浏览代码

Reviewed shader formating

pull/4681/head
Ray 1周前
父节点
当前提交
62d8969a56
共有 2 个文件被更改,包括 95 次插入89 次删除
  1. +86
    -79
      examples/shaders/resources/shaders/glsl100/pbr.fs
  2. +9
    -10
      examples/shaders/resources/shaders/glsl100/pbr.vs

+ 86
- 79
examples/shaders/resources/shaders/glsl100/pbr.fs 查看文件

@ -59,97 +59,104 @@ uniform float ambient;
// incrase reflectivity when surface view at larger angle
vec3 schlickFresnel(float hDotV,vec3 refl)
{
return refl + (1.0 - refl) * pow(1.0 - hDotV,5.0);
return refl + (1.0 - refl)*pow(1.0 - hDotV,5.0);
}
float ggxDistribution(float nDotH,float roughness)
float ggxDistribution(float nDotH, float roughness)
{
float a = nf">roughness * roughness * roughness * roughness;
float d = nDotH * nDotH * (a - 1.0) + 1.0;
d = nf">PI * d * d;
return a / max(d,0.0000001);
float a = err">roughness*roughness*roughness*roughness;
float d = nDotH*nDotH*(a - 1.0) + 1.0;
d = err">PI*d*d;
return a/max(d,0.0000001);
}
float geomSmith(float nDotV,float nDotL,float roughness)
float geomSmith(float nDotV, float nDotL, float roughness)
{
float r = roughness + 1.0;
float k = nf">r * r / 8.0;
float ik = 1.0 - k;
float ggx1 = nDotV</span> / (nDotV * ik + k);
float ggx2 = nDotL</span> / (nDotL * ik + k);
return ggx1 * ggx2;
float r = roughness + 1.0;
float k = err">r*r/8.0;
float ik = 1.0 - k;
float ggx1 = nDotV/(nDotV*ik + k);
float ggx2 = nDotL/(nDotL*ik + k);
return ggx1*ggx2;
}
vec3 pbr(){
vec3 albedo = texture2D(albedoMap,vec2(fragTexCoord.x*tiling.x+offset.x,fragTexCoord.y*tiling.y+offset.y)).rgb;
albedo = vec3(albedoColor.x*albedo.x,albedoColor.y*albedo.y,albedoColor.z*albedo.z);
float metallic = clamp(metallicValue,0.0,1.0);
float roughness = clamp(roughnessValue,0.0,1.0);
float ao = clamp(aoValue,0.0,1.0);
if(useTexMRA == 1) {
vec4 mra = texture2D(mraMap, vec2(fragTexCoord.x * tiling.x + offset.x, fragTexCoord.y * tiling.y + offset.y));
metallic = clamp(mra.r+metallicValue,0.04,1.0);
roughness = clamp(mra.g+roughnessValue,0.04,1.0);
ao = (mra.b+aoValue)*0.5;
}
vec3 N = normalize(fragNormal);
if(useTexNormal == 1) {
N = texture2D(normalMap, vec2(fragTexCoord.x * tiling.x + offset.y, fragTexCoord.y * tiling.y + offset.y)).rgb;
N = normalize(N * 2.0 - 1.0);
N = normalize(N * TBN);
}
vec3 V = normalize(viewPos - fragPosition);
vec3 pbr()
{
vec3 albedo = texture2D(albedoMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb;
albedo = vec3(albedoColor.x*albedo.x, albedoColor.y*albedo.y, albedoColor.z*albedo.z);
float metallic = clamp(metallicValue, 0.0, 1.0);
float roughness = clamp(roughnessValue, 0.0, 1.0);
float ao = clamp(aoValue, 0.0, 1.0);
if (useTexMRA == 1)
{
vec4 mra = texture2D(mraMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y));
metallic = clamp(mra.r + metallicValue, 0.04, 1.0);
roughness = clamp(mra.g + roughnessValue, 0.04, 1.0);
ao = (mra.b + aoValue)*0.5;
}
vec3 N = normalize(fragNormal);
if (useTexNormal == 1)
{
N = texture2D(normalMap, vec2(fragTexCoord.x*tiling.x + offset.y, fragTexCoord.y*tiling.y + offset.y)).rgb;
N = normalize(N*2.0 - 1.0);
N = normalize(N*TBN);
}
vec3 V = normalize(viewPos - fragPosition);
vec3 e = vec3(0);
e = (texture2D(emissiveMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb).g*emissiveColor.rgb*emissivePower*float(useTexEmissive);
// return N;//vec3(metallic,metallic,metallic);
// If dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
vec3 baseRefl = mix(vec3(0.04), albedo.rgb, metallic);
vec3 Lo = vec3(0.0); // Acumulate lighting lum
for (int i = 0; i < 4; i++)
{
vec3 L = normalize(lights[i].position - fragPosition); // Compute light vector
vec3 H = normalize(V + L); // Compute halfway bisecting vector
float dist = length(lights[i].position - fragPosition); // Compute distance to light
float attenuation = 1.0/(dist*dist*0.23); // Compute attenuation
vec3 radiance = lights[i].color.rgb*lights[i].intensity*attenuation; // Compute input radiance, light energy comming in
// Cook-Torrance BRDF distribution function
float nDotV = max(dot(N,V), 0.0000001);
float nDotL = max(dot(N,L), 0.0000001);
float hDotV = max(dot(H,V), 0.0);
float nDotH = max(dot(N,H), 0.0);
float D = ggxDistribution(nDotH, roughness); // Larger the more micro-facets aligned to H
float G = geomSmith(nDotV, nDotL, roughness); // Smaller the more micro-facets shadow
vec3 F = schlickFresnel(hDotV, baseRefl); // Fresnel proportion of specular reflectance
vec3 spec = (D*G*F)/(4.0*nDotV*nDotL);
vec3 e = vec3(0);
e = (texture2D(emissiveMap, vec2(fragTexCoord.x*tiling.x+offset.x, fragTexCoord.y*tiling.y+offset.y)).rgb).g * emissiveColor.rgb*emissivePower * float(useTexEmissive);
// Difuse and spec light can't be above 1.0
// kD = 1.0 - kS diffuse component is equal 1.0 - spec comonent
vec3 kD = vec3(1.0) - F;
//return N;//vec3(metallic,metallic,metallic);
//if dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
vec3 baseRefl = mix(vec3(0.04),albedo.rgb,metallic);
vec3 Lo = vec3(0.0); // acumulate lighting lum
for(int i=0;i<4;++i){
vec3 L = normalize(lights[i].position - fragPosition); // calc light vector
vec3 H = normalize(V + L); // calc halfway bisecting vector
float dist = length(lights[i].position - fragPosition); // calc distance to light
float attenuation = 1.0 / (dist * dist * 0.23); // calc attenuation
vec3 radiance = lights[i].color.rgb * lights[i].intensity * attenuation; // calc input radiance,light energy comming in
//Cook-Torrance BRDF distribution function
float nDotV = max(dot(N,V),0.0000001);
float nDotL = max(dot(N,L),0.0000001);
float hDotV = max(dot(H,V),0.0);
float nDotH = max(dot(N,H),0.0);
float D = ggxDistribution(nDotH,roughness); // larger the more micro-facets aligned to H
float G = geomSmith(nDotV,nDotL,roughness); // smaller the more micro-facets shadow
vec3 F = schlickFresnel(hDotV, baseRefl); // fresnel proportion of specular reflectance
vec3 spec = (D * G * F) / (4.0 * nDotV * nDotL);
// difuse and spec light can't be above 1.0
// kD = 1.0 - kS diffuse component is equal 1.0 - spec comonent
vec3 kD = vec3(1.0) - F;
//mult kD by the inverse of metallnes , only non-metals should have diffuse light
kD *= 1.0 - metallic;
Lo += ((kD * albedo.rgb / PI + spec) * radiance * nDotL)*float(lights[i].enabled); // angle of light has impact on result
}
vec3 ambient_final = (ambientColor + albedo)* ambient * 0.5;
return ambient_final+Lo*ao+e;
// Mult kD by the inverse of metallnes , only non-metals should have diffuse light
kD *= 1.0 - metallic;
Lo += ((kD*albedo.rgb/PI + spec)*radiance*nDotL)*float(lights[i].enabled); // Angle of light has impact on result
}
vec3 ambientFinal = (ambientColor + albedo)*ambient*0.5;
return (ambientFinal + Lo*ao + e);
}
void main()
{
vec3 color = pbr();
//HDR tonemapping
color = pow(color,color + vec3(1.0));
//gamma correction
color = pow(colr">or,vec3(1.0/2.2));
gl_FragColor = vec4(color,1.0);
vec3 color = pbr();
// HDR tonemapping
color = pow(color,color + vec3(1.0));
// Gamma correction
color = pow(color,vec3(1.0/2.2));
gl_FragColor = vec4(color,1.0);
}

+ 9
- 10
examples/shaders/resources/shaders/glsl100/pbr.vs 查看文件

@ -26,17 +26,17 @@ const float normalOffset = 0.1;
// https://github.com/glslify/glsl-inverse
mat3 inverse(mat3 m)
{
float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];
float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];
float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];
float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];
float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];
float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];
float b01 = a22*a11 - a12*a21;
float b11 = -a22*a10 + a12*a20;
float b21 = a21*a10 - a11*a20;
float b01 = a22*a11 - a12*a21;
float b11 = -a22*a10 + a12*a20;
float b21 = a21*a10 - a11*a20;
float det = a00*b01 + a01*b11 + a02*b21;
float det = a00*b01 + a01*b11 + a02*b21;
return mat3(b01, (-a22*a01 + a02*a21), (a12*a01 - a02*a11),
return mat3(b01, (-a22*a01 + a02*a21), (a12*a01 - a02*a11),
b11, (a22*a00 - a02*a20), (-a12*a00 + a02*a10),
b21, (-a21*a00 + a01*a20), (a11*a00 - a01*a10))/det;
}
@ -44,14 +44,13 @@ mat3 inverse(mat3 m)
// https://github.com/glslify/glsl-transpose
mat3 transpose(mat3 m)
{
return mat3(m[0][0], m[1][0], m[2][0],
return mat3(m[0][0], m[1][0], m[2][0],
m[0][1], m[1][1], m[2][1],
m[0][2], m[1][2], m[2][2]);
}
void main()
{
// calc binormal from vertex normal and tangent
vec3 vertexBinormal = cross(vertexNormal, vertexTangent);
// calc fragment normal based on normal transformations

正在加载...
取消
保存