| @ -1,133 +0,0 @@ | |||||
| /******************************************************************************************* | |||||
| * | |||||
| * BRDF LUT Generation - Bidirectional reflectance distribution function fragment shader | |||||
| * | |||||
| * REF: https://github.com/HectorMF/BRDFGenerator | |||||
| * | |||||
| * Copyright (c) 2017 Victor Fisac | |||||
| * | |||||
| **********************************************************************************************/ | |||||
| #version 330 | |||||
| // Input vertex attributes (from vertex shader) | |||||
| in vec2 fragTexCoord; | |||||
| // Constant values | |||||
| const float PI = 3.14159265359; | |||||
| const uint MAX_SAMPLES = 1024u; | |||||
| // Output fragment color | |||||
| out vec4 finalColor; | |||||
| vec2 Hammersley(uint i, uint N); | |||||
| float RadicalInverseVdC(uint bits); | |||||
| float GeometrySchlickGGX(float NdotV, float roughness); | |||||
| float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness); | |||||
| vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness); | |||||
| vec2 IntegrateBRDF(float NdotV, float roughness); | |||||
| float RadicalInverseVdC(uint bits) | |||||
| { | |||||
| bits = (bits << 16u) | (bits >> 16u); | |||||
| bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); | |||||
| bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); | |||||
| bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); | |||||
| bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); | |||||
| return float(bits) * 2.3283064365386963e-10; // / 0x100000000 | |||||
| } | |||||
| // Compute Hammersley coordinates | |||||
| vec2 Hammersley(uint i, uint N) | |||||
| { | |||||
| return vec2(float(i)/float(N), RadicalInverseVdC(i)); | |||||
| } | |||||
| // Integrate number of importance samples for (roughness and NoV) | |||||
| vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness) | |||||
| { | |||||
| float a = roughness*roughness; | |||||
| float phi = 2.0 * PI * Xi.x; | |||||
| float cosTheta = sqrt((1.0 - Xi.y)/(1.0 + (a*a - 1.0)*Xi.y)); | |||||
| float sinTheta = sqrt(1.0 - cosTheta*cosTheta); | |||||
| // Transform from spherical coordinates to cartesian coordinates (halfway vector) | |||||
| vec3 H = vec3(cos(phi)*sinTheta, sin(phi)*sinTheta, cosTheta); | |||||
| // Transform from tangent space H vector to world space sample vector | |||||
| vec3 up = ((abs(N.z) < 0.999) ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0)); | |||||
| vec3 tangent = normalize(cross(up, N)); | |||||
| vec3 bitangent = cross(N, tangent); | |||||
| vec3 sampleVec = tangent*H.x + bitangent*H.y + N*H.z; | |||||
| return normalize(sampleVec); | |||||
| } | |||||
| float GeometrySchlickGGX(float NdotV, float roughness) | |||||
| { | |||||
| // For IBL k is calculated different | |||||
| float k = (roughness*roughness)/2.0; | |||||
| float nom = NdotV; | |||||
| float denom = NdotV*(1.0 - k) + k; | |||||
| return nom/denom; | |||||
| } | |||||
| // Compute the geometry term for the BRDF given roughness squared, NoV, NoL | |||||
| float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) | |||||
| { | |||||
| float NdotV = max(dot(N, V), 0.0); | |||||
| float NdotL = max(dot(N, L), 0.0); | |||||
| float ggx2 = GeometrySchlickGGX(NdotV, roughness); | |||||
| float ggx1 = GeometrySchlickGGX(NdotL, roughness); | |||||
| return ggx1*ggx2; | |||||
| } | |||||
| vec2 IntegrateBRDF(float NdotV, float roughness) | |||||
| { | |||||
| float A = 0.0; | |||||
| float B = 0.0; | |||||
| vec3 V = vec3(sqrt(1.0 - NdotV*NdotV), 0.0, NdotV); | |||||
| vec3 N = vec3(0.0, 0.0, 1.0); | |||||
| for (uint i = 0u; i < MAX_SAMPLES; i++) | |||||
| { | |||||
| // Generate a sample vector that's biased towards the preferred alignment direction (importance sampling) | |||||
| vec2 Xi = Hammersley(i, MAX_SAMPLES); // Compute a Hammersely coordinate | |||||
| vec3 H = ImportanceSampleGGX(Xi, N, roughness); // Integrate number of importance samples for (roughness and NoV) | |||||
| vec3 L = normalize(2.0*dot(V, H)*H - V); // Compute reflection vector L | |||||
| float NdotL = max(L.z, 0.0); // Compute normal dot light | |||||
| float NdotH = max(H.z, 0.0); // Compute normal dot half | |||||
| float VdotH = max(dot(V, H), 0.0); // Compute view dot half | |||||
| if (NdotL > 0.0) | |||||
| { | |||||
| float G = GeometrySmith(N, V, L, roughness); // Compute the geometry term for the BRDF given roughness squared, NoV, NoL | |||||
| float GVis = (G*VdotH)/(NdotH*NdotV); // Compute the visibility term given G, VoH, NoH, NoV, NoL | |||||
| float Fc = pow(1.0 - VdotH, 5.0); // Compute the fresnel term given VoH | |||||
| A += (1.0 - Fc)*GVis; // Sum the result given fresnel, geometry, visibility | |||||
| B += Fc*GVis; | |||||
| } | |||||
| } | |||||
| // Calculate brdf average sample | |||||
| A /= float(MAX_SAMPLES); | |||||
| B /= float(MAX_SAMPLES); | |||||
| return vec2(A, B); | |||||
| } | |||||
| void main() | |||||
| { | |||||
| // Calculate brdf based on texture coordinates | |||||
| vec2 brdf = IntegrateBRDF(fragTexCoord.x, fragTexCoord.y); | |||||
| // Calculate final fragment color | |||||
| finalColor = vec4(brdf.r, brdf.g, 0.0, 1.0); | |||||
| } | |||||
| @ -1,25 +0,0 @@ | |||||
| /******************************************************************************************* | |||||
| * | |||||
| * rPBR [shader] - Bidirectional reflectance distribution function vertex shader | |||||
| * | |||||
| * Copyright (c) 2017 Victor Fisac | |||||
| * | |||||
| **********************************************************************************************/ | |||||
| #version 330 | |||||
| // Input vertex attributes | |||||
| in vec3 vertexPosition; | |||||
| in vec2 vertexTexCoord; | |||||
| // Output vertex attributes (to fragment shader) | |||||
| out vec2 fragTexCoord; | |||||
| void main() | |||||
| { | |||||
| // Calculate fragment position based on model transformations | |||||
| fragTexCoord = vertexTexCoord; | |||||
| // Calculate final vertex position | |||||
| gl_Position = vec4(vertexPosition, 1.0); | |||||
| } | |||||
| @ -1,58 +0,0 @@ | |||||
| /******************************************************************************************* | |||||
| * | |||||
| * rPBR [shader] - Irradiance cubemap fragment shader | |||||
| * | |||||
| * Copyright (c) 2017 Victor Fisac | |||||
| * | |||||
| **********************************************************************************************/ | |||||
| #version 330 | |||||
| // Input vertex attributes (from vertex shader) | |||||
| in vec3 fragPosition; | |||||
| // Input uniform values | |||||
| uniform samplerCube environmentMap; | |||||
| // Constant values | |||||
| const float PI = 3.14159265359f; | |||||
| // Output fragment color | |||||
| out vec4 finalColor; | |||||
| void main() | |||||
| { | |||||
| // The sample direction equals the hemisphere's orientation | |||||
| vec3 normal = normalize(fragPosition); | |||||
| vec3 irradiance = vec3(0.0); | |||||
| vec3 up = vec3(0.0, 1.0, 0.0); | |||||
| vec3 right = cross(up, normal); | |||||
| up = cross(normal, right); | |||||
| float sampleDelta = 0.025f; | |||||
| float nrSamples = 0.0f; | |||||
| for (float phi = 0.0; phi < 2.0*PI; phi += sampleDelta) | |||||
| { | |||||
| for (float theta = 0.0; theta < 0.5*PI; theta += sampleDelta) | |||||
| { | |||||
| // Spherical to cartesian (in tangent space) | |||||
| vec3 tangentSample = vec3(sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta)); | |||||
| // tangent space to world | |||||
| vec3 sampleVec = tangentSample.x*right + tangentSample.y*up + tangentSample.z*normal; | |||||
| // Fetch color from environment cubemap | |||||
| irradiance += texture(environmentMap, sampleVec).rgb*cos(theta)*sin(theta); | |||||
| nrSamples++; | |||||
| } | |||||
| } | |||||
| // Calculate irradiance average value from samples | |||||
| irradiance = PI*irradiance*(1.0/float(nrSamples)); | |||||
| // Calculate final fragment color | |||||
| finalColor = vec4(irradiance, 1.0); | |||||
| } | |||||
| @ -1,298 +0,0 @@ | |||||
| /******************************************************************************************* | |||||
| * | |||||
| * rPBR [shader] - Physically based rendering fragment shader | |||||
| * | |||||
| * Copyright (c) 2017 Victor Fisac | |||||
| * | |||||
| **********************************************************************************************/ | |||||
| #version 330 | |||||
| #define MAX_REFLECTION_LOD 4.0 | |||||
| #define MAX_DEPTH_LAYER 20 | |||||
| #define MIN_DEPTH_LAYER 10 | |||||
| #define MAX_LIGHTS 4 | |||||
| #define LIGHT_DIRECTIONAL 0 | |||||
| #define LIGHT_POINT 1 | |||||
| struct MaterialProperty { | |||||
| vec3 color; | |||||
| int useSampler; | |||||
| sampler2D sampler; | |||||
| }; | |||||
| struct Light { | |||||
| int enabled; | |||||
| int type; | |||||
| vec3 position; | |||||
| vec3 target; | |||||
| vec4 color; | |||||
| }; | |||||
| // Input vertex attributes (from vertex shader) | |||||
| in vec3 fragPosition; | |||||
| in vec2 fragTexCoord; | |||||
| in vec3 fragNormal; | |||||
| in vec3 fragTangent; | |||||
| in vec3 fragBinormal; | |||||
| // Input material values | |||||
| uniform MaterialProperty albedo; | |||||
| uniform MaterialProperty normals; | |||||
| uniform MaterialProperty metalness; | |||||
| uniform MaterialProperty roughness; | |||||
| uniform MaterialProperty occlusion; | |||||
| uniform MaterialProperty emission; | |||||
| uniform MaterialProperty height; | |||||
| // Input uniform values | |||||
| uniform samplerCube irradianceMap; | |||||
| uniform samplerCube prefilterMap; | |||||
| uniform sampler2D brdfLUT; | |||||
| // Input lighting values | |||||
| uniform Light lights[MAX_LIGHTS]; | |||||
| // Other uniform values | |||||
| uniform int renderMode; | |||||
| uniform vec3 viewPos; | |||||
| vec2 texCoord; | |||||
| // Constant values | |||||
| const float PI = 3.14159265359; | |||||
| // Output fragment color | |||||
| out vec4 finalColor; | |||||
| vec3 ComputeMaterialProperty(MaterialProperty property); | |||||
| float DistributionGGX(vec3 N, vec3 H, float roughness); | |||||
| float GeometrySchlickGGX(float NdotV, float roughness); | |||||
| float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness); | |||||
| vec3 fresnelSchlick(float cosTheta, vec3 F0); | |||||
| vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness); | |||||
| vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir); | |||||
| vec3 ComputeMaterialProperty(MaterialProperty property) | |||||
| { | |||||
| vec3 result = vec3(0.0, 0.0, 0.0); | |||||
| if (property.useSampler == 1) result = texture(property.sampler, texCoord).rgb; | |||||
| else result = property.color; | |||||
| return result; | |||||
| } | |||||
| float DistributionGGX(vec3 N, vec3 H, float roughness) | |||||
| { | |||||
| float a = roughness*roughness; | |||||
| float a2 = a*a; | |||||
| float NdotH = max(dot(N, H), 0.0); | |||||
| float NdotH2 = NdotH*NdotH; | |||||
| float nom = a2; | |||||
| float denom = (NdotH2*(a2 - 1.0) + 1.0); | |||||
| denom = PI*denom*denom; | |||||
| return nom/denom; | |||||
| } | |||||
| float GeometrySchlickGGX(float NdotV, float roughness) | |||||
| { | |||||
| float r = (roughness + 1.0); | |||||
| float k = r*r/8.0; | |||||
| float nom = NdotV; | |||||
| float denom = NdotV*(1.0 - k) + k; | |||||
| return nom/denom; | |||||
| } | |||||
| float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) | |||||
| { | |||||
| float NdotV = max(dot(N, V), 0.0); | |||||
| float NdotL = max(dot(N, L), 0.0); | |||||
| float ggx2 = GeometrySchlickGGX(NdotV, roughness); | |||||
| float ggx1 = GeometrySchlickGGX(NdotL, roughness); | |||||
| return ggx1*ggx2; | |||||
| } | |||||
| vec3 fresnelSchlick(float cosTheta, vec3 F0) | |||||
| { | |||||
| return F0 + (1.0 - F0)*pow(1.0 - cosTheta, 5.0); | |||||
| } | |||||
| vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness) | |||||
| { | |||||
| return F0 + (max(vec3(1.0 - roughness), F0) - F0)*pow(1.0 - cosTheta, 5.0); | |||||
| } | |||||
| vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir) | |||||
| { | |||||
| // Calculate the number of depth layers and calculate the size of each layer | |||||
| float numLayers = mix(MAX_DEPTH_LAYER, MIN_DEPTH_LAYER, abs(dot(vec3(0.0, 0.0, 1.0), viewDir))); | |||||
| float layerDepth = 1.0/numLayers; | |||||
| // Calculate depth of current layer | |||||
| float currentLayerDepth = 0.0; | |||||
| // Calculate the amount to shift the texture coordinates per layer (from vector P) | |||||
| // Note: height amount is stored in height material attribute color R channel (sampler use is independent) | |||||
| vec2 P = viewDir.xy*height.color.r; | |||||
| vec2 deltaTexCoords = P/numLayers; | |||||
| // Store initial texture coordinates and depth values | |||||
| vec2 currentTexCoords = texCoords; | |||||
| float currentDepthMapValue = texture(height.sampler, currentTexCoords).r; | |||||
| while (currentLayerDepth < currentDepthMapValue) | |||||
| { | |||||
| // Shift texture coordinates along direction of P | |||||
| currentTexCoords -= deltaTexCoords; | |||||
| // Get depth map value at current texture coordinates | |||||
| currentDepthMapValue = texture(height.sampler, currentTexCoords).r; | |||||
| // Get depth of next layer | |||||
| currentLayerDepth += layerDepth; | |||||
| } | |||||
| // Get texture coordinates before collision (reverse operations) | |||||
| vec2 prevTexCoords = currentTexCoords + deltaTexCoords; | |||||
| // Get depth after and before collision for linear interpolation | |||||
| float afterDepth = currentDepthMapValue - currentLayerDepth; | |||||
| float beforeDepth = texture(height.sampler, prevTexCoords).r - currentLayerDepth + layerDepth; | |||||
| // Interpolation of texture coordinates | |||||
| float weight = afterDepth/(afterDepth - beforeDepth); | |||||
| vec2 finalTexCoords = prevTexCoords*weight + currentTexCoords*(1.0 - weight); | |||||
| return finalTexCoords; | |||||
| } | |||||
| void main() | |||||
| { | |||||
| // Calculate TBN and RM matrices | |||||
| mat3 TBN = transpose(mat3(fragTangent, fragBinormal, fragNormal)); | |||||
| // Calculate lighting required attributes | |||||
| vec3 normal = normalize(fragNormal); | |||||
| vec3 view = normalize(viewPos - fragPosition); | |||||
| vec3 refl = reflect(-view, normal); | |||||
| // Check if parallax mapping is enabled and calculate texture coordinates to use based on height map | |||||
| // NOTE: remember that 'texCoord' variable must be assigned before calling any ComputeMaterialProperty() function | |||||
| if (height.useSampler == 1) texCoord = ParallaxMapping(fragTexCoord, view); | |||||
| else texCoord = fragTexCoord; // Use default texture coordinates | |||||
| // Fetch material values from texture sampler or color attributes | |||||
| vec3 color = ComputeMaterialProperty(albedo); | |||||
| vec3 metal = ComputeMaterialProperty(metalness); | |||||
| vec3 rough = ComputeMaterialProperty(roughness); | |||||
| vec3 emiss = ComputeMaterialProperty(emission); | |||||
| vec3 ao = ComputeMaterialProperty(occlusion); | |||||
| // Check if normal mapping is enabled | |||||
| if (normals.useSampler == 1) | |||||
| { | |||||
| // Fetch normal map color and transform lighting values to tangent space | |||||
| normal = ComputeMaterialProperty(normals); | |||||
| normal = normalize(normal*2.0 - 1.0); | |||||
| normal = normalize(normal*TBN); | |||||
| // Convert tangent space normal to world space due to cubemap reflection calculations | |||||
| refl = normalize(reflect(-view, normal)); | |||||
| } | |||||
| // Calculate reflectance at normal incidence | |||||
| vec3 F0 = vec3(0.04); | |||||
| F0 = mix(F0, color, metal.r); | |||||
| // Calculate lighting for all lights | |||||
| vec3 Lo = vec3(0.0); | |||||
| vec3 lightDot = vec3(0.0); | |||||
| for (int i = 0; i < MAX_LIGHTS; i++) | |||||
| { | |||||
| if (lights[i].enabled == 1) | |||||
| { | |||||
| // Calculate per-light radiance | |||||
| vec3 light = vec3(0.0); | |||||
| vec3 radiance = lights[i].color.rgb; | |||||
| if (lights[i].type == LIGHT_DIRECTIONAL) light = -normalize(lights[i].target - lights[i].position); | |||||
| else if (lights[i].type == LIGHT_POINT) | |||||
| { | |||||
| light = normalize(lights[i].position - fragPosition); | |||||
| float distance = length(lights[i].position - fragPosition); | |||||
| float attenuation = 1.0/(distance*distance); | |||||
| radiance *= attenuation; | |||||
| } | |||||
| // Cook-torrance BRDF | |||||
| vec3 high = normalize(view + light); | |||||
| float NDF = DistributionGGX(normal, high, rough.r); | |||||
| float G = GeometrySmith(normal, view, light, rough.r); | |||||
| vec3 F = fresnelSchlick(max(dot(high, view), 0.0), F0); | |||||
| vec3 nominator = NDF*G*F; | |||||
| float denominator = 4*max(dot(normal, view), 0.0)*max(dot(normal, light), 0.0) + 0.001; | |||||
| vec3 brdf = nominator/denominator; | |||||
| // Store to kS the fresnel value and calculate energy conservation | |||||
| vec3 kS = F; | |||||
| vec3 kD = vec3(1.0) - kS; | |||||
| // Multiply kD by the inverse metalness such that only non-metals have diffuse lighting | |||||
| kD *= 1.0 - metal.r; | |||||
| // Scale light by dot product between normal and light direction | |||||
| float NdotL = max(dot(normal, light), 0.0); | |||||
| // Add to outgoing radiance Lo | |||||
| // Note: BRDF is already multiplied by the Fresnel so it doesn't need to be multiplied again | |||||
| Lo += (kD*color/PI + brdf)*radiance*NdotL*lights[i].color.a; | |||||
| lightDot += radiance*NdotL + brdf*lights[i].color.a; | |||||
| } | |||||
| } | |||||
| // Calculate ambient lighting using IBL | |||||
| vec3 F = fresnelSchlickRoughness(max(dot(normal, view), 0.0), F0, rough.r); | |||||
| vec3 kS = F; | |||||
| vec3 kD = 1.0 - kS; | |||||
| kD *= 1.0 - metal.r; | |||||
| // Calculate indirect diffuse | |||||
| vec3 irradiance = texture(irradianceMap, fragNormal).rgb; | |||||
| vec3 diffuse = color*irradiance; | |||||
| // Sample both the prefilter map and the BRDF lut and combine them together as per the Split-Sum approximation | |||||
| vec3 prefilterColor = textureLod(prefilterMap, refl, rough.r*MAX_REFLECTION_LOD).rgb; | |||||
| vec2 brdf = texture(brdfLUT, vec2(max(dot(normal, view), 0.0), rough.r)).rg; | |||||
| vec3 reflection = prefilterColor*(F*brdf.x + brdf.y); | |||||
| // Calculate final lighting | |||||
| vec3 ambient = (kD*diffuse + reflection)*ao; | |||||
| // Calculate fragment color based on render mode | |||||
| vec3 fragmentColor = ambient + Lo + emiss; // Physically Based Rendering | |||||
| if (renderMode == 1) fragmentColor = color; // Albedo | |||||
| else if (renderMode == 2) fragmentColor = normal; // Normals | |||||
| else if (renderMode == 3) fragmentColor = metal; // Metalness | |||||
| else if (renderMode == 4) fragmentColor = rough; // Roughness | |||||
| else if (renderMode == 5) fragmentColor = ao; // Ambient Occlusion | |||||
| else if (renderMode == 6) fragmentColor = emiss; // Emission | |||||
| else if (renderMode == 7) fragmentColor = lightDot; // Lighting | |||||
| else if (renderMode == 8) fragmentColor = kS; // Fresnel | |||||
| else if (renderMode == 9) fragmentColor = irradiance; // Irradiance | |||||
| else if (renderMode == 10) fragmentColor = reflection; // Reflection | |||||
| // Apply HDR tonemapping | |||||
| fragmentColor = fragmentColor/(fragmentColor + vec3(1.0)); | |||||
| // Apply gamma correction | |||||
| fragmentColor = pow(fragmentColor, vec3(1.0/2.2)); | |||||
| // Calculate final fragment color | |||||
| finalColor = vec4(fragmentColor, 1.0); | |||||
| } | |||||
| @ -1,49 +0,0 @@ | |||||
| /******************************************************************************************* | |||||
| * | |||||
| * rPBR [shader] - Physically based rendering vertex shader | |||||
| * | |||||
| * Copyright (c) 2017 Victor Fisac | |||||
| * | |||||
| **********************************************************************************************/ | |||||
| #version 330 | |||||
| // Input vertex attributes | |||||
| in vec3 vertexPosition; | |||||
| in vec2 vertexTexCoord; | |||||
| in vec3 vertexNormal; | |||||
| in vec4 vertexTangent; | |||||
| // Input uniform values | |||||
| uniform mat4 mvp; | |||||
| uniform mat4 matModel; | |||||
| // Output vertex attributes (to fragment shader) | |||||
| out vec3 fragPosition; | |||||
| out vec2 fragTexCoord; | |||||
| out vec3 fragNormal; | |||||
| out vec3 fragTangent; | |||||
| out vec3 fragBinormal; | |||||
| void main() | |||||
| { | |||||
| // Calculate binormal from vertex normal and tangent | |||||
| vec3 vertexBinormal = cross(vertexNormal, vec3(vertexTangent)); | |||||
| // Calculate fragment normal based on normal transformations | |||||
| mat3 normalMatrix = transpose(inverse(mat3(matModel))); | |||||
| // Calculate fragment position based on model transformations | |||||
| fragPosition = vec3(matModel*vec4(vertexPosition, 1.0f)); | |||||
| // Send vertex attributes to fragment shader | |||||
| fragTexCoord = vertexTexCoord; | |||||
| fragNormal = normalize(normalMatrix*vertexNormal); | |||||
| fragTangent = normalize(normalMatrix*vec3(vertexTangent)); | |||||
| fragTangent = normalize(fragTangent - dot(fragTangent, fragNormal)*fragNormal); | |||||
| fragBinormal = normalize(normalMatrix*vertexBinormal); | |||||
| fragBinormal = cross(fragNormal, fragTangent); | |||||
| // Calculate final vertex position | |||||
| gl_Position = mvp*vec4(vertexPosition, 1.0); | |||||
| } | |||||
| @ -1,120 +0,0 @@ | |||||
| /******************************************************************************************* | |||||
| * | |||||
| * rPBR [shader] - Prefiltered environment for reflections fragment shader | |||||
| * | |||||
| * Copyright (c) 2017 Victor Fisac | |||||
| * | |||||
| **********************************************************************************************/ | |||||
| #version 330 | |||||
| #define MAX_SAMPLES 1024u | |||||
| #define CUBEMAP_RESOLUTION 1024.0 | |||||
| // Input vertex attributes (from vertex shader) | |||||
| in vec3 fragPosition; | |||||
| // Input uniform values | |||||
| uniform samplerCube environmentMap; | |||||
| uniform float roughness; | |||||
| // Constant values | |||||
| const float PI = 3.14159265359f; | |||||
| // Output fragment color | |||||
| out vec4 finalColor; | |||||
| float DistributionGGX(vec3 N, vec3 H, float roughness); | |||||
| float RadicalInverse_VdC(uint bits); | |||||
| vec2 Hammersley(uint i, uint N); | |||||
| vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness); | |||||
| float DistributionGGX(vec3 N, vec3 H, float roughness) | |||||
| { | |||||
| float a = roughness*roughness; | |||||
| float a2 = a*a; | |||||
| float NdotH = max(dot(N, H), 0.0); | |||||
| float NdotH2 = NdotH*NdotH; | |||||
| float nom = a2; | |||||
| float denom = (NdotH2*(a2 - 1.0) + 1.0); | |||||
| denom = PI*denom*denom; | |||||
| return nom/denom; | |||||
| } | |||||
| float RadicalInverse_VdC(uint bits) | |||||
| { | |||||
| bits = (bits << 16u) | (bits >> 16u); | |||||
| bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); | |||||
| bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); | |||||
| bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); | |||||
| bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); | |||||
| return float(bits) * 2.3283064365386963e-10; // / 0x100000000 | |||||
| } | |||||
| vec2 Hammersley(uint i, uint N) | |||||
| { | |||||
| return vec2(float(i)/float(N), RadicalInverse_VdC(i)); | |||||
| } | |||||
| vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness) | |||||
| { | |||||
| float a = roughness*roughness; | |||||
| float phi = 2.0 * PI * Xi.x; | |||||
| float cosTheta = sqrt((1.0 - Xi.y)/(1.0 + (a*a - 1.0)*Xi.y)); | |||||
| float sinTheta = sqrt(1.0 - cosTheta*cosTheta); | |||||
| // Transform from spherical coordinates to cartesian coordinates (halfway vector) | |||||
| vec3 H = vec3(cos(phi)*sinTheta, sin(phi)*sinTheta, cosTheta); | |||||
| // Transform from tangent space H vector to world space sample vector | |||||
| vec3 up = ((abs(N.z) < 0.999) ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0)); | |||||
| vec3 tangent = normalize(cross(up, N)); | |||||
| vec3 bitangent = cross(N, tangent); | |||||
| vec3 sampleVec = tangent*H.x + bitangent*H.y + N*H.z; | |||||
| return normalize(sampleVec); | |||||
| } | |||||
| void main() | |||||
| { | |||||
| // Make the simplyfying assumption that V equals R equals the normal | |||||
| vec3 N = normalize(fragPosition); | |||||
| vec3 R = N; | |||||
| vec3 V = R; | |||||
| vec3 prefilteredColor = vec3(0.0); | |||||
| float totalWeight = 0.0; | |||||
| for (uint i = 0u; i < MAX_SAMPLES; i++) | |||||
| { | |||||
| // Generate a sample vector that's biased towards the preferred alignment direction (importance sampling) | |||||
| vec2 Xi = Hammersley(i, MAX_SAMPLES); | |||||
| vec3 H = ImportanceSampleGGX(Xi, N, roughness); | |||||
| vec3 L = normalize(2.0*dot(V, H)*H - V); | |||||
| float NdotL = max(dot(N, L), 0.0); | |||||
| if(NdotL > 0.0) | |||||
| { | |||||
| // Sample from the environment's mip level based on roughness/pdf | |||||
| float D = DistributionGGX(N, H, roughness); | |||||
| float NdotH = max(dot(N, H), 0.0); | |||||
| float HdotV = max(dot(H, V), 0.0); | |||||
| float pdf = D*NdotH/(4.0*HdotV) + 0.0001; | |||||
| float resolution = CUBEMAP_RESOLUTION; | |||||
| float saTexel = 4.0*PI/(6.0*resolution*resolution); | |||||
| float saSample = 1.0/(float(MAX_SAMPLES)*pdf + 0.0001); | |||||
| float mipLevel = ((roughness == 0.0) ? 0.0 : 0.5*log2(saSample/saTexel)); | |||||
| prefilteredColor += textureLod(environmentMap, L, mipLevel).rgb*NdotL; | |||||
| totalWeight += NdotL; | |||||
| } | |||||
| } | |||||
| // Calculate prefilter average color | |||||
| prefilteredColor = prefilteredColor/totalWeight; | |||||
| // Calculate final fragment color | |||||
| finalColor = vec4(prefilteredColor, 1.0); | |||||
| } | |||||