|
|
@ -83,11 +83,16 @@ |
|
|
|
#define RAD2DEG (180.0f/PI) |
|
|
|
#endif |
|
|
|
|
|
|
|
// Return float vector |
|
|
|
// Return float vector for Matrix |
|
|
|
#ifndef MatrixToFloat |
|
|
|
#define MatrixToFloat(mat) (MatrixToFloatV(mat).v) |
|
|
|
#endif |
|
|
|
|
|
|
|
// Return float vector for Vector3 |
|
|
|
#ifndef Vector3ToFloat |
|
|
|
#define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v) |
|
|
|
#endif |
|
|
|
|
|
|
|
//---------------------------------------------------------------------------------- |
|
|
|
// Types and Structures Definition |
|
|
|
//---------------------------------------------------------------------------------- |
|
|
@ -147,84 +152,86 @@ RMDEF float Clamp(float value, float min, float max) |
|
|
|
// Vector with components value 0.0f |
|
|
|
RMDEF Vector2 Vector2Zero(void) |
|
|
|
{ |
|
|
|
Vector2 tmp = {0.0f, 0.0f}; |
|
|
|
return tmp; |
|
|
|
Vector2 result = { 0.0f, 0.0f }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Vector with components value 1.0f |
|
|
|
RMDEF Vector2 Vector2One(void) |
|
|
|
{ |
|
|
|
Vector2 tmp = {1.0f, 1.0f}; |
|
|
|
return tmp; |
|
|
|
Vector2 result = { 1.0f, 1.0f }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Add two vectors (v1 + v2) |
|
|
|
RMDEF Vector2 Vector2Add(Vector2 v1, Vector2 v2) |
|
|
|
{ |
|
|
|
Vector2 tmp = { v1.x + v2.x, v1.y + v2.y }; |
|
|
|
return tmp; |
|
|
|
Vector2 result = { v1.x + v2.x, v1.y + v2.y }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Subtract two vectors (v1 - v2) |
|
|
|
RMDEF Vector2 Vector2Subtract(Vector2 v1, Vector2 v2) |
|
|
|
{ |
|
|
|
Vector2 tmp = { v1.x - v2.x, v1.y - v2.y }; |
|
|
|
return tmp; |
|
|
|
Vector2 result = { v1.x - v2.x, v1.y - v2.y }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate vector length |
|
|
|
RMDEF float Vector2Length(Vector2 v) |
|
|
|
{ |
|
|
|
return sqrtf((v.x*v.x) + (v.y*v.y)); |
|
|
|
float result = sqrtf((v.x*v.x) + (v.y*v.y)); |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate two vectors dot product |
|
|
|
RMDEF float Vector2DotProduct(Vector2 v1, Vector2 v2) |
|
|
|
{ |
|
|
|
return (v1.x*v2.x + v1.y*v2.y); |
|
|
|
float result = (v1.x*v2.x + v1.y*v2.y); |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate distance between two vectors |
|
|
|
RMDEF float Vector2Distance(Vector2 v1, Vector2 v2) |
|
|
|
{ |
|
|
|
return sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y)); |
|
|
|
float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y)); |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate angle from two vectors in X-axis |
|
|
|
RMDEF float Vector2Angle(Vector2 v1, Vector2 v2) |
|
|
|
{ |
|
|
|
float angle = atan2f(v2.y - v1.y, v2.x - v1.x)*(180.0f/PI); |
|
|
|
|
|
|
|
if (angle < 0) angle += 360.0f; |
|
|
|
|
|
|
|
return angle; |
|
|
|
float result = atan2f(v2.y - v1.y, v2.x - v1.x)*(180.0f/PI); |
|
|
|
if (result < 0) result += 360.0f; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Scale vector (multiply by value) |
|
|
|
RMDEF kt">void Vector2Scale(Vector2 *v, float scale) |
|
|
|
RMDEF n">Vector2 Vector2Scale(Vector2 v, float scale) |
|
|
|
{ |
|
|
|
v->x *= scale; |
|
|
|
n">v->y *= scale; |
|
|
|
Vector2 result = { v.x*scale, v.y*scale }; |
|
|
|
k">return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Negate vector |
|
|
|
RMDEF kt">void Vector2Negate(Vector2 *v) |
|
|
|
RMDEF n">Vector2 Vector2Negate(Vector2 v) |
|
|
|
{ |
|
|
|
v->x = -v->x; |
|
|
|
n">v->y = -v->y; |
|
|
|
Vector2 result = { -v.x, -v.y }; |
|
|
|
k">return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Divide vector by a float value |
|
|
|
RMDEF kt">void Vector2Divide(Vector2 *v, float div) |
|
|
|
RMDEF n">Vector2 Vector2Divide(Vector2 v, float div) |
|
|
|
{ |
|
|
|
Vector2 tmp = {v->x/div, vo">->y/div}; |
|
|
|
o">*v = tmp; |
|
|
|
Vector2 result = { v.x/div, vp">.y/div }; |
|
|
|
k">return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Normalize provided vector |
|
|
|
RMDEF kt">void Vector2Normalize(Vector2 *v) |
|
|
|
RMDEF n">Vector2 Vector2Normalize(Vector2 v) |
|
|
|
{ |
|
|
|
Vector2Divide(v, Vector2Length(*v)); |
|
|
|
Vector2 result = Vector2Divide(v, Vector2Length(v)); |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
//---------------------------------------------------------------------------------- |
|
|
@ -234,69 +241,56 @@ RMDEF void Vector2Normalize(Vector2 *v) |
|
|
|
// Vector with components value 0.0f |
|
|
|
RMDEF Vector3 Vector3Zero(void) |
|
|
|
{ |
|
|
|
Vector3 tmp = { 0.0f, 0.0f, 0.0f }; |
|
|
|
return tmp; |
|
|
|
Vector3 result = { 0.0f, 0.0f, 0.0f }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Vector with components value 1.0f |
|
|
|
RMDEF Vector3 Vector3One(void) |
|
|
|
{ |
|
|
|
Vector3 tmp = { 1.0f, 1.0f, 1.0f }; |
|
|
|
return tmp; |
|
|
|
Vector3 result = { 1.0f, 1.0f, 1.0f }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Add two vectors |
|
|
|
RMDEF Vector3 Vector3Add(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
Vector3 tmp = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z }; |
|
|
|
return tmp; |
|
|
|
Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Substract two vectors |
|
|
|
RMDEF Vector3 Vector3Subtract(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
Vector3 tmp = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z }; |
|
|
|
return tmp; |
|
|
|
Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Multiply vector by scalar |
|
|
|
RMDEF Vector3 Vector3Multiply(Vector3 v, float scalar) |
|
|
|
{ |
|
|
|
v.x *= scalar; |
|
|
|
v.y *= scalar; |
|
|
|
v.z *= scalar; |
|
|
|
|
|
|
|
return v; |
|
|
|
{ |
|
|
|
Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Multiply vector by vector |
|
|
|
RMDEF Vector3 Vector3MultiplyV(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
Vector3 result; |
|
|
|
|
|
|
|
result.x = v1.x * v2.x; |
|
|
|
result.y = v1.y * v2.y; |
|
|
|
result.z = v1.z * v2.z; |
|
|
|
|
|
|
|
Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate two vectors cross product |
|
|
|
RMDEF Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
Vector3 result; |
|
|
|
|
|
|
|
result.x = v1.y*v2.z - v1.z*v2.y; |
|
|
|
result.y = v1.z*v2.x - v1.x*v2.z; |
|
|
|
result.z = v1.x*v2.y - v1.y*v2.x; |
|
|
|
|
|
|
|
Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate one vector perpendicular vector |
|
|
|
RMDEF Vector3 Vector3Perpendicular(Vector3 v) |
|
|
|
{ |
|
|
|
Vector3 result; |
|
|
|
Vector3 result = { 0 }; |
|
|
|
|
|
|
|
float min = fabsf(v.x); |
|
|
|
Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f}; |
|
|
@ -322,13 +316,15 @@ RMDEF Vector3 Vector3Perpendicular(Vector3 v) |
|
|
|
// Calculate vector length |
|
|
|
RMDEF float Vector3Length(const Vector3 v) |
|
|
|
{ |
|
|
|
return sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
|
|
|
float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate two vectors dot product |
|
|
|
RMDEF float Vector3DotProduct(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
return (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); |
|
|
|
float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate distance between two vectors |
|
|
@ -337,58 +333,60 @@ RMDEF float Vector3Distance(Vector3 v1, Vector3 v2) |
|
|
|
float dx = v2.x - v1.x; |
|
|
|
float dy = v2.y - v1.y; |
|
|
|
float dz = v2.z - v1.z; |
|
|
|
|
|
|
|
return f">sqrtf(dx*dx + dy*dy + dz*dz); |
|
|
|
float result = sqrtf(dx*dx + dy*dy + dz*dz); |
|
|
|
return ">result; |
|
|
|
} |
|
|
|
|
|
|
|
// Scale provided vector |
|
|
|
RMDEF kt">void Vector3Scale(Vector3 *v, float scale) |
|
|
|
RMDEF n">Vector3 Vector3Scale(Vector3 v, float scale) |
|
|
|
{ |
|
|
|
v->x *= scale; |
|
|
|
v->y *= scale; |
|
|
|
v->z *= scale; |
|
|
|
Vector3 result = { v.x*scale, v.y*scale, v.z*scale }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Negate provided vector (invert direction) |
|
|
|
RMDEF kt">void Vector3Negate(Vector3 *v) |
|
|
|
RMDEF n">Vector3 Vector3Negate(Vector3 v) |
|
|
|
{ |
|
|
|
v->x = -v->x; |
|
|
|
v->y = -v->y; |
|
|
|
v->z = -v->z; |
|
|
|
Vector3 result = { -v.x, -v.y, -v.z }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Normalize provided vector |
|
|
|
RMDEF kt">void Vector3Normalize(Vector3 *v) |
|
|
|
RMDEF n">Vector3 Vector3Normalize(Vector3 v) |
|
|
|
{ |
|
|
|
Vector3 result = v; |
|
|
|
|
|
|
|
float length, ilength; |
|
|
|
|
|
|
|
length = Vector3Length(*v); |
|
|
|
|
|
|
|
length = Vector3Length(v); |
|
|
|
if (length == 0.0f) length = 1.0f; |
|
|
|
|
|
|
|
ilength = 1.0f/length; |
|
|
|
|
|
|
|
v->x *= ilength; |
|
|
|
v->y *= ilength; |
|
|
|
v->z *= ilength; |
|
|
|
result.x *= ilength; |
|
|
|
result.y *= ilength; |
|
|
|
result.z *= ilength; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Transforms a Vector3 by a given Matrix |
|
|
|
RMDEF kt">void Vector3Transform(Vector3 *v, Matrix mat) |
|
|
|
RMDEF n">Vector3 Vector3Transform(Vector3 v, Matrix mat) |
|
|
|
{ |
|
|
|
float x = v->x; |
|
|
|
float y = v->y; |
|
|
|
float z = v->z; |
|
|
|
Vector3 result = { 0 }; |
|
|
|
float x = v.x; |
|
|
|
float y = v.y; |
|
|
|
float z = v.z; |
|
|
|
|
|
|
|
v->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12; |
|
|
|
v->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13; |
|
|
|
v->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14; |
|
|
|
result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12; |
|
|
|
result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13; |
|
|
|
result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14; |
|
|
|
|
|
|
|
return result; |
|
|
|
}; |
|
|
|
|
|
|
|
// Calculate linear interpolation between two vectors |
|
|
|
RMDEF Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount) |
|
|
|
{ |
|
|
|
Vector3 result; |
|
|
|
Vector3 result = { 0 }; |
|
|
|
|
|
|
|
result.x = v1.x + amount*(v2.x - v1.x); |
|
|
|
result.y = v1.y + amount*(v2.y - v1.y); |
|
|
@ -398,43 +396,43 @@ RMDEF Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount) |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate reflected vector to normal |
|
|
|
RMDEF Vector3 Vector3Reflect(Vector3 vector, Vector3 normal) |
|
|
|
RMDEF Vector3 Vector3Reflect(Vector3 v, Vector3 normal) |
|
|
|
{ |
|
|
|
// I is the original vector |
|
|
|
// N is the normal of the incident plane |
|
|
|
// R = I - (2*N*( DotProduct[ I,N] )) |
|
|
|
|
|
|
|
Vector3 result; |
|
|
|
Vector3 result = { 0 }; |
|
|
|
|
|
|
|
float dotProduct = Vector3DotProduct(vector, normal); |
|
|
|
float dotProduct = Vector3DotProduct(v, normal); |
|
|
|
|
|
|
|
result.x = vector.x - (2.0f*normal.x)*dotProduct; |
|
|
|
result.y = vector.y - (2.0f*normal.y)*dotProduct; |
|
|
|
result.z = vector.z - (2.0f*normal.z)*dotProduct; |
|
|
|
result.x = v.x - (2.0f*normal.x)*dotProduct; |
|
|
|
result.y = v.y - (2.0f*normal.y)*dotProduct; |
|
|
|
result.z = v.z - (2.0f*normal.z)*dotProduct; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Return min value for each pair of components |
|
|
|
RMDEF Vector3 Vector3Min(Vector3 vec1, Vector3 vec2) |
|
|
|
RMDEF Vector3 Vector3Min(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
Vector3 result; |
|
|
|
Vector3 result = { 0 }; |
|
|
|
|
|
|
|
result.x = fminf(vec1.x, vec2.x); |
|
|
|
result.y = fminf(vec1.y, vec2.y); |
|
|
|
result.z = fminf(vec1.z, vec2.z); |
|
|
|
result.x = fminf(v1.x, v2.x); |
|
|
|
result.y = fminf(v1.y, v2.y); |
|
|
|
result.z = fminf(v1.z, v2.z); |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Return max value for each pair of components |
|
|
|
RMDEF Vector3 Vector3Max(Vector3 vec1, Vector3 vec2) |
|
|
|
RMDEF Vector3 Vector3Max(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
Vector3 result; |
|
|
|
Vector3 result = { 0 }; |
|
|
|
|
|
|
|
result.x = fmaxf(vec1.x, vec2.x); |
|
|
|
result.y = fmaxf(vec1.y, vec2.y); |
|
|
|
result.z = fmaxf(vec1.z, vec2.z); |
|
|
|
result.x = fmaxf(v1.x, v2.x); |
|
|
|
result.y = fmaxf(v1.y, v2.y); |
|
|
|
result.z = fmaxf(v1.z, v2.z); |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
@ -456,7 +454,7 @@ RMDEF Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c) |
|
|
|
|
|
|
|
float denom = d00*d11 - d01*d01; |
|
|
|
|
|
|
|
Vector3 result; |
|
|
|
Vector3 result = { 0 }; |
|
|
|
|
|
|
|
result.y = (d11*d20 - d01*d21)/denom; |
|
|
|
result.z = (d00*d21 - d01*d20)/denom; |
|
|
@ -466,19 +464,16 @@ RMDEF Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c) |
|
|
|
} |
|
|
|
|
|
|
|
// Returns Vector3 as float array |
|
|
|
RMDEF float3 Vector3ToFloat_(Vector3 vec) |
|
|
|
RMDEF float3 Vector3ToFloatV(Vector3 v) |
|
|
|
{ |
|
|
|
float3 buffer; |
|
|
|
float3 buffer = { 0 }; |
|
|
|
|
|
|
|
buffer.v[0] = vec.x; |
|
|
|
buffer.v[1] = vec.y; |
|
|
|
buffer.v[2] = vec.z; |
|
|
|
buffer.v[0] = v.x; |
|
|
|
buffer.v[1] = v.y; |
|
|
|
buffer.v[2] = v.z; |
|
|
|
|
|
|
|
return buffer; |
|
|
|
} |
|
|
|
#ifndef Vector3ToFloat |
|
|
|
#define Vector3ToFloat(vec) (Vector3ToFloat_(vec).v) |
|
|
|
#endif |
|
|
|
|
|
|
|
//---------------------------------------------------------------------------------- |
|
|
|
// Module Functions Definition - Matrix math |
|
|
@ -487,7 +482,7 @@ RMDEF float3 Vector3ToFloat_(Vector3 vec) |
|
|
|
// Compute matrix determinant |
|
|
|
RMDEF float MatrixDeterminant(Matrix mat) |
|
|
|
{ |
|
|
|
float result; |
|
|
|
float result = { 0 }; |
|
|
|
|
|
|
|
// Cache the matrix values (speed optimization) |
|
|
|
float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; |
|
|
@ -508,44 +503,45 @@ RMDEF float MatrixDeterminant(Matrix mat) |
|
|
|
// Returns the trace of the matrix (sum of the values along the diagonal) |
|
|
|
RMDEF float MatrixTrace(Matrix mat) |
|
|
|
{ |
|
|
|
return (mat.m0 + mat.m5 + mat.m10 + mat.m15); |
|
|
|
float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15); |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Transposes provided matrix |
|
|
|
RMDEF kt">void MatrixTranspose(Matrix *mat) |
|
|
|
{ |
|
|
|
Matrix temp; |
|
|
|
|
|
|
|
temp.m0 = mato">->m0; |
|
|
|
temp.m1 = mato">->m4; |
|
|
|
temp.m2 = mato">->m8; |
|
|
|
temp.m3 = mato">->m12; |
|
|
|
temp.m4 = mato">->m1; |
|
|
|
temp.m5 = mato">->m5; |
|
|
|
temp.m6 = mato">->m9; |
|
|
|
temp.m7 = mato">->m13; |
|
|
|
temp.m8 = mato">->m2; |
|
|
|
temp.m9 = mato">->m6; |
|
|
|
temp.m10 = mato">->m10; |
|
|
|
temp.m11 = mato">->m14; |
|
|
|
temp.m12 = mato">->m3; |
|
|
|
temp.m13 = mato">->m7; |
|
|
|
temp.m14 = mato">->m11; |
|
|
|
temp.m15 = mato">->m15; |
|
|
|
|
|
|
|
o">*mat = temp; |
|
|
|
RMDEF n">Matrix MatrixTranspose(Matrix mat) |
|
|
|
{ |
|
|
|
Matrix result = { 0 }; |
|
|
|
|
|
|
|
result.m0 = matp">.m0; |
|
|
|
result.m1 = matp">.m4; |
|
|
|
result.m2 = matp">.m8; |
|
|
|
result.m3 = matp">.m12; |
|
|
|
result.m4 = matp">.m1; |
|
|
|
result.m5 = matp">.m5; |
|
|
|
result.m6 = matp">.m9; |
|
|
|
result.m7 = matp">.m13; |
|
|
|
result.m8 = matp">.m2; |
|
|
|
result.m9 = matp">.m6; |
|
|
|
result.m10 = matp">.m10; |
|
|
|
result.m11 = matp">.m14; |
|
|
|
result.m12 = matp">.m3; |
|
|
|
result.m13 = matp">.m7; |
|
|
|
result.m14 = matp">.m11; |
|
|
|
result.m15 = matp">.m15; |
|
|
|
|
|
|
|
k">return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Invert provided matrix |
|
|
|
RMDEF kt">void MatrixInvert(Matrix *mat) |
|
|
|
RMDEF n">Matrix MatrixInvert(Matrix mat) |
|
|
|
{ |
|
|
|
Matrix temp; |
|
|
|
Matrix result = { 0 }; |
|
|
|
|
|
|
|
// Cache the matrix values (speed optimization) |
|
|
|
float a00 = mato">->m0, a01 = mato">->m1, a02 = mato">->m2, a03 = mato">->m3; |
|
|
|
float a10 = mato">->m4, a11 = mato">->m5, a12 = mato">->m6, a13 = mato">->m7; |
|
|
|
float a20 = mato">->m8, a21 = mato">->m9, a22 = mato">->m10, a23 = mato">->m11; |
|
|
|
float a30 = mato">->m12, a31 = mato">->m13, a32 = mato">->m14, a33 = mato">->m15; |
|
|
|
float a00 = matp">.m0, a01 = matp">.m1, a02 = matp">.m2, a03 = matp">.m3; |
|
|
|
float a10 = matp">.m4, a11 = matp">.m5, a12 = matp">.m6, a13 = matp">.m7; |
|
|
|
float a20 = matp">.m8, a21 = matp">.m9, a22 = matp">.m10, a23 = matp">.m11; |
|
|
|
float a30 = matp">.m12, a31 = matp">.m13, a32 = matp">.m14, a33 = matp">.m15; |
|
|
|
|
|
|
|
float b00 = a00*a11 - a01*a10; |
|
|
|
float b01 = a00*a12 - a02*a10; |
|
|
@ -563,47 +559,51 @@ RMDEF void MatrixInvert(Matrix *mat) |
|
|
|
// Calculate the invert determinant (inlined to avoid double-caching) |
|
|
|
float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06); |
|
|
|
|
|
|
|
temp.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet; |
|
|
|
temp.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet; |
|
|
|
temp.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet; |
|
|
|
temp.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet; |
|
|
|
temp.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet; |
|
|
|
temp.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet; |
|
|
|
temp.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet; |
|
|
|
temp.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet; |
|
|
|
temp.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet; |
|
|
|
temp.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet; |
|
|
|
temp.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet; |
|
|
|
temp.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet; |
|
|
|
temp.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet; |
|
|
|
temp.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet; |
|
|
|
temp.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet; |
|
|
|
temp.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet; |
|
|
|
|
|
|
|
o">*mat = temp; |
|
|
|
result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet; |
|
|
|
result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet; |
|
|
|
result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet; |
|
|
|
result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet; |
|
|
|
result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet; |
|
|
|
result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet; |
|
|
|
result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet; |
|
|
|
result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet; |
|
|
|
result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet; |
|
|
|
result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet; |
|
|
|
result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet; |
|
|
|
result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet; |
|
|
|
result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet; |
|
|
|
result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet; |
|
|
|
result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet; |
|
|
|
result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet; |
|
|
|
|
|
|
|
k">return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Normalize provided matrix |
|
|
|
RMDEF void MatrixNormalize(Matrix *mat) |
|
|
|
{ |
|
|
|
float det = MatrixDeterminant(*mat); |
|
|
|
|
|
|
|
mat->m0 /= det; |
|
|
|
mat->m1 /= det; |
|
|
|
mat->m2 /= det; |
|
|
|
mat->m3 /= det; |
|
|
|
mat->m4 /= det; |
|
|
|
mat->m5 /= det; |
|
|
|
mat->m6 /= det; |
|
|
|
mat->m7 /= det; |
|
|
|
mat->m8 /= det; |
|
|
|
mat->m9 /= det; |
|
|
|
mat->m10 /= det; |
|
|
|
mat->m11 /= det; |
|
|
|
mat->m12 /= det; |
|
|
|
mat->m13 /= det; |
|
|
|
mat->m14 /= det; |
|
|
|
mat->m15 /= det; |
|
|
|
RMDEF Matrix MatrixNormalize(Matrix mat) |
|
|
|
{ |
|
|
|
Matrix result = { 0 }; |
|
|
|
|
|
|
|
float det = MatrixDeterminant(mat); |
|
|
|
|
|
|
|
result.m0 = mat.m0/det; |
|
|
|
result.m1 = mat.m1/det; |
|
|
|
result.m2 = mat.m2/det; |
|
|
|
result.m3 = mat.m3/det; |
|
|
|
result.m4 = mat.m4/det; |
|
|
|
result.m5 = mat.m5/det; |
|
|
|
result.m6 = mat.m6/det; |
|
|
|
result.m7 = mat.m7/det; |
|
|
|
result.m8 = mat.m8/det; |
|
|
|
result.m9 = mat.m9/det; |
|
|
|
result.m10 = mat.m10/det; |
|
|
|
result.m11 = mat.m11/det; |
|
|
|
result.m12 = mat.m12/det; |
|
|
|
result.m13 = mat.m13/det; |
|
|
|
result.m14 = mat.m14/det; |
|
|
|
result.m15 = mat.m15/det; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns identity matrix |
|
|
@ -682,7 +682,7 @@ RMDEF Matrix MatrixTranslate(float x, float y, float z) |
|
|
|
// NOTE: Angle should be provided in radians |
|
|
|
RMDEF Matrix MatrixRotate(Vector3 axis, float angle) |
|
|
|
{ |
|
|
|
Matrix result; |
|
|
|
Matrix result = { 0 }; |
|
|
|
|
|
|
|
float x = axis.x, y = axis.y, z = axis.z; |
|
|
|
|
|
|
@ -786,7 +786,7 @@ RMDEF Matrix MatrixScale(float x, float y, float z) |
|
|
|
// NOTE: When multiplying matrices... the order matters! |
|
|
|
RMDEF Matrix MatrixMultiply(Matrix left, Matrix right) |
|
|
|
{ |
|
|
|
Matrix result; |
|
|
|
Matrix result = { 0 }; |
|
|
|
|
|
|
|
result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12; |
|
|
|
result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13; |
|
|
@ -811,7 +811,7 @@ RMDEF Matrix MatrixMultiply(Matrix left, Matrix right) |
|
|
|
// Returns perspective projection matrix |
|
|
|
RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far) |
|
|
|
{ |
|
|
|
Matrix result; |
|
|
|
Matrix result = { 0 }; |
|
|
|
|
|
|
|
float rl = (right - left); |
|
|
|
float tb = (top - bottom); |
|
|
@ -846,14 +846,15 @@ RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double f |
|
|
|
{ |
|
|
|
double top = near*tan(fovy*0.5); |
|
|
|
double right = top*aspect; |
|
|
|
Matrix result = MatrixFrustum(-right, right, -top, top, near, far); |
|
|
|
|
|
|
|
return f">MatrixFrustum(-right, right, -top, top, near, far); |
|
|
|
return ">result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns orthographic projection matrix |
|
|
|
RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far) |
|
|
|
{ |
|
|
|
Matrix result; |
|
|
|
Matrix result = { 0 }; |
|
|
|
|
|
|
|
float rl = (right - left); |
|
|
|
float tb = (top - bottom); |
|
|
@ -882,14 +883,14 @@ RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, d |
|
|
|
// Returns camera look-at matrix (view matrix) |
|
|
|
RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) |
|
|
|
{ |
|
|
|
Matrix result; |
|
|
|
Matrix result = { 0 }; |
|
|
|
|
|
|
|
Vector3 z = Vector3Subtract(eye, target); |
|
|
|
Vector3Normalize(&z); |
|
|
|
z = Vector3Normalize(z); |
|
|
|
Vector3 x = Vector3CrossProduct(up, z); |
|
|
|
Vector3Normalize(&x); |
|
|
|
x = Vector3Normalize(x); |
|
|
|
Vector3 y = Vector3CrossProduct(z, x); |
|
|
|
Vector3Normalize(&y); |
|
|
|
y = Vector3Normalize(y); |
|
|
|
|
|
|
|
result.m0 = x.x; |
|
|
|
result.m1 = x.y; |
|
|
@ -908,7 +909,7 @@ RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) |
|
|
|
result.m14 = eye.z; |
|
|
|
result.m15 = 1.0f; |
|
|
|
|
|
|
|
MatrixInvert(&result); |
|
|
|
result = MatrixInvert(result); |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
@ -916,7 +917,7 @@ RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) |
|
|
|
// Returns float array of matrix data |
|
|
|
RMDEF float16 MatrixToFloatV(Matrix mat) |
|
|
|
{ |
|
|
|
float16 buffer; |
|
|
|
float16 buffer = { 0 }; |
|
|
|
|
|
|
|
buffer.v[0] = mat.m0; |
|
|
|
buffer.v[1] = mat.m1; |
|
|
@ -945,54 +946,59 @@ RMDEF float16 MatrixToFloatV(Matrix mat) |
|
|
|
// Returns identity quaternion |
|
|
|
RMDEF Quaternion QuaternionIdentity(void) |
|
|
|
{ |
|
|
|
Quaternion q = { 0.0f, 0.0f, 0.0f, 1.0f }; |
|
|
|
return q; |
|
|
|
Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Computes the length of a quaternion |
|
|
|
RMDEF float QuaternionLength(Quaternion quat) |
|
|
|
RMDEF float QuaternionLength(Quaternion q) |
|
|
|
{ |
|
|
|
return sqrt(quat.x*quat.x + quat.y*quat.y + quat.z*quat.z + quat.w*quat.w); |
|
|
|
float result = sqrt(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Normalize provided quaternion |
|
|
|
RMDEF kt">void QuaternionNormalize(Quaternion *q) |
|
|
|
RMDEF n">Quaternion QuaternionNormalize(Quaternion q) |
|
|
|
{ |
|
|
|
Quaternion result = { 0 }; |
|
|
|
|
|
|
|
float length, ilength; |
|
|
|
|
|
|
|
length = QuaternionLength(*q); |
|
|
|
|
|
|
|
length = QuaternionLength(q); |
|
|
|
if (length == 0.0f) length = 1.0f; |
|
|
|
|
|
|
|
ilength = 1.0f/length; |
|
|
|
|
|
|
|
q->x *= ilength; |
|
|
|
q->y *= ilength; |
|
|
|
q->z *= ilength; |
|
|
|
q->w *= ilength; |
|
|
|
result.x = q.x*ilength; |
|
|
|
result.y = q.y*ilength; |
|
|
|
result.z = q.z*ilength; |
|
|
|
result.w = q.w*ilength; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Invert provided quaternion |
|
|
|
RMDEF kt">void QuaternionInvert(Quaternion o">*quat) |
|
|
|
RMDEF n">Quaternion QuaternionInvert(Quaternion q) |
|
|
|
{ |
|
|
|
float length = QuaternionLength(*quat); |
|
|
|
Quaternion result = q; |
|
|
|
float length = QuaternionLength(q); |
|
|
|
float lengthSq = length*length; |
|
|
|
|
|
|
|
if (lengthSq != 0.0) |
|
|
|
{ |
|
|
|
float i = 1.0f/lengthSq; |
|
|
|
|
|
|
|
quat->x *= -i; |
|
|
|
quat->y *= -i; |
|
|
|
quat->z *= -i; |
|
|
|
quat->w *= i; |
|
|
|
result.x *= -i; |
|
|
|
result.y *= -i; |
|
|
|
result.z *= -i; |
|
|
|
result.w *= i; |
|
|
|
} |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate two quaternion multiplication |
|
|
|
RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2) |
|
|
|
{ |
|
|
|
Quaternion result; |
|
|
|
Quaternion result = { 0 }; |
|
|
|
|
|
|
|
float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w; |
|
|
|
float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w; |
|
|
@ -1008,7 +1014,7 @@ RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2) |
|
|
|
// Calculate linear interpolation between two quaternions |
|
|
|
RMDEF Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount) |
|
|
|
{ |
|
|
|
Quaternion result; |
|
|
|
Quaternion result = { 0 }; |
|
|
|
|
|
|
|
result.x = q1.x + amount*(q2.x - q1.x); |
|
|
|
result.y = q1.y + amount*(q2.y - q1.y); |
|
|
@ -1022,7 +1028,7 @@ RMDEF Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount) |
|
|
|
RMDEF Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount) |
|
|
|
{ |
|
|
|
Quaternion result = QuaternionLerp(q1, q2, amount); |
|
|
|
QuaternionNormalize(&result); |
|
|
|
result = QuaternionNormalize(result); |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
@ -1030,7 +1036,7 @@ RMDEF Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount) |
|
|
|
// Calculates spherical linear interpolation between two quaternions |
|
|
|
RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount) |
|
|
|
{ |
|
|
|
Quaternion result; |
|
|
|
Quaternion result = { 0 }; |
|
|
|
|
|
|
|
float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w; |
|
|
|
|
|
|
@ -1066,31 +1072,31 @@ RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount) |
|
|
|
// Calculate quaternion based on the rotation from one vector to another |
|
|
|
RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to) |
|
|
|
{ |
|
|
|
Quaternion q = { 0 }; |
|
|
|
Quaternion result = { 0 }; |
|
|
|
|
|
|
|
float cos2Theta = Vector3DotProduct(from, to); |
|
|
|
Vector3 cross = Vector3CrossProduct(from, to); |
|
|
|
|
|
|
|
q.x = cross.x; |
|
|
|
q.y = cross.y; |
|
|
|
q.z = cross.y; |
|
|
|
q.w = 1.0f + cos2Theta; // NOTE: Added QuaternioIdentity() |
|
|
|
result.x = cross.x; |
|
|
|
result.y = cross.y; |
|
|
|
result.z = cross.y; |
|
|
|
result.w = 1.0f + cos2Theta; // NOTE: Added QuaternioIdentity() |
|
|
|
|
|
|
|
// Normalize to essentially nlerp the original and identity to 0.5 |
|
|
|
QuaternionNormalize(&q); |
|
|
|
result = QuaternionNormalize(result); |
|
|
|
|
|
|
|
// Above lines are equivalent to: |
|
|
|
//Quaternion result = QuaternionNlerp(q, QuaternionIdentity(), 0.5f); |
|
|
|
|
|
|
|
return q; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns a quaternion for a given rotation matrix |
|
|
|
RMDEF Quaternion QuaternionFromMatrix(Matrix matrix) |
|
|
|
RMDEF Quaternion QuaternionFromMatrix(Matrix mat) |
|
|
|
{ |
|
|
|
Quaternion result; |
|
|
|
Quaternion result = { 0 }; |
|
|
|
|
|
|
|
float trace = MatrixTrace(matrix); |
|
|
|
float trace = MatrixTrace(mat); |
|
|
|
|
|
|
|
if (trace > 0.0f) |
|
|
|
{ |
|
|
@ -1098,42 +1104,42 @@ RMDEF Quaternion QuaternionFromMatrix(Matrix matrix) |
|
|
|
float invS = 1.0f/s; |
|
|
|
|
|
|
|
result.w = s*0.25f; |
|
|
|
result.x = (matrix.m6 - matrix.m9)*invS; |
|
|
|
result.y = (matrix.m8 - matrix.m2)*invS; |
|
|
|
result.z = (matrix.m1 - matrix.m4)*invS; |
|
|
|
result.x = (mat.m6 - mat.m9)*invS; |
|
|
|
result.y = (mat.m8 - mat.m2)*invS; |
|
|
|
result.z = (mat.m1 - mat.m4)*invS; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
float m00 = matrix.m0, m11 = matrix.m5, m22 = matrix.m10; |
|
|
|
float m00 = mat.m0, m11 = mat.m5, m22 = mat.m10; |
|
|
|
|
|
|
|
if (m00 > m11 && m00 > m22) |
|
|
|
{ |
|
|
|
float s = (float)sqrt(1.0f + m00 - m11 - m22)*2.0f; |
|
|
|
float invS = 1.0f/s; |
|
|
|
|
|
|
|
result.w = (matrix.m6 - matrix.m9)*invS; |
|
|
|
result.w = (mat.m6 - mat.m9)*invS; |
|
|
|
result.x = s*0.25f; |
|
|
|
result.y = (matrix.m4 + matrix.m1)*invS; |
|
|
|
result.z = (matrix.m8 + matrix.m2)*invS; |
|
|
|
result.y = (mat.m4 + mat.m1)*invS; |
|
|
|
result.z = (mat.m8 + mat.m2)*invS; |
|
|
|
} |
|
|
|
else if (m11 > m22) |
|
|
|
{ |
|
|
|
float s = (float)sqrt(1.0f + m11 - m00 - m22)*2.0f; |
|
|
|
float invS = 1.0f/s; |
|
|
|
|
|
|
|
result.w = (matrix.m8 - matrix.m2)*invS; |
|
|
|
result.x = (matrix.m4 + matrix.m1)*invS; |
|
|
|
result.w = (mat.m8 - mat.m2)*invS; |
|
|
|
result.x = (mat.m4 + mat.m1)*invS; |
|
|
|
result.y = s*0.25f; |
|
|
|
result.z = (matrix.m9 + matrix.m6)*invS; |
|
|
|
result.z = (mat.m9 + mat.m6)*invS; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
float s = (float)sqrt(1.0f + m22 - m00 - m11)*2.0f; |
|
|
|
float invS = 1.0f/s; |
|
|
|
|
|
|
|
result.w = (matrix.m1 - matrix.m4)*invS; |
|
|
|
result.x = (matrix.m8 + matrix.m2)*invS; |
|
|
|
result.y = (matrix.m9 + matrix.m6)*invS; |
|
|
|
result.w = (mat.m1 - mat.m4)*invS; |
|
|
|
result.x = (mat.m8 + mat.m2)*invS; |
|
|
|
result.y = (mat.m9 + mat.m6)*invS; |
|
|
|
result.z = s*0.25f; |
|
|
|
} |
|
|
|
} |
|
|
@ -1144,7 +1150,7 @@ RMDEF Quaternion QuaternionFromMatrix(Matrix matrix) |
|
|
|
// Returns a matrix for a given quaternion |
|
|
|
RMDEF Matrix QuaternionToMatrix(Quaternion q) |
|
|
|
{ |
|
|
|
Matrix result; |
|
|
|
Matrix result = { 0 }; |
|
|
|
|
|
|
|
float x = q.x, y = q.y, z = q.z, w = q.w; |
|
|
|
|
|
|
@ -1197,7 +1203,7 @@ RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle) |
|
|
|
|
|
|
|
angle *= 0.5f; |
|
|
|
|
|
|
|
Vector3Normalize(&axis); |
|
|
|
axis = Vector3Normalize(axis); |
|
|
|
|
|
|
|
float sinres = sinf(angle); |
|
|
|
float cosres = cosf(angle); |
|
|
@ -1207,7 +1213,7 @@ RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle) |
|
|
|
result.z = axis.z*sinres; |
|
|
|
result.w = cosres; |
|
|
|
|
|
|
|
QuaternionNormalize(&result); |
|
|
|
result = QuaternionNormalize(result); |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
@ -1215,7 +1221,7 @@ RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle) |
|
|
|
// Returns the rotation angle and axis for a given quaternion |
|
|
|
RMDEF void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle) |
|
|
|
{ |
|
|
|
if (fabs(q.w) > 1.0f) QuaternionNormalize(&q); |
|
|
|
if (fabs(q.w) > 1.0f) q = QuaternionNormalize(q); |
|
|
|
|
|
|
|
Vector3 resAxis = { 0.0f, 0.0f, 0.0f }; |
|
|
|
float resAngle = 0.0f; |
|
|
@ -1264,39 +1270,38 @@ RMDEF Quaternion QuaternionFromEuler(float roll, float pitch, float yaw) |
|
|
|
// NOTE: Angles are returned in a Vector3 struct in degrees |
|
|
|
RMDEF Vector3 QuaternionToEuler(Quaternion q) |
|
|
|
{ |
|
|
|
Vector3 v = { 0 }; |
|
|
|
Vector3 result = { 0 }; |
|
|
|
|
|
|
|
// roll (x-axis rotation) |
|
|
|
float x0 = 2.0f*(q.w*q.x + q.y*q.z); |
|
|
|
float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y); |
|
|
|
v.x = atan2f(x0, x1)*RAD2DEG; |
|
|
|
result.x = atan2f(x0, x1)*RAD2DEG; |
|
|
|
|
|
|
|
// pitch (y-axis rotation) |
|
|
|
float y0 = 2.0f*(q.w*q.y - q.z*q.x); |
|
|
|
y0 = y0 > 1.0f ? 1.0f : y0; |
|
|
|
y0 = y0 < -1.0f ? -1.0f : y0; |
|
|
|
v.y = asinf(y0)*RAD2DEG; |
|
|
|
result.y = asinf(y0)*RAD2DEG; |
|
|
|
|
|
|
|
// yaw (z-axis rotation) |
|
|
|
float z0 = 2.0f*(q.w*q.z + q.x*q.y); |
|
|
|
float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z); |
|
|
|
v.z = atan2f(z0, z1)*RAD2DEG; |
|
|
|
result.z = atan2f(z0, z1)*RAD2DEG; |
|
|
|
|
|
|
|
return v; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Transform a quaternion given a transformation matrix |
|
|
|
RMDEF kt">void QuaternionTransform(Quaternion *q, Matrix mat) |
|
|
|
RMDEF n">Quaternion QuaternionTransform(Quaternion q, Matrix mat) |
|
|
|
{ |
|
|
|
float x = q->x; |
|
|
|
float y = q->y; |
|
|
|
float z = q->z; |
|
|
|
float w = q->w; |
|
|
|
Quaternion result = { 0 }; |
|
|
|
|
|
|
|
q->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12*w; |
|
|
|
q->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13*w; |
|
|
|
q->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14*w; |
|
|
|
q->w = mat.m3*x + mat.m7*y + mat.m11*z + mat.m15*w; |
|
|
|
result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w; |
|
|
|
result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w; |
|
|
|
result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w; |
|
|
|
result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
#endif // RAYMATH_H |