient.rgb; | |||
// Calculate normal texture color fetching or set to maximum normal value by default | |||
if (useNormal == 1) | |||
{ | |||
n *= texture(texture1, fragTexCoord).rgb; | |||
n = normalize(n); | |||
} | |||
// Calculate specular texture color fetching or set to maximum specular value by default | |||
float spec = 1.0; | |||
if (useSpecular == 1) spec *= normalize(texture(texture2, fragTexCoord).r); | |||
for (int i = 0; i < maxLights; i++) | |||
{ | |||
// Check if light is enabled | |||
if (lights[i].enabled == 1) | |||
{ | |||
// Calculate lighting based on light type | |||
if (lights[i].type == 0) lighting += ComputeLightPoint(lights[i], n, v, spec); | |||
else if (lights[i].type == 1) lighting += ComputeLightDirectional(lights[i], n, v, spec); | |||
else if (lights[i].type == 2) lighting += ComputeLightSpot(lights[i], n, v, spec); | |||
} | |||
} | |||
// Calculate final fragment color | |||
finalColor = vec4(texelColor.rgb*lighting*colDiffuse.rgb, texelColor.a*colDiffuse.a); | |||
} |
@ -0,0 +1,23 @@ | |||
#version 330 | |||
in vec3 vertexPosition; | |||
in vec3 vertexNormal; | |||
in vec2 vertexTexCoord; | |||
in vec4 vertexColor; | |||
out vec3 fragPosition; | |||
out vec2 fragTexCoord; | |||
out vec4 fragColor; | |||
out vec3 fragNormal; | |||
uniform mat4 mvpMatrix; | |||
void main() | |||
{ | |||
fragPosition = vertexPosition; | |||
fragTexCoord = vertexTexCoord; | |||
fragColor = vertexColor; | |||
fragNormal = vertexNormal; | |||
gl_Position = mvpMatrix*vec4(vertexPosition, 1.0); | |||
} |