|
|
@ -1453,13 +1453,13 @@ Image GenImageGradientV(int width, int height, Color top, Color bottom) |
|
|
|
|
|
|
|
for (int j = 0; j < height; j++) |
|
|
|
{ |
|
|
|
float factor = (float)j / (float)height; |
|
|
|
float factor = (float)j/(float)height; |
|
|
|
for (int i = 0; i < width; i++) |
|
|
|
{ |
|
|
|
pixels[j*width + i].r = (int)((float)bottom.r * factor + (float)top.r * (1.f - factor)); |
|
|
|
pixels[j*width + i].g = (int)((float)bottom.g * factor + (float)top.g * (1.f - factor)); |
|
|
|
pixels[j*width + i].b = (int)((float)bottom.b * factor + (float)top.b * (1.f - factor)); |
|
|
|
pixels[j*width + i].a = (int)((float)bottom.a * factor + (float)top.a * (1.f - factor)); |
|
|
|
pixels[j*width + i].r = (int)((float)bottom.r*factor + (float)top.r*(1.f - factor)); |
|
|
|
pixels[j*width + i].g = (int)((float)bottom.g*factor + (float)top.g*(1.f - factor)); |
|
|
|
pixels[j*width + i].b = (int)((float)bottom.b*factor + (float)top.b*(1.f - factor)); |
|
|
|
pixels[j*width + i].a = (int)((float)bottom.a*factor + (float)top.a*(1.f - factor)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
@ -1476,13 +1476,13 @@ Image GenImageGradientH(int width, int height, Color left, Color right) |
|
|
|
|
|
|
|
for (int i = 0; i < width; i++) |
|
|
|
{ |
|
|
|
float factor = (float)i / (float)width; |
|
|
|
float factor = (float)i/(float)width; |
|
|
|
for (int j = 0; j < height; j++) |
|
|
|
{ |
|
|
|
pixels[j*width + i].r = (int)((float)right.r * factor + (float)left.r * (1.f - factor)); |
|
|
|
pixels[j*width + i].g = (int)((float)right.g * factor + (float)left.g * (1.f - factor)); |
|
|
|
pixels[j*width + i].b = (int)((float)right.b * factor + (float)left.b * (1.f - factor)); |
|
|
|
pixels[j*width + i].a = (int)((float)right.a * factor + (float)left.a * (1.f - factor)); |
|
|
|
pixels[j*width + i].r = (int)((float)right.r*factor + (float)left.r*(1.f - factor)); |
|
|
|
pixels[j*width + i].g = (int)((float)right.g*factor + (float)left.g*(1.f - factor)); |
|
|
|
pixels[j*width + i].b = (int)((float)right.b*factor + (float)left.b*(1.f - factor)); |
|
|
|
pixels[j*width + i].a = (int)((float)right.a*factor + (float)left.a*(1.f - factor)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
@ -1493,25 +1493,28 @@ Image GenImageGradientH(int width, int height, Color left, Color right) |
|
|
|
} |
|
|
|
|
|
|
|
// Generate image: radial gradient |
|
|
|
Image GenImageRadialGradient(int width, int height, float density, Color inner, Color outer) |
|
|
|
Image GenImageGradientRadial(int width, int height, float density, Color inner, Color outer) |
|
|
|
{ |
|
|
|
Color *pixels = (Color*)malloc(width * height * sizeof(Color)); |
|
|
|
float radius = (width < height) ? (float)width / 2.f : (float)height / 2.f; |
|
|
|
Color *pixels = (Color *)malloc(width*height*sizeof(Color)); |
|
|
|
float radius = (width < height) ? (float)width/2.0f : (float)height/2.0f; |
|
|
|
|
|
|
|
float center_x = (float)width / 2.f; |
|
|
|
float center_y = (float)height / 2.f; |
|
|
|
float centerX = (float)width/2.0f; |
|
|
|
float centerY = (float)height/2.0f; |
|
|
|
|
|
|
|
for (int y = 0; y < height; y++) |
|
|
|
{ |
|
|
|
for (int x = 0; x < width; x++) |
|
|
|
{ |
|
|
|
float dist = hypotf((float)x - center_x, (float)y - center_y); |
|
|
|
float factor = (dist - radius * density) / (radius * (1.f - density)); |
|
|
|
float dist = hypotf((float)x - centerX, (float)y - centerY); |
|
|
|
float factor = (dist - radius*density)/(radius*(1.0f - density)); |
|
|
|
|
|
|
|
factor = fmax(factor, 0.f); |
|
|
|
factor = fmin(factor, 1.f); // dist can be bigger than radius so we have to check |
|
|
|
pixels[y*width + x].r = (int)((float)outer.r * factor + (float)inner.r * (1.f - factor)); |
|
|
|
pixels[y*width + x].g = (int)((float)outer.g * factor + (float)inner.g * (1.f - factor)); |
|
|
|
pixels[y*width + x].b = (int)((float)outer.b * factor + (float)inner.b * (1.f - factor)); |
|
|
|
pixels[y*width + x].a = (int)((float)outer.a * factor + (float)inner.a * (1.f - factor)); |
|
|
|
|
|
|
|
pixels[y*width + x].r = (int)((float)outer.r*factor + (float)inner.r*(1.0f - factor)); |
|
|
|
pixels[y*width + x].g = (int)((float)outer.g*factor + (float)inner.g*(1.0f - factor)); |
|
|
|
pixels[y*width + x].b = (int)((float)outer.b*factor + (float)inner.b*(1.0f - factor)); |
|
|
|
pixels[y*width + x].a = (int)((float)outer.a*factor + (float)inner.a*(1.0f - factor)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
@ -1530,7 +1533,7 @@ Image GenImageChecked(int width, int height, int checksX, int checksY, Color col |
|
|
|
{ |
|
|
|
for (int x = 0; x < width; x++) |
|
|
|
{ |
|
|
|
if ((x/checksX + y/checksY) % 2 == 0) pixels[y*width + x] = col1; |
|
|
|
if ((x/checksX + y/checksY)%2 == 0) pixels[y*width + x] = col1; |
|
|
|
else pixels[y*width + x] = col2; |
|
|
|
} |
|
|
|
} |
|
|
@ -1548,7 +1551,7 @@ Image GenImageWhiteNoise(int width, int height, float factor) |
|
|
|
|
|
|
|
for (int i = 0; i < width*height; i++) |
|
|
|
{ |
|
|
|
if (GetRandomValue(0, 99) < (int)(factor * 100.f)) pixels[i] = WHITE; |
|
|
|
if (GetRandomValue(0, 99) < (int)(factor*100.0f)) pixels[i] = WHITE; |
|
|
|
else pixels[i] = BLACK; |
|
|
|
} |
|
|
|
|
|
|
@ -1561,17 +1564,19 @@ Image GenImageWhiteNoise(int width, int height, float factor) |
|
|
|
// Generate image: perlin noise |
|
|
|
Image GenImagePerlinNoise(int width, int height, float scale) |
|
|
|
{ |
|
|
|
Color *pixels = (Color*)malloc(width * height * sizeof(Color)); |
|
|
|
Color *pixels = (Color *)malloc(width*height*sizeof(Color)); |
|
|
|
|
|
|
|
for (int y = 0; y < height; y++) |
|
|
|
{ |
|
|
|
for (int x = 0; x < width; x++) |
|
|
|
{ |
|
|
|
float nx = (float)x * scale / (float)width; |
|
|
|
float ny = (float)y * scale / (float)height; |
|
|
|
float nx = (float)x*scale/(float)width; |
|
|
|
float ny = (float)y*scale/(float)height; |
|
|
|
|
|
|
|
// we need to translate the data from [-1; 1] to [0; 1] |
|
|
|
float p = (stb_perlin_fbm_noise3(nx, ny, 1.f, 2.f, 0.5f, 6, 0, 0, 0) + 1.f) / 2.f; |
|
|
|
int intensity = (int)(p * 255.f); |
|
|
|
float p = (stb_perlin_fbm_noise3(nx, ny, 1.0f, 2.0f, 0.5f, 6, 0, 0, 0) + 1.0f) / 2.0f; |
|
|
|
|
|
|
|
int intensity = (int)(p * 255.0f); |
|
|
|
pixels[y*width + x] = (Color){intensity, intensity, intensity, 255}; |
|
|
|
} |
|
|
|
} |
|
|
@ -1585,54 +1590,55 @@ Image GenImagePerlinNoise(int width, int height, float scale) |
|
|
|
// Generate image: cellular algorithm. Bigger tileSize means bigger cells |
|
|
|
Image GenImageCellular(int width, int height, int tileSize) |
|
|
|
{ |
|
|
|
Color *pixels = (Color*)malloc(width*height*sizeof(Color)); |
|
|
|
Color *pixels = (Color *)malloc(width*height*sizeof(Color)); |
|
|
|
|
|
|
|
int seeds_per_row = width / tileSize; |
|
|
|
int seeds_per_col = height / tileSize; |
|
|
|
int seeds_count = seeds_per_row * seeds_per_col; |
|
|
|
int seedsPerRow = width/tileSize; |
|
|
|
int seedsPerCol = height/tileSize; |
|
|
|
int seedsCount = seedsPerRow * seedsPerCol; |
|
|
|
|
|
|
|
Vector2* seeds = (Vector2*)malloc(seeds_count * sizeof(Vector2)); |
|
|
|
Vector2 *seeds = (Vector2 *)malloc(seedsCount*sizeof(Vector2)); |
|
|
|
|
|
|
|
for (int i = 0; i < seeds_count; i++) |
|
|
|
for (int i = 0; i < seedsCount; i++) |
|
|
|
{ |
|
|
|
int y = (i / seeds_per_row) * tileSize + GetRandomValue(0, tileSize-1); |
|
|
|
int x = (i % seeds_per_row) * tileSize + GetRandomValue(0, tileSize-1); |
|
|
|
int y = (i/seedsPerRow)*tileSize + GetRandomValue(0, tileSize - 1); |
|
|
|
int x = (i%seedsPerRow)*tileSize + GetRandomValue(0, tileSize - 1); |
|
|
|
seeds[i] = (Vector2){x, y}; |
|
|
|
} |
|
|
|
|
|
|
|
for (int y = 0; y < height; y++) |
|
|
|
{ |
|
|
|
int tile_y = y / tileSize; |
|
|
|
int tileY = y/tileSize; |
|
|
|
|
|
|
|
for (int x = 0; x < width; x++) |
|
|
|
{ |
|
|
|
int tile_x = x / tileSize; |
|
|
|
int tileX = x/tileSize; |
|
|
|
|
|
|
|
float min_distance = strtod("Inf", NULL); |
|
|
|
float minDistance = strtod("Inf", NULL); |
|
|
|
|
|
|
|
// Check all adjacent tiles |
|
|
|
for (int i = -1; i < 2; i++) |
|
|
|
{ |
|
|
|
if (n">tile_x + i < 0 || n">tile_x + i >= seeds_per_row) continue; |
|
|
|
if (p">(tileX + i < 0) || p">(tileX + i >= seedsPerRow)) continue; |
|
|
|
|
|
|
|
for (int j = -1; j < 2; j++) |
|
|
|
{ |
|
|
|
if (n">tile_y + j < 0 || n">tile_y + j >= seeds_per_col) continue; |
|
|
|
if (p">(tileY + j < 0) || p">(tileY + j >= seedsPerCol)) continue; |
|
|
|
|
|
|
|
Vector2 neighbor_seed = seeds[(tile_y+j) * seeds_per_row + tile_x+i]; |
|
|
|
Vector2 neighborSeed = seeds[(tileY + j)*seedsPerRow + tileX + i]; |
|
|
|
|
|
|
|
float dist = hypot(x - (int)neighbor_seed.x, y - (int)neighbor_seed.y); |
|
|
|
min_distance = fmin(min_distance, dist); |
|
|
|
float dist = hypot(x - (int)neighborSeed.x, y - (int)neighborSeed.y); |
|
|
|
minDistance = fmin(minDistance, dist); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// I made this up but it seems to give good results at all tile sizes |
|
|
|
int intensity = (int)(min_distance * 256.f / tileSize); |
|
|
|
int intensity = (int)(minDistance*256.0f/tileSize); |
|
|
|
if (intensity > 255) intensity = 255; |
|
|
|
|
|
|
|
Color c = {intensity, intensity, intensity, 255}; |
|
|
|
pixels[y*width + x] = c; |
|
|
|
pixels[y*width + x] = (Color){ intensity, intensity, intensity, 255 }; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
free(seeds); |
|
|
|
|
|
|
|
Image image = LoadImageEx(pixels, width, height); |
|
|
|