Browse Source

Reviewed shaders formating to follow raylib coding conventions

pull/4683/head
Ray 6 days ago
parent
commit
8e450e4446
6 changed files with 152 additions and 149 deletions
  1. +28
    -29
      examples/shaders/resources/shaders/glsl100/pbr.fs
  2. +5
    -5
      examples/shaders/resources/shaders/glsl100/pbr.vs
  3. +88
    -83
      examples/shaders/resources/shaders/glsl120/pbr.fs
  4. +19
    -20
      examples/shaders/resources/shaders/glsl120/pbr.vs
  5. +9
    -9
      examples/shaders/resources/shaders/glsl330/pbr.fs
  6. +3
    -3
      examples/shaders/resources/shaders/glsl330/pbr.vs

+ 28
- 29
examples/shaders/resources/shaders/glsl100/pbr.fs View File

@ -54,23 +54,22 @@ uniform vec3 viewPos;
uniform vec3 ambientColor;
uniform float ambient;
// refl in range 0 to 1
// returns base reflectivity to 1
// incrase reflectivity when surface view at larger angle
vec3 schlickFresnel(float hDotV,vec3 refl)
// Reflectivity in range 0.0 to 1.0
// NOTE: Reflectivity is increased when surface view at larger angle
vec3 SchlickFresnel(float hDotV,vec3 refl)
{
return refl + (1.0 - refl)*pow(1.0 - err">hDotV,5.0);
return refl + (1.0 - refl)*pow(1.0 - nf">hDotV, 5.0);
}
float ggxDistribution(float nDotH, float roughness)
float GgxDistribution(float nDotH,float roughness)
{
float a = roughness*roughness*roughness*roughness;
float d = nDotH*nDotH*(a - 1.0) + 1.0;
d = PI*d*d;
return a/max(d,0.0000001);
return (a/max(d,0.0000001));
}
float geomSmith(float nDotV, float nDotL, float roughness)
float GeomSmith(float nDotV,float nDotL,float roughness)
{
float r = roughness + 1.0;
float k = r*r/8.0;
@ -80,7 +79,7 @@ float geomSmith(float nDotV, float nDotL, float roughness)
return ggx1*ggx2;
}
vec3 pbr()
vec3 ComputePBR()
{
vec3 albedo = texture2D(albedoMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb;
albedo = vec3(albedoColor.x*albedo.x, albedoColor.y*albedo.y, albedoColor.z*albedo.z);
@ -104,23 +103,23 @@ vec3 pbr()
N = normalize(N*2.0 - 1.0);
N = normalize(N*TBN);
}
vec3 V = normalize(viewPos - fragPosition);
vec3 e = vec3(0);
e = (texture2D(emissiveMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb).g*emissiveColor.rgb*emissivePower*float(useTexEmissive);
vec3 emissive = vec3(0);
emissive = (texture2D(emissiveMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb).g*emissiveColor.rgb*emissivePower*float(useTexEmissive);
// return N;//vec3(metallic,metallic,metallic);
// If dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
vec3 baseRefl = mix(vec3(0.04), albedo.rgb, metallic);
vec3 Lo = vec3(0.0); // Acumulate lighting lum
vec3 lightAccum = vec3(0.0); // Acumulate lighting lum
for (int i = 0; i < 4; i++)
{
vec3 L = normalize(lights[i].position - fragPosition); // Compute light vector
vec3 H = normalize(V + L); // Compute halfway bisecting vector
float dist = length(lights[i].position - fragPosition); // Compute distance to light
float attenuation = 1.0/(dist*dist*0.23); // Compute attenuation
vec3 L = normalize(lights[i].position - fragPosition); // Compute light vector
vec3 H = normalize(V + L); // Compute halfway bisecting vector
float dist = length(lights[i].position - fragPosition); // Compute distance to light
float attenuation = 1.0/(dist*dist*0.23); // Compute attenuation
vec3 radiance = lights[i].color.rgb*lights[i].intensity*attenuation; // Compute input radiance, light energy comming in
// Cook-Torrance BRDF distribution function
@ -128,9 +127,9 @@ vec3 pbr()
float nDotL = max(dot(N,L), 0.0000001);
float hDotV = max(dot(H,V), 0.0);
float nDotH = max(dot(N,H), 0.0);
float D = ggxDistribution(nDotH, roughness); // Larger the more micro-facets aligned to H
float G = geomSmith(nDotV, nDotL, roughness); // Smaller the more micro-facets shadow
vec3 F = schlickFresnel(hDotV, baseRefl); // Fresnel proportion of specular reflectance
float D = GgxDistribution(nDotH, roughness); // Larger the more micro-facets aligned to H
float G = GeomSmith(nDotV, nDotL, roughness); // Smaller the more micro-facets shadow
vec3 F = SchlickFresnel(hDotV, baseRefl); // Fresnel proportion of specular reflectance
vec3 spec = (D*G*F)/(4.0*nDotV*nDotL);
@ -138,25 +137,25 @@ vec3 pbr()
// kD = 1.0 - kS diffuse component is equal 1.0 - spec comonent
vec3 kD = vec3(1.0) - F;
// Mult kD by the inverse of metallnes , only non-metals should have diffuse light
// Mult kD by the inverse of metallnes, only non-metals should have diffuse light
kD *= 1.0 - metallic;
Lo += ((kD*albedo.rgb/PI + spec)*radiance*nDotL)*float(lights[i].enabled); // Angle of light has impact on result
lightAccum += ((kD*albedo.rgb/PI + spec)*radiance*nDotL)*float(lights[i].enabled); // Angle of light has impact on result
}
vec3 ambientFinal = (ambientColor + albedo)*ambient*0.5;
return (ambientFinal + Lo*ao + e);
return (ambientFinal + lightAccum*ao + emissive);
}
void main()
{
vec3 color = pbr();
vec3 color = ComputePBR();
// HDR tonemapping
color = pow(color,color + vec3(1.0));
color = pow(color, color + vec3(1.0));
// Gamma correction
color = err">pow(color,vec3(1.0/2.2));
color = nf">pow(color, vec3(1.0/2.2));
gl_FragColor = vec4(color,1.0);
}

+ 5
- 5
examples/shaders/resources/shaders/glsl100/pbr.vs View File

@ -51,16 +51,16 @@ mat3 transpose(mat3 m)
void main()
{
// calc binormal from vertex normal and tangent
// Compute binormal from vertex normal and tangent
vec3 vertexBinormal = cross(vertexNormal, vertexTangent);
// calc fragment normal based on normal transformations
// Compute fragment normal based on normal transformations
mat3 normalMatrix = transpose(inverse(mat3(matModel)));
// calc fragment position based on model transformations
// Compute fragment position based on model transformations
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0));
fragTexCoord = vertexTexCoord*2.0;
fragNormal = normalize(normalMatrix*vertexNormal);
vec3 fragTangent = normalize(normalMatrix*vertexTangent);
fragTangent = normalize(fragTangent - dot(fragTangent, fragNormal)*fragNormal);
@ -70,5 +70,5 @@ void main()
TBN = transpose(mat3(fragTangent, fragBinormal, fragNormal));
// Calculate final vertex position
gl_Position = mvp * vec4(vertexPosition, 1.0);
gl_Position = mvp*vec4(vertexPosition, 1.0);
}

+ 88
- 83
examples/shaders/resources/shaders/glsl120/pbr.fs View File

@ -22,7 +22,6 @@ varying vec3 fragNormal;
varying vec4 shadowPos;
varying mat3 TBN;
// Input uniform values
uniform int numOfLights;
uniform sampler2D albedoMap;
@ -53,102 +52,108 @@ uniform vec3 viewPos;
uniform vec3 ambientColor;
uniform float ambient;
// refl in range 0 to 1
// returns base reflectivity to 1
// incrase reflectivity when surface view at larger angle
vec3 schlickFresnel(float hDotV,vec3 refl)
// Reflectivity in range 0.0 to 1.0
// NOTE: Reflectivity is increased when surface view at larger angle
vec3 SchlickFresnel(float hDotV,vec3 refl)
{
return refl + (1.0 - refl) * pow(1.0 - err">hDotV,5.0);
return refl + (1.0 - refl)*pow(1.0 - nf">hDotV, 5.0);
}
float ggxDistribution(float nDotH,float roughness)
float GgxDistribution(float nDotH,float roughness)
{
float a = nf">roughness * roughness * roughness * roughness;
float d = nDotH * nDotH * (a - 1.0) + 1.0;
d = nf">PI * d * d;
return a / max(d,0.0000001);
float a = err">roughness*roughness*roughness*roughness;
float d = nDotH*nDotH*(a - 1.0) + 1.0;
d = err">PI*d*d;
return (a/max(d,0.0000001));
}
float geomSmith(float nDotV,float nDotL,float roughness)
float GeomSmith(float nDotV,float nDotL,float roughness)
{
float r = roughness + 1.0;
float k = nf">r * r / 8.0;
float ik = 1.0 - k;
float ggx1 = nDotV</span> / (nDotV * ik + k);
float ggx2 = nDotL</span> / (nDotL * ik + k);
return ggx1 * ggx2;
float r = roughness + 1.0;
float k = err">r*r/8.0;
float ik = 1.0 - k;
float ggx1 = nDotV/(nDotV*ik + k);
float ggx2 = nDotL/(nDotL*ik + k);
return ggx1*ggx2;
}
vec3 pbr(){
vec3 albedo = texture2D(albedoMap,vec2(fragTexCoord.x*tiling.x+offset.x,fragTexCoord.y*tiling.y+offset.y)).rgb;
albedo = vec3(albedoColor.x*albedo.x,albedoColor.y*albedo.y,albedoColor.z*albedo.z);
float metallic = clamp(metallicValue,0.0,1.0);
float roughness = clamp(roughnessValue,0.0,1.0);
float ao = clamp(aoValue,0.0,1.0);
if(useTexMRA == 1) {
vec4 mra = texture2D(mraMap, vec2(fragTexCoord.x * tiling.x + offset.x, fragTexCoord.y * tiling.y + offset.y));
metallic = clamp(mra.r+metallicValue,0.04,1.0);
roughness = clamp(mra.g+roughnessValue,0.04,1.0);
ao = (mra.b+aoValue)*0.5;
}
vec3 N = normalize(fragNormal);
if(useTexNormal == 1) {
N = texture2D(normalMap, vec2(fragTexCoord.x * tiling.x + offset.y, fragTexCoord.y * tiling.y + offset.y)).rgb;
N = normalize(N * 2.0 - 1.0);
N = normalize(N * TBN);
}
vec3 V = normalize(viewPos - fragPosition);
vec3 ComputePBR()
{
vec3 albedo = texture2D(albedoMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb;
albedo = vec3(albedoColor.x*albedo.x, albedoColor.y*albedo.y, albedoColor.z*albedo.z);
float metallic = clamp(metallicValue, 0.0, 1.0);
float roughness = clamp(roughnessValue, 0.0, 1.0);
float ao = clamp(aoValue, 0.0, 1.0);
if (useTexMRA == 1)
{
vec4 mra = texture2D(mraMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y));
metallic = clamp(mra.r + metallicValue, 0.04, 1.0);
roughness = clamp(mra.g + roughnessValue, 0.04, 1.0);
ao = (mra.b + aoValue)*0.5;
}
vec3 N = normalize(fragNormal);
if (useTexNormal == 1)
{
N = texture2D(normalMap, vec2(fragTexCoord.x*tiling.x + offset.y, fragTexCoord.y*tiling.y + offset.y)).rgb;
N = normalize(N*2.0 - 1.0);
N = normalize(N*TBN);
}
vec3 V = normalize(viewPos - fragPosition);
vec3 emissive = vec3(0);
emissive = (texture2D(emissiveMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb).g*emissiveColor.rgb*emissivePower*float(useTexEmissive);
// return N;//vec3(metallic,metallic,metallic);
// If dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
vec3 baseRefl = mix(vec3(0.04), albedo.rgb, metallic);
vec3 lightAccum = vec3(0.0); // Acumulate lighting lum
for (int i = 0; i < 4; i++)
{
vec3 L = normalize(lights[i].position - fragPosition); // Compute light vector
vec3 H = normalize(V + L); // Compute halfway bisecting vector
float dist = length(lights[i].position - fragPosition); // Compute distance to light
float attenuation = 1.0/(dist*dist*0.23); // Compute attenuation
vec3 radiance = lights[i].color.rgb*lights[i].intensity*attenuation; // Compute input radiance, light energy comming in
// Cook-Torrance BRDF distribution function
float nDotV = max(dot(N,V), 0.0000001);
float nDotL = max(dot(N,L), 0.0000001);
float hDotV = max(dot(H,V), 0.0);
float nDotH = max(dot(N,H), 0.0);
float D = GgxDistribution(nDotH, roughness); // Larger the more micro-facets aligned to H
float G = GeomSmith(nDotV, nDotL, roughness); // Smaller the more micro-facets shadow
vec3 F = SchlickFresnel(hDotV, baseRefl); // Fresnel proportion of specular reflectance
vec3 spec = (D*G*F)/(4.0*nDotV*nDotL);
vec3 e = vec3(0);
e = (texture2D(emissiveMap, vec2(fragTexCoord.x*tiling.x+offset.x, fragTexCoord.y*tiling.y+offset.y)).rgb).g * emissiveColor.rgb*emissivePower * float(useTexEmissive);
// Difuse and spec light can't be above 1.0
// kD = 1.0 - kS diffuse component is equal 1.0 - spec comonent
vec3 kD = vec3(1.0) - F;
//return N;//vec3(metallic,metallic,metallic);
//if dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
vec3 baseRefl = mix(vec3(0.04),albedo.rgb,metallic);
vec3 Lo = vec3(0.0); // acumulate lighting lum
for(int i=0;i<numOfLights;++i){
vec3 L = normalize(lights[i].position - fragPosition); // calc light vector
vec3 H = normalize(V + L); // calc halfway bisecting vector
float dist = length(lights[i].position - fragPosition); // calc distance to light
float attenuation = 1.0 / (dist * dist * 0.23); // calc attenuation
vec3 radiance = lights[i].color.rgb * lights[i].intensity * attenuation; // calc input radiance,light energy comming in
//Cook-Torrance BRDF distribution function
float nDotV = max(dot(N,V),0.0000001);
float nDotL = max(dot(N,L),0.0000001);
float hDotV = max(dot(H,V),0.0);
float nDotH = max(dot(N,H),0.0);
float D = ggxDistribution(nDotH,roughness); // larger the more micro-facets aligned to H
float G = geomSmith(nDotV,nDotL,roughness); // smaller the more micro-facets shadow
vec3 F = schlickFresnel(hDotV, baseRefl); // fresnel proportion of specular reflectance
vec3 spec = (D * G * F) / (4.0 * nDotV * nDotL);
// difuse and spec light can't be above 1.0
// kD = 1.0 - kS diffuse component is equal 1.0 - spec comonent
vec3 kD = vec3(1.0) - F;
//mult kD by the inverse of metallnes , only non-metals should have diffuse light
kD *= 1.0 - metallic;
Lo += ((kD * albedo.rgb / PI + spec) * radiance * nDotL)*float(lights[i].enabled); // angle of light has impact on result
}
vec3 ambient_final = (ambientColor + albedo)* ambient * 0.5;
return ambient_final+Lo*ao+e;
// Mult kD by the inverse of metallnes, only non-metals should have diffuse light
kD *= 1.0 - metallic;
lightAccum += ((kD*albedo.rgb/PI + spec)*radiance*nDotL)*float(lights[i].enabled); // Angle of light has impact on result
}
vec3 ambientFinal = (ambientColor + albedo)*ambient*0.5;
return (ambientFinal + lightAccum*ao + emissive);
}
void main()
{
vec3 color = pbr();
//HDR tonemapping
color = pow(color,color + vec3(1.0));
//gamma correction
color = pow(color,vec3(1.0/2.2));
vec3 color = ComputePBR();
gl_FragColor = vec4(color,1.0);
// HDR tonemapping
color = pow(color, color + vec3(1.0));
// Gamma correction
color = pow(color, vec3(1.0/2.2));
gl_FragColor = vec4(color,1.0);
}

+ 19
- 20
examples/shaders/resources/shaders/glsl120/pbr.vs View File

@ -1,11 +1,11 @@
#version 120
// Input vertex attributes
attribute vec3 vertexPosition;
attribute vec2 vertexTexCoord;
attribute vec3 vertexNormal;
attribute vec3 vertexTangent;
attribute vec4 vertexColor;
attribute vec3 vertexPosition;
attribute vec2 vertexTexCoord;
attribute vec3 vertexNormal;
attribute vec3 vertexTangent;
attribute vec4 vertexColor;
// Input uniform values
uniform mat4 mvp;
@ -26,17 +26,17 @@ const float normalOffset = 0.1;
// https://github.com/glslify/glsl-inverse
mat3 inverse(mat3 m)
{
float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];
float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];
float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];
float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];
float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];
float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];
float b01 = a22*a11 - a12*a21;
float b11 = -a22*a10 + a12*a20;
float b21 = a21*a10 - a11*a20;
float b01 = a22*a11 - a12*a21;
float b11 = -a22*a10 + a12*a20;
float b21 = a21*a10 - a11*a20;
float det = a00*b01 + a01*b11 + a02*b21;
float det = a00*b01 + a01*b11 + a02*b21;
return mat3(b01, (-a22*a01 + a02*a21), (a12*a01 - a02*a11),
return mat3(b01, (-a22*a01 + a02*a21), (a12*a01 - a02*a11),
b11, (a22*a00 - a02*a20), (-a12*a00 + a02*a10),
b21, (-a21*a00 + a01*a20), (a11*a00 - a01*a10))/det;
}
@ -44,24 +44,23 @@ mat3 inverse(mat3 m)
// https://github.com/glslify/glsl-transpose
mat3 transpose(mat3 m)
{
return mat3(m[0][0], m[1][0], m[2][0],
return mat3(m[0][0], m[1][0], m[2][0],
m[0][1], m[1][1], m[2][1],
m[0][2], m[1][2], m[2][2]);
}
void main()
{
// calc binormal from vertex normal and tangent
// Compute binormal from vertex normal and tangent
vec3 vertexBinormal = cross(vertexNormal, vertexTangent);
// calc fragment normal based on normal transformations
// Compute fragment normal based on normal transformations
mat3 normalMatrix = transpose(inverse(mat3(matModel)));
// calc fragment position based on model transformations
// Compute fragment position based on model transformations
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0));
fragTexCoord = vertexTexCoord*2.0;
fragNormal = normalize(normalMatrix*vertexNormal);
vec3 fragTangent = normalize(normalMatrix*vertexTangent);
fragTangent = normalize(fragTangent - dot(fragTangent, fragNormal)*fragNormal);
@ -71,5 +70,5 @@ void main()
TBN = transpose(mat3(fragTangent, fragBinormal, fragNormal));
// Calculate final vertex position
gl_Position = mvp * vec4(vertexPosition, 1.0);
gl_Position = mvp*vec4(vertexPosition, 1.0);
}

+ 9
- 9
examples/shaders/resources/shaders/glsl330/pbr.fs View File

@ -64,16 +64,16 @@ vec3 SchlickFresnel(float hDotV,vec3 refl)
float GgxDistribution(float nDotH,float roughness)
{
float a = nf">roughness * roughness * roughness * roughness;
float d = nDotH * nDotH * (a - 1.0) + 1.0;
d = nf">PI * d * d;
return nf">a / max(d,0.0000001);
float a = err">roughness*roughness*roughness*roughness;
float d = nDotH*nDotH*(a - 1.0) + 1.0;
d = err">PI*d*d;
return err">(a/max(d,0.0000001));
}
float GeomSmith(float nDotV,float nDotL,float roughness)
{
float r = roughness + 1.0;
float k = nf">r*r / 8.0;
float k = err">r*r/8.0;
float ik = 1.0 - k;
float ggx1 = nDotV/(nDotV*ik + k);
float ggx2 = nDotL/(nDotL*ik + k);
@ -91,7 +91,7 @@ vec3 ComputePBR()
if (useTexMRA == 1)
{
vec4 mra = texture(mraMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y))*useTexMRA;
vec4 mra = texture(mraMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y));
metallic = clamp(mra.r + metallicValue, 0.04, 1.0);
roughness = clamp(mra.g + roughnessValue, 0.04, 1.0);
ao = (mra.b + aoValue)*0.5;
@ -108,10 +108,10 @@ vec3 ComputePBR()
vec3 V = normalize(viewPos - fragPosition);
vec3 emissive = vec3(0);
emissive = (texture(emissiveMap, vec2(fragTexCoord.x*tiling.x+offset.x, fragTexCoord.y*tiling.y+offset.y)).rgb).g * emissiveColor.rgb*emissivePower * useTexEmissive;
emissive = (texture(emissiveMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb).g*emissiveColor.rgb*emissivePower*useTexEmissive;
// return N;//vec3(metallic,metallic,metallic);
// if dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
// If dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
vec3 baseRefl = mix(vec3(0.04), albedo.rgb, metallic);
vec3 lightAccum = vec3(0.0); // Acumulate lighting lum
@ -145,7 +145,7 @@ vec3 ComputePBR()
vec3 ambientFinal = (ambientColor + albedo)*ambient*0.5;
return ambientFinal + lightAccum*ao + emissive;
return (ambientFinal + lightAccum*ao + emissive);
}
void main()

+ 3
- 3
examples/shaders/resources/shaders/glsl330/pbr.vs View File

@ -27,12 +27,12 @@ void main()
{
// Compute binormal from vertex normal and tangent
vec3 vertexBinormal = cross(vertexNormal, vertexTangent);
// Compute fragment normal based on normal transformations
mat3 normalMatrix = transpose(inverse(mat3(matModel)));
// Compute fragment position based on model transformations
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0f));
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0));
fragTexCoord = vertexTexCoord*2.0;
fragNormal = normalize(normalMatrix*vertexNormal);

Loading…
Cancel
Save