|
|
@ -549,8 +549,7 @@ void ImageFormat(Image *image, int newFormat) |
|
|
|
|
|
|
|
for (int i = 0; i < image->width*image->height; i++) |
|
|
|
{ |
|
|
|
((unsigned char *)image->data)[i] = (unsigned char)((float)pixels[k].r*0.299f + (float)pixels[k].g*0.587f + (float)pixels[k].b*0.114f); |
|
|
|
k++; |
|
|
|
((unsigned char *)image->data)[i] = (unsigned char)((float)pixels[i].r*0.299f + (float)pixels[i].g*0.587f + (float)pixels[i].b*0.114f); |
|
|
|
} |
|
|
|
|
|
|
|
} break; |
|
|
@ -570,9 +569,9 @@ void ImageFormat(Image *image, int newFormat) |
|
|
|
{ |
|
|
|
image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short)); |
|
|
|
|
|
|
|
unsigned char r; |
|
|
|
unsigned char g; |
|
|
|
unsigned char b; |
|
|
|
unsigned char r = 0; |
|
|
|
unsigned char g = 0; |
|
|
|
unsigned char b = 0; |
|
|
|
|
|
|
|
for (int i = 0; i < image->width*image->height; i++) |
|
|
|
{ |
|
|
@ -581,8 +580,6 @@ void ImageFormat(Image *image, int newFormat) |
|
|
|
b = (unsigned char)(round((float)pixels[k].b*31/255)); |
|
|
|
|
|
|
|
((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 5 | (unsigned short)b; |
|
|
|
|
|
|
|
k++; |
|
|
|
} |
|
|
|
|
|
|
|
} break; |
|
|
@ -600,45 +597,43 @@ void ImageFormat(Image *image, int newFormat) |
|
|
|
} break; |
|
|
|
case UNCOMPRESSED_R5G5B5A1: |
|
|
|
{ |
|
|
|
#define ALPHA_THRESHOLD 50 |
|
|
|
|
|
|
|
image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short)); |
|
|
|
|
|
|
|
unsigned char r; |
|
|
|
unsigned char g; |
|
|
|
unsigned char b; |
|
|
|
unsigned char a = 1; |
|
|
|
unsigned char r = 0; |
|
|
|
unsigned char g = 0; |
|
|
|
unsigned char b = 0; |
|
|
|
unsigned char a = 0; |
|
|
|
|
|
|
|
for (int i = 0; i < image->width*image->height; i++) |
|
|
|
{ |
|
|
|
r = (unsigned char)(round((float)pixels[k].r*31/255)); |
|
|
|
g = (unsigned char)(round((float)pixels[k].g*31/255)); |
|
|
|
b = (unsigned char)(round((float)pixels[k].b*31/255)); |
|
|
|
a = (pixels[k].a > mi">50) ? 1 : 0; |
|
|
|
r = (unsigned char)(round((float)pixels[i].r*31/255)); |
|
|
|
g = (unsigned char)(round((float)pixels[i].g*31/255)); |
|
|
|
b = (unsigned char)(round((float)pixels[i].b*31/255)); |
|
|
|
a = (pixels[i].a > n">ALPHA_THRESHOLD) ? 1 : 0; |
|
|
|
|
|
|
|
((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 6 | (unsigned short)b << 1| (unsigned short)a; |
|
|
|
|
|
|
|
k++; |
|
|
|
((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 6 | (unsigned short)b << 1 | (unsigned short)a; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
} break; |
|
|
|
case UNCOMPRESSED_R4G4B4A4: |
|
|
|
{ |
|
|
|
image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short)); |
|
|
|
|
|
|
|
unsigned char r; |
|
|
|
unsigned char g; |
|
|
|
unsigned char b; |
|
|
|
unsigned char a; |
|
|
|
unsigned char r = 0; |
|
|
|
unsigned char g = 0; |
|
|
|
unsigned char b = 0; |
|
|
|
unsigned char a = 0; |
|
|
|
|
|
|
|
for (int i = 0; i < image->width*image->height; i++) |
|
|
|
{ |
|
|
|
r = (unsigned char)(round((float)pixels[k].r*15/255)); |
|
|
|
g = (unsigned char)(round((float)pixels[k].g*15/255)); |
|
|
|
b = (unsigned char)(round((float)pixels[k].b*15/255)); |
|
|
|
a = (unsigned char)(round((float)pixels[k].a*15/255)); |
|
|
|
r = (unsigned char)(round((float)pixels[i].r*15/255)); |
|
|
|
g = (unsigned char)(round((float)pixels[i].g*15/255)); |
|
|
|
b = (unsigned char)(round((float)pixels[i].b*15/255)); |
|
|
|
a = (unsigned char)(round((float)pixels[i].a*15/255)); |
|
|
|
|
|
|
|
((unsigned short *)image->data)[i] = (unsigned short)r << 12 | (unsigned short)g << 8| (unsigned short)b << 4| (unsigned short)a; |
|
|
|
|
|
|
|
k++; |
|
|
|
} |
|
|
|
|
|
|
|
} break; |
|
|
@ -664,6 +659,114 @@ void ImageFormat(Image *image, int newFormat) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// Dither image data to 16bpp or lower (Floyd-Steinberg dithering) |
|
|
|
// NOTE: In case selected bpp do not represent an known 16bit format, |
|
|
|
// dithered data is stored in the LSB part of the unsigned short |
|
|
|
void ImageDither(Image *image, int rBpp, int gBpp, int bBpp, int aBpp) |
|
|
|
{ |
|
|
|
if (image->format >= 8) |
|
|
|
{ |
|
|
|
TraceLog(WARNING, "Compressed data formats can not be dithered"); |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
if ((rBpp+gBpp+bBpp+aBpp) > 16) |
|
|
|
{ |
|
|
|
TraceLog(WARNING, "Unsupported dithering bpps (%ibpp), only 16bpp or lower modes supported", (rBpp+gBpp+bBpp+aBpp)); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
Color *pixels = GetImageData(*image); |
|
|
|
|
|
|
|
free(image->data); // free old image data |
|
|
|
|
|
|
|
if ((image->format != UNCOMPRESSED_R8G8B8) && (image->format != UNCOMPRESSED_R8G8B8A8)) |
|
|
|
{ |
|
|
|
TraceLog(WARNING, "Image format is already 16bpp or lower, dithering could have no effect"); |
|
|
|
} |
|
|
|
|
|
|
|
// Define new image format, check if desired bpp match internal known format |
|
|
|
if ((rBpp == 5) && (gBpp == 6) && (bBpp == 5) && (aBpp == 0)) image->format = UNCOMPRESSED_R5G6B5; |
|
|
|
else if ((rBpp == 5) && (gBpp == 5) && (bBpp == 5) && (aBpp == 1)) image->format = UNCOMPRESSED_R5G5B5A1; |
|
|
|
else if ((rBpp == 4) && (gBpp == 4) && (bBpp == 4) && (aBpp == 4)) image->format = UNCOMPRESSED_R4G4B4A4; |
|
|
|
else |
|
|
|
{ |
|
|
|
image->format = 0; |
|
|
|
TraceLog(WARNING, "Unsupported dithered OpenGL internal format: %ibpp (R%iG%iB%iA%i)", (rBpp+gBpp+bBpp+aBpp), rBpp, gBpp, bBpp, aBpp); |
|
|
|
} |
|
|
|
|
|
|
|
// NOTE: We will store the dithered data as unsigned short (16bpp) |
|
|
|
image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short)); |
|
|
|
|
|
|
|
Color oldpixel = WHITE; |
|
|
|
Color newpixel = WHITE; |
|
|
|
|
|
|
|
int error_r, error_g, error_b; |
|
|
|
unsigned short pixel_r, pixel_g, pixel_b, pixel_a; // Used for 16bit pixel composition |
|
|
|
|
|
|
|
#define MIN(a,b) (((a)<(b))?(a):(b)) |
|
|
|
|
|
|
|
for (int y = 0; y < image->height; y++) |
|
|
|
{ |
|
|
|
for (int x = 0; x < image->width; x++) |
|
|
|
{ |
|
|
|
oldpixel = pixels[y*image->width + x]; |
|
|
|
|
|
|
|
// TODO: New pixel obtained by bits truncate, it would be better to round values (check ImageFormat()) |
|
|
|
newpixel.r = oldpixel.r>>(8 - rBpp); // R bits |
|
|
|
newpixel.g = oldpixel.g>>(8 - gBpp); // G bits |
|
|
|
newpixel.b = oldpixel.b>>(8 - bBpp); // B bits |
|
|
|
newpixel.a = oldpixel.a>>(8 - aBpp); // A bits (not used on dithering) |
|
|
|
|
|
|
|
// NOTE: Error must be computed between new and old pixel but using same number of bits! |
|
|
|
// We want to know how much color precision we have lost... |
|
|
|
error_r = (int)oldpixel.r - (int)(newpixel.r<<(8 - rBpp)); |
|
|
|
error_g = (int)oldpixel.g - (int)(newpixel.g<<(8 - gBpp)); |
|
|
|
error_b = (int)oldpixel.b - (int)(newpixel.b<<(8 - bBpp)); |
|
|
|
|
|
|
|
pixels[y*image->width + x] = newpixel; |
|
|
|
|
|
|
|
// NOTE: Some cases are out of the array and should be ignored |
|
|
|
if (x < (image->width - 1)) |
|
|
|
{ |
|
|
|
pixels[y*image->width + x+1].r = MIN((int)pixels[y*image->width + x+1].r + (int)((float)error_r*7.0f/16), 0xff); |
|
|
|
pixels[y*image->width + x+1].g = MIN((int)pixels[y*image->width + x+1].g + (int)((float)error_g*7.0f/16), 0xff); |
|
|
|
pixels[y*image->width + x+1].b = MIN((int)pixels[y*image->width + x+1].b + (int)((float)error_b*7.0f/16), 0xff); |
|
|
|
} |
|
|
|
|
|
|
|
if ((x > 0) && (y < (image->height - 1))) |
|
|
|
{ |
|
|
|
pixels[(y+1)*image->width + x-1].r = MIN((int)pixels[(y+1)*image->width + x-1].r + (int)((float)error_r*3.0f/16), 0xff); |
|
|
|
pixels[(y+1)*image->width + x-1].g = MIN((int)pixels[(y+1)*image->width + x-1].g + (int)((float)error_g*3.0f/16), 0xff); |
|
|
|
pixels[(y+1)*image->width + x-1].b = MIN((int)pixels[(y+1)*image->width + x-1].b + (int)((float)error_b*3.0f/16), 0xff); |
|
|
|
} |
|
|
|
|
|
|
|
if (y < (image->height - 1)) |
|
|
|
{ |
|
|
|
pixels[(y+1)*image->width + x].r = MIN((int)pixels[(y+1)*image->width + x].r + (int)((float)error_r*5.0f/16), 0xff); |
|
|
|
pixels[(y+1)*image->width + x].g = MIN((int)pixels[(y+1)*image->width + x].g + (int)((float)error_g*5.0f/16), 0xff); |
|
|
|
pixels[(y+1)*image->width + x].b = MIN((int)pixels[(y+1)*image->width + x].b + (int)((float)error_b*5.0f/16), 0xff); |
|
|
|
} |
|
|
|
|
|
|
|
if ((x < (image->width - 1)) && (y < (image->height - 1))) |
|
|
|
{ |
|
|
|
pixels[(y+1)*image->width + x+1].r = MIN((int)pixels[(y+1)*image->width + x+1].r + (int)((float)error_r*1.0f/16), 0xff); |
|
|
|
pixels[(y+1)*image->width + x+1].g = MIN((int)pixels[(y+1)*image->width + x+1].g + (int)((float)error_g*1.0f/16), 0xff); |
|
|
|
pixels[(y+1)*image->width + x+1].b = MIN((int)pixels[(y+1)*image->width + x+1].b + (int)((float)error_b*1.0f/16), 0xff); |
|
|
|
} |
|
|
|
|
|
|
|
pixel_r = (unsigned short)newpixel.r; |
|
|
|
pixel_g = (unsigned short)newpixel.g; |
|
|
|
pixel_b = (unsigned short)newpixel.b; |
|
|
|
pixel_a = (unsigned short)newpixel.a; |
|
|
|
|
|
|
|
((unsigned short *)image->data)[y*image->width + x] = (pixel_r<<(gBpp + bBpp + aBpp)) | (pixel_g<<(bBpp + aBpp)) | (pixel_b<<aBpp) | pixel_a; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
free(pixels); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// Convert image to POT (power-of-two) |
|
|
|
// NOTE: Requirement on OpenGL ES 2.0 (RPI, HTML5) |
|
|
|