Parcourir la source

Implemented ray trace from mouse position

- Fixed GetMouseRay() function.
- rlglUnproject() unused.
pull/71/head
victorfisac il y a 9 ans
Parent
révision
4a637191f2
1 fichiers modifiés avec 42 ajouts et 52 suppressions
  1. +42
    -52
      src/core.c

+ 42
- 52
src/core.c Voir le fichier

@ -779,78 +779,68 @@ int StorageLoadValue(int position)
}
// Gives the ray trace from mouse position
// TODO: DOESN'T WORK! :(
//http://www.songho.ca/opengl/gl_transform.html
//http://www.songho.ca/opengl/gl_matrix.html
//http://www.sjbaker.org/steve/omniv/matrices_can_be_your_friends.html
//https://www.opengl.org/archives/resources/faq/technical/transformations.htm
Ray GetMouseRay(Vector2 mousePosition, Camera camera)
{
// Tutorial used: https://mkonrad.net/2014/08/07/simple-opengl-object-picking-in-3d.html
// Similar to http://antongerdelan.net, the problem is maybe in MatrixPerspective vs MatrixFrustum
// or matrix order (transpose it or not... that's the question)
Ray ray;
// Calculate projection matrix
float aspect = (float)GetScreenWidth()/(float)GetScreenHeight();
double top = 0.1f*tanf(45.0f*PI/360.0f);
double right = top*aspect;
// NOTE: zNear and zFar values are important for depth
Matrix matProjection = MatrixFrustum(-right, right, -top, top, 0.01f, 1000.0f);
// Calculate normalized device coordinates
// NOTE: y value is negative
float x = (2.0f * mousePosition.x) / GetScreenWidth() - 1.0f;
float y = 1.0f - (2.0f * mousePosition.y) / GetScreenHeight();
float z = 1.0f;
// Calculate view matrix (camera)
Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up);
// Store values in a vector
Vector3 deviceCoords = {x, y, z};
// Tutorial used: http://antongerdelan.net/opengl/raycasting.html
// Device debug message
TraceLog(INFO, "device(%f, %f, %f)", deviceCoords.x, deviceCoords.y, deviceCoords.z);
// Step 0: We got mouse coordinates in viewport-space [0:screenWidth, 0:screenHeight]
o">// NOTE: That that 0 is at the top of the screen here, so the y-axis direction is opposed to that in other coordinate systems
// Calculate projection matrix (from perspective instead of frustum
n">Matrix matProj = MatrixPerspective(45.0f, (float)((float)GetScreenWidth() / (float)GetScreenHeight()), 0.01f, 1000.0f);
// Step 1: 3d Normalised Device Coordinates [-1:1, -1:1, -1:1]
// Transform mousePosition into 3d normalised device coordinates.
// We have an x and y already, so we scale their range, and reverse the direction of y.
float x = (2.0f*mousePosition.x)/(float)screenWidth - 1.0f;
float y = 1.0f - (2.0f*mousePosition.x)/(float)screenHeight;
float z = 1.0f;
Vector3 rayDevice = { x, y, z };
// Calculate view matrix from camera look at
Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up);
// Step 2: 4d Homogeneous Clip Coordinates [-1:1, -1:1, -1:1, -1:1]
// We want our ray's z to point forwards - this is usually the negative z direction in OpenGL style.
// We can add a w, just so that we have a 4d vector.
//vec4 ray_clip = vec4 (ray_nds.xy, -1.0, 1.0);
Quaternion rayClip = { rayDevice.x, rayDevice.y , -1.0f, 1.0f };
// Do I need to transpose it? It seems that yes...
// NOTE: matrix order is maybe incorrect... In OpenGL to get world position from
// camera view it just needs to get inverted, but here we need to transpose it too.
// For example, if you get view matrix, transpose and inverted and you transform it
// to a vector, you will get its 3d world position coordinates (camera.position).
// If you don't transpose, final position will be wrong.
MatrixTranspose(&matView);
// Step 3: 4d Eye (Camera) Coordinates [-x:x, -y:y, -z:z, -w:w]
// To get into clip space from eye space we multiply the vector by a projection matrix.
// We can go backwards by multiplying by the inverse of this matrix.
//vec4 ray_eye = MatrixInverse(matProjection) * ray_clip;
Quaternion rayEye = rayClip;
MatrixInvert(&matProjection);
QuaternionTransform(&rayEye, matProjection);
// Calculate unproject matrix (multiply projection matrix and view matrix) and invert it
Matrix matProjView = MatrixMultiply(matProj, matView);
MatrixInvert(&matProjView);
// We only needed to un-project the x,y part, so let's manually set the z,w part to mean "forwards, and not a point".
//ray_eye = vec4(ray_eye.xy, -1.0, 0.0);
rayEye.z = -1.0f;
rayEye.w = 0.0f;
// Calculate far and near points
Quaternion near = { deviceCoords.x, deviceCoords.y, 0, 1};
Quaternion far = { deviceCoords.x, deviceCoords.y, 1, 1};
// Step 4: 4d World Coordinates [-x:x, -y:y, -z:z, -w:w]
// Go back another step in the transformation pipeline. Remember that we manually specified a -1 for the z component,
// which means that our ray isn't normalised. We should do this before we use it
//Vector3 rayWorld = (MatrixInverse(matView) * ray_eye).xyz;
MatrixInvert(&matView);
QuaternionTransform(&rayEye, matView);
Vector3 rayWorld = { rayEye.x, rayEye.y, rayEye.z };
VectorNormalize(&rayWorld);
// Multiply points by unproject matrix
QuaternionTransform(&near, matProjView);
QuaternionTransform(&far, matProjView);
// Assuming our camera is looking directly along the -Z world axis,
o">// we should get [0,0,-1] when the mouse is in the centre of the screen,
o">// and less significant z values when the mouse moves around the screen.
// Calculate normalized world points in vectors
Vector3 nearPoint = {near.x / near.w, near.y / near.w, near.z / near.w};
Vector3 farPoint = {far.x / far.w, far.y / far.w, far.z / far.w};
// Calculate normalized direction vector
Vector3 direction = VectorSubtract(farPoint, nearPoint);
VectorNormalize(&direction);
// Apply calculated vectors to ray
ray.position = camera.position;
ray.direction = rayWorld;
ray.direction = direction;
TraceLog(INFO, "ray.position -> (%f, %f, %f)", ray.position.x, ray.position.y, ray.position.z);
TraceLog(INFO, "ray.direction -> (%f, %f, %f)", ray.direction.x, ray.direction.y, ray.direction.z);
return ray;
}

Chargement…
Annuler
Enregistrer