Browse Source

Remove rres support

Let the user choose if using rres external library
pull/421/head
Ray 7 years ago
parent
commit
a6f9cc5629
8 changed files with 2 additions and 1149 deletions
  1. +0
    -13
      src/audio.c
  2. +0
    -592
      src/external/tinfl.c
  3. +0
    -16
      src/raylib.h
  4. +0
    -483
      src/rres.h
  5. +1
    -28
      src/text.c
  6. +1
    -12
      src/textures.c
  7. +0
    -3
      src/utils.c
  8. +0
    -2
      src/utils.h

+ 0
- 13
src/audio.c View File

@ -812,19 +812,6 @@ Wave LoadWave(const char *fileName)
#endif
#if defined(SUPPORT_FILEFORMAT_FLAC)
else if (IsFileExtension(fileName, ".flac")) wave = LoadFLAC(fileName);
#endif
#if !defined(AUDIO_STANDALONE)
else if (IsFileExtension(fileName, ".rres"))
{
RRES rres = LoadResource(fileName, 0);
// NOTE: Parameters for RRES_TYPE_WAVE are: sampleCount, sampleRate, sampleSize, channels
if (rres[0].type == RRES_TYPE_WAVE) wave = LoadWaveEx(rres[0].data, rres[0].param1, rres[0].param2, rres[0].param3, rres[0].param4);
else TraceLog(LOG_WARNING, "[%s] Resource file does not contain wave data", fileName);
UnloadResource(rres);
}
#endif
else TraceLog(LOG_WARNING, "[%s] Audio fileformat not supported, it can't be loaded", fileName);

+ 0
- 592
src/external/tinfl.c View File

@ -1,592 +0,0 @@
/* tinfl.c v1.11 - public domain inflate with zlib header parsing/adler32 checking (inflate-only subset of miniz.c)
See "unlicense" statement at the end of this file.
Rich Geldreich <richgel99@gmail.com>, last updated May 20, 2011
Implements RFC 1950: http://www.ietf.org/rfc/rfc1950.txt and RFC 1951: http://www.ietf.org/rfc/rfc1951.txt
The entire decompressor coroutine is implemented in tinfl_decompress(). The other functions are optional high-level helpers.
*/
#ifndef TINFL_HEADER_INCLUDED
#define TINFL_HEADER_INCLUDED
#include <stdlib.h>
typedef unsigned char mz_uint8;
typedef signed short mz_int16;
typedef unsigned short mz_uint16;
typedef unsigned int mz_uint32;
typedef unsigned int mz_uint;
typedef unsigned long long mz_uint64;
#if defined(_M_IX86) || defined(_M_X64)
// Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES to 1 if integer loads and stores to unaligned addresses are acceptable on the target platform (slightly faster).
#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1
// Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian.
#define MINIZ_LITTLE_ENDIAN 1
#endif
#if defined(_WIN64) || defined(__MINGW64__) || defined(_LP64) || defined(__LP64__)
// Set MINIZ_HAS_64BIT_REGISTERS to 1 if the processor has 64-bit general purpose registers (enables 64-bit bitbuffer in inflator)
#define MINIZ_HAS_64BIT_REGISTERS 1
#endif
// Works around MSVC's spammy "warning C4127: conditional expression is constant" message.
#ifdef _MSC_VER
#define MZ_MACRO_END while (0, 0)
#else
#define MZ_MACRO_END while (0)
#endif
// Decompression flags used by tinfl_decompress().
// TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the input is a raw deflate stream.
// TINFL_FLAG_HAS_MORE_INPUT: If set, there are more input bytes available beyond the end of the supplied input buffer. If clear, the input buffer contains all remaining input.
// TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large enough to hold the entire decompressed stream. If clear, the output buffer is at least the size of the dictionary (typically 32KB).
// TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the decompressed bytes.
enum
{
TINFL_FLAG_PARSE_ZLIB_HEADER = 1,
TINFL_FLAG_HAS_MORE_INPUT = 2,
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF = 4,
TINFL_FLAG_COMPUTE_ADLER32 = 8
};
// High level decompression functions:
// tinfl_decompress_mem_to_heap() decompresses a block in memory to a heap block allocated via malloc().
// On entry:
// pSrc_buf, src_buf_len: Pointer and size of the Deflate or zlib source data to decompress.
// On return:
// Function returns a pointer to the decompressed data, or NULL on failure.
// *pOut_len will be set to the decompressed data's size, which could be larger than src_buf_len on uncompressible data.
// The caller must free() the returned block when it's no longer needed.
void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags);
// tinfl_decompress_mem_to_mem() decompresses a block in memory to another block in memory.
// Returns TINFL_DECOMPRESS_MEM_TO_MEM_FAILED on failure, or the number of bytes written on success.
#define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((size_t)(-1))
size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags);
// tinfl_decompress_mem_to_callback() decompresses a block in memory to an internal 32KB buffer, and a user provided callback function will be called to flush the buffer.
// Returns 1 on success or 0 on failure.
typedef int (*tinfl_put_buf_func_ptr)(const void* pBuf, int len, void *pUser);
int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags);
struct tinfl_decompressor_tag; typedef struct tinfl_decompressor_tag tinfl_decompressor;
// Max size of LZ dictionary.
#define TINFL_LZ_DICT_SIZE 32768
// Return status.
typedef enum
{
TINFL_STATUS_BAD_PARAM = -3,
TINFL_STATUS_ADLER32_MISMATCH = -2,
TINFL_STATUS_FAILED = -1,
TINFL_STATUS_DONE = 0,
TINFL_STATUS_NEEDS_MORE_INPUT = 1,
TINFL_STATUS_HAS_MORE_OUTPUT = 2
} tinfl_status;
// Initializes the decompressor to its initial state.
#define tinfl_init(r) do { (r)->m_state = 0; } MZ_MACRO_END
#define tinfl_get_adler32(r) (r)->m_check_adler32
// Main low-level decompressor coroutine function. This is the only function actually needed for decompression. All the other functions are just high-level helpers for improved usability.
// This is a universal API, i.e. it can be used as a building block to build any desired higher level decompression API. In the limit case, it can be called once per every byte input or output.
tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags);
// Internal/private bits follow.
enum
{
TINFL_MAX_HUFF_TABLES = 3, TINFL_MAX_HUFF_SYMBOLS_0 = 288, TINFL_MAX_HUFF_SYMBOLS_1 = 32, TINFL_MAX_HUFF_SYMBOLS_2 = 19,
TINFL_FAST_LOOKUP_BITS = 10, TINFL_FAST_LOOKUP_SIZE = 1 << TINFL_FAST_LOOKUP_BITS
};
typedef struct
{
mz_uint8 m_code_size[TINFL_MAX_HUFF_SYMBOLS_0];
mz_int16 m_look_up[TINFL_FAST_LOOKUP_SIZE], m_tree[TINFL_MAX_HUFF_SYMBOLS_0 * 2];
} tinfl_huff_table;
#if MINIZ_HAS_64BIT_REGISTERS
#define TINFL_USE_64BIT_BITBUF 1
#endif
#if TINFL_USE_64BIT_BITBUF
typedef mz_uint64 tinfl_bit_buf_t;
#define TINFL_BITBUF_SIZE (64)
#else
typedef mz_uint32 tinfl_bit_buf_t;
#define TINFL_BITBUF_SIZE (32)
#endif
struct tinfl_decompressor_tag
{
mz_uint32 m_state, m_num_bits, m_zhdr0, m_zhdr1, m_z_adler32, m_final, m_type, m_check_adler32, m_dist, m_counter, m_num_extra, m_table_sizes[TINFL_MAX_HUFF_TABLES];
tinfl_bit_buf_t m_bit_buf;
size_t m_dist_from_out_buf_start;
tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES];
mz_uint8 m_raw_header[4], m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0 + TINFL_MAX_HUFF_SYMBOLS_1 + 137];
};
#endif // #ifdef TINFL_HEADER_INCLUDED
// ------------------- End of Header: Implementation follows. (If you only want the header, define MINIZ_HEADER_FILE_ONLY.)
#ifndef TINFL_HEADER_FILE_ONLY
#include <string.h>
// MZ_MALLOC, etc. are only used by the optional high-level helper functions.
#ifdef MINIZ_NO_MALLOC
#define MZ_MALLOC(x) NULL
#define MZ_FREE(x) x, ((void)0)
#define MZ_REALLOC(p, x) NULL
#else
#define MZ_MALLOC(x) malloc(x)
#define MZ_FREE(x) free(x)
#define MZ_REALLOC(p, x) realloc(p, x)
#endif
#define MZ_MAX(a,b) (((a)>(b))?(a):(b))
#define MZ_MIN(a,b) (((a)<(b))?(a):(b))
#define MZ_CLEAR_OBJ(obj) memset(&(obj), 0, sizeof(obj))
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
#define MZ_READ_LE16(p) *((const mz_uint16 *)(p))
#define MZ_READ_LE32(p) *((const mz_uint32 *)(p))
#else
#define MZ_READ_LE16(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U))
#define MZ_READ_LE32(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U) | ((mz_uint32)(((const mz_uint8 *)(p))[2]) << 16U) | ((mz_uint32)(((const mz_uint8 *)(p))[3]) << 24U))
#endif
#define TINFL_MEMCPY(d, s, l) memcpy(d, s, l)
#define TINFL_MEMSET(p, c, l) memset(p, c, l)
#define TINFL_CR_BEGIN switch(r->m_state) { case 0:
#define TINFL_CR_RETURN(state_index, result) do { status = result; r->m_state = state_index; goto common_exit; case state_index:; } MZ_MACRO_END
#define TINFL_CR_RETURN_FOREVER(state_index, result) do { for ( ; ; ) { TINFL_CR_RETURN(state_index, result); } } MZ_MACRO_END
#define TINFL_CR_FINISH }
// TODO: If the caller has indicated that there's no more input, and we attempt to read beyond the input buf, then something is wrong with the input because the inflator never
// reads ahead more than it needs to. Currently TINFL_GET_BYTE() pads the end of the stream with 0's in this scenario.
#define TINFL_GET_BYTE(state_index, c) do { \
if (pIn_buf_cur >= pIn_buf_end) { \
for ( ; ; ) { \
if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { \
TINFL_CR_RETURN(state_index, TINFL_STATUS_NEEDS_MORE_INPUT); \
if (pIn_buf_cur < pIn_buf_end) { \
c = *pIn_buf_cur++; \
break; \
} \
} else { \
c = 0; \
break; \
} \
} \
} else c = *pIn_buf_cur++; } MZ_MACRO_END
#define TINFL_NEED_BITS(state_index, n) do { mz_uint c; TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; } while (num_bits < (mz_uint)(n))
#define TINFL_SKIP_BITS(state_index, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END
#define TINFL_GET_BITS(state_index, b, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } b = bit_buf & ((1 << (n)) - 1); bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END
// TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes remaining in the input buffer falls below 2.
// It reads just enough bytes from the input stream that are needed to decode the next Huffman code (and absolutely no more). It works by trying to fully decode a
// Huffman code by using whatever bits are currently present in the bit buffer. If this fails, it reads another byte, and tries again until it succeeds or until the
// bit buffer contains >=15 bits (deflate's max. Huffman code size).
#define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \
do { \
temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \
if (temp >= 0) { \
code_len = temp >> 9; \
if ((code_len) && (num_bits >= code_len)) \
break; \
} else if (num_bits > TINFL_FAST_LOOKUP_BITS) { \
code_len = TINFL_FAST_LOOKUP_BITS; \
do { \
temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
} while ((temp < 0) && (num_bits >= (code_len + 1))); if (temp >= 0) break; \
} TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; \
} while (num_bits < 15);
// TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex than you would initially expect because the zlib API expects the decompressor to never read
// beyond the final byte of the deflate stream. (In other words, when this macro wants to read another byte from the input, it REALLY needs another byte in order to fully
// decode the next Huffman code.) Handling this properly is particularly important on raw deflate (non-zlib) streams, which aren't followed by a byte aligned adler-32.
// The slow path is only executed at the very end of the input buffer.
#define TINFL_HUFF_DECODE(state_index, sym, pHuff) do { \
int temp; mz_uint code_len, c; \
if (num_bits < 15) { \
if ((pIn_buf_end - pIn_buf_cur) < 2) { \
TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \
} else { \
bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | (((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); pIn_buf_cur += 2; num_bits += 16; \
} \
} \
if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) \
code_len = temp >> 9, temp &= 511; \
else { \
code_len = TINFL_FAST_LOOKUP_BITS; do { temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; } while (temp < 0); \
} sym = temp; bit_buf >>= code_len; num_bits -= code_len; } MZ_MACRO_END
tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags)
{
static const int s_length_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 };
static const int s_length_extra[31]= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 };
static const int s_dist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0};
static const int s_dist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
static const mz_uint8 s_length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
static const int s_min_table_sizes[3] = { 257, 1, 4 };
tinfl_status status = TINFL_STATUS_FAILED; mz_uint32 num_bits, dist, counter, num_extra; tinfl_bit_buf_t bit_buf;
const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end = pIn_buf_next + *pIn_buf_size;
mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end = pOut_buf_next + *pOut_buf_size;
size_t out_buf_size_mask = (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) ? (size_t)-1 : ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1, dist_from_out_buf_start;
// Ensure the output buffer's size is a power of 2, unless the output buffer is large enough to hold the entire output file (in which case it doesn't matter).
if (((out_buf_size_mask + 1) & out_buf_size_mask) || (pOut_buf_next < pOut_buf_start)) { *pIn_buf_size = *pOut_buf_size = 0; return TINFL_STATUS_BAD_PARAM; }
num_bits = r->m_num_bits; bit_buf = r->m_bit_buf; dist = r->m_dist; counter = r->m_counter; num_extra = r->m_num_extra; dist_from_out_buf_start = r->m_dist_from_out_buf_start;
TINFL_CR_BEGIN
bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0; r->m_z_adler32 = r->m_check_adler32 = 1;
if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER)
{
TINFL_GET_BYTE(1, r->m_zhdr0); TINFL_GET_BYTE(2, r->m_zhdr1);
counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) || (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8));
if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) || ((out_buf_size_mask + 1) < (size_t)(1U << (8U + (r->m_zhdr0 >> 4)))));
if (counter) { TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED); }
}
do
{
TINFL_GET_BITS(3, r->m_final, 3); r->m_type = r->m_final >> 1;
if (r->m_type == 0)
{
TINFL_SKIP_BITS(5, num_bits & 7);
for (counter = 0; counter < 4; ++counter) { if (num_bits) TINFL_GET_BITS(6, r->m_raw_header[counter], 8); else TINFL_GET_BYTE(7, r->m_raw_header[counter]); }
if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) != (mz_uint)(0xFFFF ^ (r->m_raw_header[2] | (r->m_raw_header[3] << 8)))) { TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED); }
while ((counter) && (num_bits))
{
TINFL_GET_BITS(51, dist, 8);
while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT); }
*pOut_buf_cur++ = (mz_uint8)dist;
counter--;
}
while (counter)
{
size_t n; while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT); }
while (pIn_buf_cur >= pIn_buf_end)
{
if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT)
{
TINFL_CR_RETURN(38, TINFL_STATUS_NEEDS_MORE_INPUT);
}
else
{
TINFL_CR_RETURN_FOREVER(40, TINFL_STATUS_FAILED);
}
}
n = MZ_MIN(MZ_MIN((size_t)(pOut_buf_end - pOut_buf_cur), (size_t)(pIn_buf_end - pIn_buf_cur)), counter);
TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n); pIn_buf_cur += n; pOut_buf_cur += n; counter -= (mz_uint)n;
}
}
else if (r->m_type == 3)
{
TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED);
}
else
{
if (r->m_type == 1)
{
mz_uint8 *p = r->m_tables[0].m_code_size; mz_uint i;
r->m_table_sizes[0] = 288; r->m_table_sizes[1] = 32; TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32);
for ( i = 0; i <= 143; ++i) *p++ = 8; for ( ; i <= 255; ++i) *p++ = 9; for ( ; i <= 279; ++i) *p++ = 7; for ( ; i <= 287; ++i) *p++ = 8;
}
else
{
for (counter = 0; counter < 3; counter++) { TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]); r->m_table_sizes[counter] += s_min_table_sizes[counter]; }
MZ_CLEAR_OBJ(r->m_tables[2].m_code_size); for (counter = 0; counter < r->m_table_sizes[2]; counter++) { mz_uint s; TINFL_GET_BITS(14, s, 3); r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s; }
r->m_table_sizes[2] = 19;
}
for ( ; (int)r->m_type >= 0; r->m_type--)
{
int tree_next, tree_cur; tinfl_huff_table *pTable;
mz_uint i, j, used_syms, total, sym_index, next_code[17], total_syms[16]; pTable = &r->m_tables[r->m_type]; MZ_CLEAR_OBJ(total_syms); MZ_CLEAR_OBJ(pTable->m_look_up); MZ_CLEAR_OBJ(pTable->m_tree);
for (i = 0; i < r->m_table_sizes[r->m_type]; ++i) total_syms[pTable->m_code_size[i]]++;
used_syms = 0, total = 0; next_code[0] = next_code[1] = 0;
for (i = 1; i <= 15; ++i) { used_syms += total_syms[i]; next_code[i + 1] = (total = ((total + total_syms[i]) << 1)); }
if ((65536 != total) && (used_syms > 1))
{
TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED);
}
for (tree_next = -1, sym_index = 0; sym_index < r->m_table_sizes[r->m_type]; ++sym_index)
{
mz_uint rev_code = 0, l, cur_code, code_size = pTable->m_code_size[sym_index]; if (!code_size) continue;
cur_code = next_code[code_size]++; for (l = code_size; l > 0; l--, cur_code >>= 1) rev_code = (rev_code << 1) | (cur_code & 1);
if (code_size <= TINFL_FAST_LOOKUP_BITS) { mz_int16 k = (mz_int16)((code_size << 9) | sym_index); while (rev_code < TINFL_FAST_LOOKUP_SIZE) { pTable->m_look_up[rev_code] = k; rev_code += (1 << code_size); } continue; }
if (0 == (tree_cur = pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)])) { pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] = (mz_int16)tree_next; tree_cur = tree_next; tree_next -= 2; }
rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1);
for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--)
{
tree_cur -= ((rev_code >>= 1) & 1);
if (!pTable->m_tree[-tree_cur - 1]) { pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next; tree_cur = tree_next; tree_next -= 2; } else tree_cur = pTable->m_tree[-tree_cur - 1];
}
tree_cur -= ((rev_code >>= 1) & 1); pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index;
}
if (r->m_type == 2)
{
for (counter = 0; counter < (r->m_table_sizes[0] + r->m_table_sizes[1]); )
{
mz_uint s; TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]); if (dist < 16) { r->m_len_codes[counter++] = (mz_uint8)dist; continue; }
if ((dist == 16) && (!counter))
{
TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED);
}
num_extra = "\02\03\07"[dist - 16]; TINFL_GET_BITS(18, s, num_extra); s += "\03\03\013"[dist - 16];
TINFL_MEMSET(r->m_len_codes + counter, (dist == 16) ? r->m_len_codes[counter - 1] : 0, s); counter += s;
}
if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter)
{
TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED);
}
TINFL_MEMCPY(r->m_tables[0].m_code_size, r->m_len_codes, r->m_table_sizes[0]); TINFL_MEMCPY(r->m_tables[1].m_code_size, r->m_len_codes + r->m_table_sizes[0], r->m_table_sizes[1]);
}
}
for ( ; ; )
{
mz_uint8 *pSrc;
for ( ; ; )
{
if (((pIn_buf_end - pIn_buf_cur) < 4) || ((pOut_buf_end - pOut_buf_cur) < 2))
{
TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]);
if (counter >= 256)
break;
while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT); }
*pOut_buf_cur++ = (mz_uint8)counter;
}
else
{
int sym2; mz_uint code_len;
#if TINFL_USE_64BIT_BITBUF
if (num_bits < 30) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits); pIn_buf_cur += 4; num_bits += 32; }
#else
if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; }
#endif
if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0)
code_len = sym2 >> 9;
else
{
code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0);
}
counter = sym2; bit_buf >>= code_len; num_bits -= code_len;
if (counter & 256)
break;
#if !TINFL_USE_64BIT_BITBUF
if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; }
#endif
if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0)
code_len = sym2 >> 9;
else
{
code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0);
}
bit_buf >>= code_len; num_bits -= code_len;
pOut_buf_cur[0] = (mz_uint8)counter;
if (sym2 & 256)
{
pOut_buf_cur++;
counter = sym2;
break;
}
pOut_buf_cur[1] = (mz_uint8)sym2;
pOut_buf_cur += 2;
}
}
if ((counter &= 511) == 256) break;
num_extra = s_length_extra[counter - 257]; counter = s_length_base[counter - 257];
if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(25, extra_bits, num_extra); counter += extra_bits; }
TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]);
num_extra = s_dist_extra[dist]; dist = s_dist_base[dist];
if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(27, extra_bits, num_extra); dist += extra_bits; }
dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start;
if ((dist > dist_from_out_buf_start) && (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))
{
TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED);
}
pSrc = pOut_buf_start + ((dist_from_out_buf_start - dist) & out_buf_size_mask);
if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end)
{
while (counter--)
{
while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT); }
*pOut_buf_cur++ = pOut_buf_start[(dist_from_out_buf_start++ - dist) & out_buf_size_mask];
}
continue;
}
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
else if ((counter >= 9) && (counter <= dist))
{
const mz_uint8 *pSrc_end = pSrc + (counter & ~7);
do
{
((mz_uint32 *)pOut_buf_cur)[0] = ((const mz_uint32 *)pSrc)[0];
((mz_uint32 *)pOut_buf_cur)[1] = ((const mz_uint32 *)pSrc)[1];
pOut_buf_cur += 8;
} while ((pSrc += 8) < pSrc_end);
if ((counter &= 7) < 3)
{
if (counter)
{
pOut_buf_cur[0] = pSrc[0];
if (counter > 1)
pOut_buf_cur[1] = pSrc[1];
pOut_buf_cur += counter;
}
continue;
}
}
#endif
do
{
pOut_buf_cur[0] = pSrc[0];
pOut_buf_cur[1] = pSrc[1];
pOut_buf_cur[2] = pSrc[2];
pOut_buf_cur += 3; pSrc += 3;
} while ((int)(counter -= 3) > 2);
if ((int)counter > 0)
{
pOut_buf_cur[0] = pSrc[0];
if ((int)counter > 1)
pOut_buf_cur[1] = pSrc[1];
pOut_buf_cur += counter;
}
}
}
} while (!(r->m_final & 1));
if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER)
{
TINFL_SKIP_BITS(32, num_bits & 7); for (counter = 0; counter < 4; ++counter) { mz_uint s; if (num_bits) TINFL_GET_BITS(41, s, 8); else TINFL_GET_BYTE(42, s); r->m_z_adler32 = (r->m_z_adler32 << 8) | s; }
}
TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE);
TINFL_CR_FINISH
common_exit:
r->m_num_bits = num_bits; r->m_bit_buf = bit_buf; r->m_dist = dist; r->m_counter = counter; r->m_num_extra = num_extra; r->m_dist_from_out_buf_start = dist_from_out_buf_start;
*pIn_buf_size = pIn_buf_cur - pIn_buf_next; *pOut_buf_size = pOut_buf_cur - pOut_buf_next;
if ((decomp_flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) && (status >= 0))
{
const mz_uint8 *ptr = pOut_buf_next; size_t buf_len = *pOut_buf_size;
mz_uint32 i, s1 = r->m_check_adler32 & 0xffff, s2 = r->m_check_adler32 >> 16; size_t block_len = buf_len % 5552;
while (buf_len)
{
for (i = 0; i + 7 < block_len; i += 8, ptr += 8)
{
s1 += ptr[0], s2 += s1; s1 += ptr[1], s2 += s1; s1 += ptr[2], s2 += s1; s1 += ptr[3], s2 += s1;
s1 += ptr[4], s2 += s1; s1 += ptr[5], s2 += s1; s1 += ptr[6], s2 += s1; s1 += ptr[7], s2 += s1;
}
for ( ; i < block_len; ++i) s1 += *ptr++, s2 += s1;
s1 %= 65521U, s2 %= 65521U; buf_len -= block_len; block_len = 5552;
}
r->m_check_adler32 = (s2 << 16) + s1; if ((status == TINFL_STATUS_DONE) && (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) && (r->m_check_adler32 != r->m_z_adler32)) status = TINFL_STATUS_ADLER32_MISMATCH;
}
return status;
}
// Higher level helper functions.
void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags)
{
tinfl_decompressor decomp; void *pBuf = NULL, *pNew_buf; size_t src_buf_ofs = 0, out_buf_capacity = 0;
*pOut_len = 0;
tinfl_init(&decomp);
for ( ; ; )
{
size_t src_buf_size = src_buf_len - src_buf_ofs, dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity;
tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8*)pSrc_buf + src_buf_ofs, &src_buf_size, (mz_uint8*)pBuf, pBuf ? (mz_uint8*)pBuf + *pOut_len : NULL, &dst_buf_size,
(flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT))
{
MZ_FREE(pBuf); *pOut_len = 0; return NULL;
}
src_buf_ofs += src_buf_size;
*pOut_len += dst_buf_size;
if (status == TINFL_STATUS_DONE) break;
new_out_buf_capacity = out_buf_capacity * 2; if (new_out_buf_capacity < 128) new_out_buf_capacity = 128;
pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity);
if (!pNew_buf)
{
MZ_FREE(pBuf); *pOut_len = 0; return NULL;
}
pBuf = pNew_buf; out_buf_capacity = new_out_buf_capacity;
}
return pBuf;
}
size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags)
{
tinfl_decompressor decomp; tinfl_status status; tinfl_init(&decomp);
status = tinfl_decompress(&decomp, (const mz_uint8*)pSrc_buf, &src_buf_len, (mz_uint8*)pOut_buf, (mz_uint8*)pOut_buf, &out_buf_len, (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED : out_buf_len;
}
int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags)
{
int result = 0;
tinfl_decompressor decomp;
mz_uint8 *pDict = (mz_uint8*)MZ_MALLOC(TINFL_LZ_DICT_SIZE); size_t in_buf_ofs = 0, dict_ofs = 0;
if (!pDict)
return TINFL_STATUS_FAILED;
tinfl_init(&decomp);
for ( ; ; )
{
size_t in_buf_size = *pIn_buf_size - in_buf_ofs, dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs;
tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8*)pIn_buf + in_buf_ofs, &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size,
(flags & ~(TINFL_FLAG_HAS_MORE_INPUT | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)));
in_buf_ofs += in_buf_size;
if ((dst_buf_size) && (!(*pPut_buf_func)(pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user)))
break;
if (status != TINFL_STATUS_HAS_MORE_OUTPUT)
{
result = (status == TINFL_STATUS_DONE);
break;
}
dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1);
}
MZ_FREE(pDict);
*pIn_buf_size = in_buf_ofs;
return result;
}
#endif // #ifndef TINFL_HEADER_FILE_ONLY
/*
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>
*/

+ 0
- 16
src/raylib.h View File

@ -495,22 +495,6 @@ typedef struct AudioStream {
unsigned int buffers[2]; // OpenAL audio buffers (double buffering)
} AudioStream;
// rRES data returned when reading a resource,
// it contains all required data for user (24 byte)
typedef struct RRESData {
unsigned int type; // Resource type (4 byte)
unsigned int param1; // Resouce parameter 1 (4 byte)
unsigned int param2; // Resouce parameter 2 (4 byte)
unsigned int param3; // Resouce parameter 3 (4 byte)
unsigned int param4; // Resouce parameter 4 (4 byte)
void *data; // Resource data pointer (4 byte)
} RRESData;
// RRES type (pointer to RRESData array)
typedef struct RRESData *RRES;
// Head-Mounted-Display device parameters
typedef struct VrDeviceInfo {
int hResolution; // HMD horizontal resolution in pixels

+ 0
- 483
src/rres.h View File

@ -1,483 +0,0 @@
/**********************************************************************************************
*
* rres v1.0 - raylib resource (rRES) custom fileformat management functions
*
* CONFIGURATION:
*
* #define RREM_IMPLEMENTATION
* Generates the implementation of the library into the included file.
* If not defined, the library is in header only mode and can be included in other headers
* or source files without problems. But only ONE file should hold the implementation.
*
* DEPENDENCIES:
* tinfl - DEFLATE decompression functions
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2016-2017 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
/*
References:
RIFF file-format: http://www.johnloomis.org/cpe102/asgn/asgn1/riff.html
ZIP file-format: https://en.wikipedia.org/wiki/Zip_(file_format)
http://www.onicos.com/staff/iz/formats/zip.html
XNB file-format: http://xbox.create.msdn.com/en-US/sample/xnb_format
*/
#ifndef RRES_H
#define RRES_H
#if !defined(RRES_STANDALONE)
#include "raylib.h"
#endif
//#define RRES_STATIC
#ifdef RRES_STATIC
#define RRESDEF static // Functions just visible to module including this file
#else
#ifdef __cplusplus
#define RRESDEF extern "C" // Functions visible from other files (no name mangling of functions in C++)
#else
#define RRESDEF extern // Functions visible from other files
#endif
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define MAX_RESOURCES_SUPPORTED 256
//----------------------------------------------------------------------------------
// Types and Structures Definition
// NOTE: Some types are required for RAYGUI_STANDALONE usage
//----------------------------------------------------------------------------------
#if defined(RRES_STANDALONE)
// rRES data returned when reading a resource, it contains all required data for user (24 byte)
// NOTE: Using void *data pointer, so we can load to image.data, wave.data, mesh.*, (unsigned char *)
typedef struct RRESData {
unsigned int type; // Resource type (4 byte)
unsigned int param1; // Resouce parameter 1 (4 byte)
unsigned int param2; // Resouce parameter 2 (4 byte)
unsigned int param3; // Resouce parameter 3 (4 byte)
unsigned int param4; // Resouce parameter 4 (4 byte)
void *data; // Resource data pointer (4 byte)
} RRESData;
// RRES type (pointer to RRESData array)
typedef struct RRESData *RRES; // Resource pointer
// RRESData type
typedef enum {
RRES_TYPE_RAW = 0,
RRES_TYPE_IMAGE,
RRES_TYPE_WAVE,
RRES_TYPE_VERTEX,
RRES_TYPE_TEXT,
RRES_TYPE_FONT_IMAGE,
RRES_TYPE_FONT_CHARDATA, // CharInfo { int value, recX, recY, recWidth, recHeight, offsetX, offsetY, xAdvance }
RRES_TYPE_DIRECTORY
} RRESDataType;
// Parameters information depending on resource type
// RRES_TYPE_RAW params: <custom>
// RRES_TYPE_IMAGE params: width, height, mipmaps, format
// RRES_TYPE_WAVE params: sampleCount, sampleRate, sampleSize, channels
// RRES_TYPE_VERTEX params: vertexCount, vertexType, vertexFormat // Use masks instead?
// RRES_TYPE_TEXT params: charsCount, cultureCode
// RRES_TYPE_FONT_IMAGE params: width, height, format, mipmaps;
// RRES_TYPE_FONT_CHARDATA params: charsCount, baseSize
// RRES_TYPE_DIRECTORY params: fileCount, directoryCount
// SpriteFont = RRES_TYPE_FONT_IMAGE chunk + RRES_TYPE_FONT_DATA chunk
// Mesh = multiple RRES_TYPE_VERTEX chunks
#endif
//----------------------------------------------------------------------------------
// Global variables
//----------------------------------------------------------------------------------
//...
//----------------------------------------------------------------------------------
// Module Functions Declaration
//----------------------------------------------------------------------------------
//RRESDEF RRESData LoadResourceData(const char *rresFileName, int rresId, int part);
RRESDEF RRES LoadResource(const char *fileName, int rresId);
RRESDEF void UnloadResource(RRES rres);
/*
QUESTION: How to load each type of data from RRES ?
rres->type == RRES_TYPE_RAW
unsigned char data = (unsigned char *)rres[0]->data;
rres->type == RRES_TYPE_IMAGE
Image image;
image.data = rres[0]->data; // Be careful, duplicate pointer
image.width = rres[0]->param1;
image.height = rres[0]->param2;
image.mipmaps = rres[0]->param3;
image.format = rres[0]->format;
rres->type == RRES_TYPE_WAVE
Wave wave;
wave.data = rres[0]->data;
wave.sampleCount = rres[0]->param1;
wave.sampleRate = rres[0]->param2;
wave.sampleSize = rres[0]->param3;
wave.channels = rres[0]->param4;
rres->type == RRES_TYPE_VERTEX (multiple parts)
Mesh mesh;
mesh.vertexCount = rres[0]->param1;
mesh.vertices = (float *)rres[0]->data;
mesh.texcoords = (float *)rres[1]->data;
mesh.normals = (float *)rres[2]->data;
mesh.tangents = (float *)rres[3]->data;
mesh.tangents = (unsigned char *)rres[4]->data;
rres->type == RRES_TYPE_TEXT
unsigned char *text = (unsigned char *)rres->data;
Shader shader = LoadShaderText(text, rres->param1); Shader LoadShaderText(const char *shdrText, int length);
rres->type == RRES_TYPE_FONT_IMAGE (multiple parts)
rres->type == RRES_TYPE_FONT_CHARDATA
SpriteFont font;
font.texture = LoadTextureFromImage(image); // rres[0]
font.chars = (CharInfo *)rres[1]->data;
font.charsCount = rres[1]->param1;
font.baseSize = rres[1]->param2;
rres->type == RRES_TYPE_DIRECTORY
unsigned char *fileNames = (unsigned char *)rres[0]->data; // fileNames separed by \n
int filesCount = rres[0]->param1;
*/
#endif // RRES_H
/***********************************************************************************
*
* RRES IMPLEMENTATION
*
************************************************************************************/
#if defined(RRES_IMPLEMENTATION)
#include <stdio.h> // Required for: FILE, fopen(), fclose()
// Check if custom malloc/free functions defined, if not, using standard ones
#if !defined(RRES_MALLOC)
#include <stdlib.h> // Required for: malloc(), free()
#define RRES_MALLOC(size) malloc(size)
#define RRES_FREE(ptr) free(ptr)
#endif
#include "external/tinfl.c" // Required for: tinfl_decompress_mem_to_mem()
// NOTE: DEFLATE algorythm data decompression
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
//...
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// rRES file header (8 byte)
typedef struct {
char id[4]; // File identifier: rRES (4 byte)
unsigned short version; // File version and subversion (2 byte)
unsigned short count; // Number of resources in this file (2 byte)
} RRESFileHeader;
// rRES info header, every resource includes this header (16 byte + 16 byte)
typedef struct {
unsigned int id; // Resource unique identifier (4 byte)
unsigned char dataType; // Resource data type (1 byte)
unsigned char compType; // Resource data compression type (1 byte)
unsigned char cryptoType; // Resource data encryption type (1 byte)
unsigned char partsCount; // Resource data parts count, used for splitted data (1 byte)
unsigned int dataSize; // Resource data size (compressed or not, only DATA) (4 byte)
unsigned int uncompSize; // Resource data size (uncompressed, only DATA) (4 byte)
unsigned int param1; // Resouce parameter 1 (4 byte)
unsigned int param2; // Resouce parameter 2 (4 byte)
unsigned int param3; // Resouce parameter 3 (4 byte)
unsigned int param4; // Resouce parameter 4 (4 byte)
} RRESInfoHeader;
// Compression types
typedef enum {
RRES_COMP_NONE = 0, // No data compression
RRES_COMP_DEFLATE, // DEFLATE compression
RRES_COMP_LZ4, // LZ4 compression
RRES_COMP_LZMA, // LZMA compression
RRES_COMP_BROTLI, // BROTLI compression
// gzip, zopfli, lzo, zstd // Other compression algorythms...
} RRESCompressionType;
// Encryption types
typedef enum {
RRES_CRYPTO_NONE = 0, // No data encryption
RRES_CRYPTO_XOR, // XOR (128 bit) encryption
RRES_CRYPTO_AES, // RIJNDAEL (128 bit) encryption (AES)
RRES_CRYPTO_TDES, // Triple DES encryption
RRES_CRYPTO_BLOWFISH, // BLOWFISH encryption
RRES_CRYPTO_XTEA, // XTEA encryption
// twofish, RC5, RC6 // Other encryption algorythm...
} RRESEncryptionType;
// Image/Texture data type
typedef enum {
RRES_IM_UNCOMP_GRAYSCALE = 1, // 8 bit per pixel (no alpha)
RRES_IM_UNCOMP_GRAY_ALPHA, // 16 bpp (2 channels)
RRES_IM_UNCOMP_R5G6B5, // 16 bpp
RRES_IM_UNCOMP_R8G8B8, // 24 bpp
RRES_IM_UNCOMP_R5G5B5A1, // 16 bpp (1 bit alpha)
RRES_IM_UNCOMP_R4G4B4A4, // 16 bpp (4 bit alpha)
RRES_IM_UNCOMP_R8G8B8A8, // 32 bpp
RRES_IM_COMP_DXT1_RGB, // 4 bpp (no alpha)
RRES_IM_COMP_DXT1_RGBA, // 4 bpp (1 bit alpha)
RRES_IM_COMP_DXT3_RGBA, // 8 bpp
RRES_IM_COMP_DXT5_RGBA, // 8 bpp
RRES_IM_COMP_ETC1_RGB, // 4 bpp
RRES_IM_COMP_ETC2_RGB, // 4 bpp
RRES_IM_COMP_ETC2_EAC_RGBA, // 8 bpp
RRES_IM_COMP_PVRT_RGB, // 4 bpp
RRES_IM_COMP_PVRT_RGBA, // 4 bpp
RRES_IM_COMP_ASTC_4x4_RGBA, // 8 bpp
RRES_IM_COMP_ASTC_8x8_RGBA // 2 bpp
//...
} RRESImageFormat;
// Vertex data type
typedef enum {
RRES_VERT_POSITION,
RRES_VERT_TEXCOORD1,
RRES_VERT_TEXCOORD2,
RRES_VERT_TEXCOORD3,
RRES_VERT_TEXCOORD4,
RRES_VERT_NORMAL,
RRES_VERT_TANGENT,
RRES_VERT_COLOR,
RRES_VERT_INDEX,
//...
} RRESVertexType;
// Vertex data format type
typedef enum {
RRES_VERT_BYTE,
RRES_VERT_SHORT,
RRES_VERT_INT,
RRES_VERT_HFLOAT,
RRES_VERT_FLOAT,
//...
} RRESVertexFormat;
#if defined(RRES_STANDALONE)
typedef enum { LOG_INFO = 0, LOG_ERROR, LOG_WARNING, LOG_DEBUG, LOG_OTHER } TraceLogType;
#endif
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
//...
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static void *DecompressData(const unsigned char *data, unsigned long compSize, int uncompSize);
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Load resource from file by id (could be multiple parts)
// NOTE: Returns uncompressed data with parameters, search resource by id
RRESDEF RRES LoadResource(const char *fileName, int rresId)
{
RRES rres = { 0 };
RRESFileHeader fileHeader;
RRESInfoHeader infoHeader;
FILE *rresFile = fopen(fileName, "rb");
if (rresFile == NULL) TraceLog(LOG_WARNING, "[%s] rRES raylib resource file could not be opened", fileName);
else
{
// Read rres file info header
fread(&fileHeader.id[0], sizeof(char), 1, rresFile);
fread(&fileHeader.id[1], sizeof(char), 1, rresFile);
fread(&fileHeader.id[2], sizeof(char), 1, rresFile);
fread(&fileHeader.id[3], sizeof(char), 1, rresFile);
fread(&fileHeader.version, sizeof(short), 1, rresFile);
fread(&fileHeader.count, sizeof(short), 1, rresFile);
// Verify "rRES" identifier
if ((fileHeader.id[0] != 'r') && (fileHeader.id[1] != 'R') && (fileHeader.id[2] != 'E') && (fileHeader.id[3] != 'S'))
{
TraceLog(LOG_WARNING, "[%s] This is not a valid raylib resource file", fileName);
}
else
{
for (int i = 0; i < fileHeader.count; i++)
{
// Read resource info and parameters
fread(&infoHeader, sizeof(RRESInfoHeader), 1, rresFile);
if (infoHeader.id == rresId)
{
rres = (RRES)malloc(sizeof(RRESData)*infoHeader.partsCount);
// Load all required resources parts
for (int k = 0; k < infoHeader.partsCount; k++)
{
// TODO: Verify again that rresId is the same in every part
// Register data type and parameters
rres[k].type = infoHeader.dataType;
rres[k].param1 = infoHeader.param1;
rres[k].param2 = infoHeader.param2;
rres[k].param3 = infoHeader.param3;
rres[k].param4 = infoHeader.param4;
// Read resource data block
void *data = RRES_MALLOC(infoHeader.dataSize);
fread(data, infoHeader.dataSize, 1, rresFile);
if (infoHeader.compType == RRES_COMP_DEFLATE)
{
void *uncompData = DecompressData(data, infoHeader.dataSize, infoHeader.uncompSize);
rres[k].data = uncompData;
RRES_FREE(data);
}
else rres[k].data = data;
if (rres[k].data != NULL) TraceLog(LOG_INFO, "[%s][ID %i] Resource data loaded successfully", fileName, (int)infoHeader.id);
// Read next part
fread(&infoHeader, sizeof(RRESInfoHeader), 1, rresFile);
}
}
else
{
// Skip required data to read next resource infoHeader
fseek(rresFile, infoHeader.dataSize, SEEK_CUR);
}
}
if (rres[0].data == NULL) TraceLog(LOG_WARNING, "[%s][ID %i] Requested resource could not be found", fileName, (int)rresId);
}
fclose(rresFile);
}
return rres;
}
// Unload resource data
RRESDEF void UnloadResource(RRES rres)
{
// TODO: When you load resource... how many parts conform it? depends on type? --> Not clear...
if (rres[0].data != NULL) free(rres[0].data);
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
// Data decompression function
// NOTE: Allocated data MUST be freed by user
static void *DecompressData(const unsigned char *data, unsigned long compSize, int uncompSize)
{
int tempUncompSize;
void *uncompData;
// Allocate buffer to hold decompressed data
uncompData = (mz_uint8 *)RRES_MALLOC((size_t)uncompSize);
// Check correct memory allocation
if (uncompData == NULL)
{
TraceLog(LOG_WARNING, "Out of memory while decompressing data");
}
else
{
// Decompress data
tempUncompSize = tinfl_decompress_mem_to_mem(uncompData, (size_t)uncompSize, data, compSize, 1);
if (tempUncompSize == -1)
{
TraceLog(LOG_WARNING, "Data decompression failed");
RRES_FREE(uncompData);
}
if (uncompSize != (int)tempUncompSize)
{
TraceLog(LOG_WARNING, "Expected uncompressed size do not match, data may be corrupted");
TraceLog(LOG_WARNING, " -- Expected uncompressed size: %i", uncompSize);
TraceLog(LOG_WARNING, " -- Returned uncompressed size: %i", tempUncompSize);
}
TraceLog(LOG_INFO, "Data decompressed successfully from %u bytes to %u bytes", (mz_uint32)compSize, (mz_uint32)tempUncompSize);
}
return uncompData;
}
// Some required functions for rres standalone module version
#if defined(RRES_STANDALONE)
// Show trace log messages (LOG_INFO, LOG_WARNING, LOG_ERROR, LOG_DEBUG)
void TraceLog(int logType, const char *text, ...)
{
va_list args;
va_start(args, text);
switch (msgType)
{
case LOG_INFO: fprintf(stdout, "INFO: "); break;
case LOG_ERROR: fprintf(stdout, "ERROR: "); break;
case LOG_WARNING: fprintf(stdout, "WARNING: "); break;
case LOG_DEBUG: fprintf(stdout, "DEBUG: "); break;
default: break;
}
vfprintf(stdout, text, args);
fprintf(stdout, "\n");
va_end(args);
if (msgType == LOG_ERROR) exit(1);
}
#endif
#endif // RRES_IMPLEMENTATION

+ 1
- 28
src/text.c View File

@ -288,35 +288,8 @@ SpriteFont LoadSpriteFont(const char *fileName)
SpriteFont spriteFont = { 0 };
// Check file extension
if (IsFileExtension(fileName, ".rres"))
{
// TODO: Read multiple resource blocks from file (RRES_FONT_IMAGE, RRES_FONT_CHARDATA)
RRES rres = LoadResource(fileName, 0);
// Load sprite font texture
if (rres[0].type == RRES_TYPE_FONT_IMAGE)
{
// NOTE: Parameters for RRES_FONT_IMAGE type are: width, height, format, mipmaps
Image image = LoadImagePro(rres[0].data, rres[0].param1, rres[0].param2, rres[0].param3);
spriteFont.texture = LoadTextureFromImage(image);
UnloadImage(image);
}
// Load sprite characters data
if (rres[1].type == RRES_TYPE_FONT_CHARDATA)
{
// NOTE: Parameters for RRES_FONT_CHARDATA type are: fontSize, charsCount
spriteFont.baseSize = rres[1].param1;
spriteFont.charsCount = rres[1].param2;
spriteFont.chars = rres[1].data;
}
// TODO: Do not free rres.data memory (chars info data!)
//UnloadResource(rres[0]);
}
#if defined(SUPPORT_FILEFORMAT_TTF)
else if (IsFileExtension(fileName, ".ttf")) spriteFont = LoadSpriteFontEx(fileName, DEFAULT_TTF_FONTSIZE, 0, NULL);
if (IsFileExtension(fileName, ".ttf")) spriteFont = LoadSpriteFontEx(fileName, DEFAULT_TTF_FONTSIZE, 0, NULL);
#endif
#if defined(SUPPORT_FILEFORMAT_FNT)
else if (IsFileExtension(fileName, ".fnt")) spriteFont = LoadBMFont(fileName);

+ 1
- 12
src/textures.c View File

@ -167,18 +167,7 @@ Image LoadImage(const char *fileName)
{
Image image = { 0 };
if (IsFileExtension(fileName, ".rres"))
{
RRES rres = LoadResource(fileName, 0);
// NOTE: Parameters for RRES_TYPE_IMAGE are: width, height, format, mipmaps
if (rres[0].type == RRES_TYPE_IMAGE) image = LoadImagePro(rres[0].data, rres[0].param1, rres[0].param2, rres[0].param3);
else TraceLog(LOG_WARNING, "[%s] Resource file does not contain image data", fileName);
UnloadResource(rres);
}
else if ((IsFileExtension(fileName, ".png"))
if ((IsFileExtension(fileName, ".png"))
#if defined(SUPPORT_FILEFORMAT_BMP)
|| (IsFileExtension(fileName, ".bmp"))
#endif

+ 0
- 3
src/utils.c View File

@ -66,9 +66,6 @@
#include "external/stb_image_write.h" // Required for: stbi_write_bmp(), stbi_write_png()
#endif
#define RRES_IMPLEMENTATION
#include "rres.h"
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------

+ 0
- 2
src/utils.h View File

@ -32,8 +32,6 @@
#include <android/asset_manager.h> // Required for: AAssetManager
#endif
#include "rres.h"
#define SUPPORT_SAVE_PNG
//----------------------------------------------------------------------------------

Loading…
Cancel
Save