|
|
@ -1,988 +0,0 @@ |
|
|
|
/********************************************************************************************** |
|
|
|
* |
|
|
|
* raymath |
|
|
|
* |
|
|
|
* Some useful functions to work with Vector3, Matrix and Quaternions |
|
|
|
* |
|
|
|
* Copyright (c) 2015 Ramon Santamaria (@raysan5) |
|
|
|
* |
|
|
|
* This software is provided "as-is", without any express or implied warranty. In no event |
|
|
|
* will the authors be held liable for any damages arising from the use of this software. |
|
|
|
* |
|
|
|
* Permission is granted to anyone to use this software for any purpose, including commercial |
|
|
|
* applications, and to alter it and redistribute it freely, subject to the following restrictions: |
|
|
|
* |
|
|
|
* 1. The origin of this software must not be misrepresented; you must not claim that you |
|
|
|
* wrote the original software. If you use this software in a product, an acknowledgment |
|
|
|
* in the product documentation would be appreciated but is not required. |
|
|
|
* |
|
|
|
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented |
|
|
|
* as being the original software. |
|
|
|
* |
|
|
|
* 3. This notice may not be removed or altered from any source distribution. |
|
|
|
* |
|
|
|
**********************************************************************************************/ |
|
|
|
|
|
|
|
#include "raymath.h" |
|
|
|
|
|
|
|
#include <stdio.h> // Used only on PrintMatrix() |
|
|
|
#include <math.h> // Standard math libary: sin(), cos(), tan()... |
|
|
|
#include <stdlib.h> // Used for abs() |
|
|
|
|
|
|
|
//---------------------------------------------------------------------------------- |
|
|
|
// Defines and Macros |
|
|
|
//---------------------------------------------------------------------------------- |
|
|
|
//... |
|
|
|
|
|
|
|
//---------------------------------------------------------------------------------- |
|
|
|
// Module specific Functions Declaration |
|
|
|
//---------------------------------------------------------------------------------- |
|
|
|
// ... |
|
|
|
|
|
|
|
//---------------------------------------------------------------------------------- |
|
|
|
// Module Functions Definition - Vector3 math |
|
|
|
//---------------------------------------------------------------------------------- |
|
|
|
|
|
|
|
// Converts Vector3 to float array |
|
|
|
float *VectorToFloat(Vector3 vec) |
|
|
|
{ |
|
|
|
static float buffer[3]; |
|
|
|
|
|
|
|
buffer[0] = vec.x; |
|
|
|
buffer[1] = vec.y; |
|
|
|
buffer[2] = vec.z; |
|
|
|
|
|
|
|
return buffer; |
|
|
|
} |
|
|
|
|
|
|
|
// Add two vectors |
|
|
|
Vector3 VectorAdd(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
Vector3 result; |
|
|
|
|
|
|
|
result.x = v1.x + v2.x; |
|
|
|
result.y = v1.y + v2.y; |
|
|
|
result.z = v1.z + v2.z; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Substract two vectors |
|
|
|
Vector3 VectorSubtract(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
Vector3 result; |
|
|
|
|
|
|
|
result.x = v1.x - v2.x; |
|
|
|
result.y = v1.y - v2.y; |
|
|
|
result.z = v1.z - v2.z; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate two vectors cross product |
|
|
|
Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
Vector3 result; |
|
|
|
|
|
|
|
result.x = v1.y*v2.z - v1.z*v2.y; |
|
|
|
result.y = v1.z*v2.x - v1.x*v2.z; |
|
|
|
result.z = v1.x*v2.y - v1.y*v2.x; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate one vector perpendicular vector |
|
|
|
Vector3 VectorPerpendicular(Vector3 v) |
|
|
|
{ |
|
|
|
Vector3 result; |
|
|
|
|
|
|
|
float min = fabs(v.x); |
|
|
|
Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f}; |
|
|
|
|
|
|
|
if (fabs(v.y) < min) |
|
|
|
{ |
|
|
|
min = fabs(v.y); |
|
|
|
cardinalAxis = (Vector3){0.0f, 1.0f, 0.0f}; |
|
|
|
} |
|
|
|
|
|
|
|
if(fabs(v.z) < min) |
|
|
|
{ |
|
|
|
cardinalAxis = (Vector3){0.0f, 0.0f, 1.0f}; |
|
|
|
} |
|
|
|
|
|
|
|
result = VectorCrossProduct(v, cardinalAxis); |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate two vectors dot product |
|
|
|
float VectorDotProduct(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
float result; |
|
|
|
|
|
|
|
result = v1.x*v2.x + v1.y*v2.y + v1.z*v2.z; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate vector lenght |
|
|
|
float VectorLength(const Vector3 v) |
|
|
|
{ |
|
|
|
float length; |
|
|
|
|
|
|
|
length = sqrt(v.x*v.x + v.y*v.y + v.z*v.z); |
|
|
|
|
|
|
|
return length; |
|
|
|
} |
|
|
|
|
|
|
|
// Scale provided vector |
|
|
|
void VectorScale(Vector3 *v, float scale) |
|
|
|
{ |
|
|
|
v->x *= scale; |
|
|
|
v->y *= scale; |
|
|
|
v->z *= scale; |
|
|
|
} |
|
|
|
|
|
|
|
// Negate provided vector (invert direction) |
|
|
|
void VectorNegate(Vector3 *v) |
|
|
|
{ |
|
|
|
v->x = -v->x; |
|
|
|
v->y = -v->y; |
|
|
|
v->z = -v->z; |
|
|
|
} |
|
|
|
|
|
|
|
// Normalize provided vector |
|
|
|
void VectorNormalize(Vector3 *v) |
|
|
|
{ |
|
|
|
float length, ilength; |
|
|
|
|
|
|
|
length = VectorLength(*v); |
|
|
|
|
|
|
|
if (length == 0) length = 1; |
|
|
|
|
|
|
|
ilength = 1.0/length; |
|
|
|
|
|
|
|
v->x *= ilength; |
|
|
|
v->y *= ilength; |
|
|
|
v->z *= ilength; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate distance between two points |
|
|
|
float VectorDistance(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
float result; |
|
|
|
|
|
|
|
float dx = v2.x - v1.x; |
|
|
|
float dy = v2.y - v1.y; |
|
|
|
float dz = v2.z - v1.z; |
|
|
|
|
|
|
|
result = sqrt(dx*dx + dy*dy + dz*dz); |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate linear interpolation between two vectors |
|
|
|
Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount) |
|
|
|
{ |
|
|
|
Vector3 result; |
|
|
|
|
|
|
|
result.x = v1.x + amount * (v2.x - v1.x); |
|
|
|
result.y = v1.y + amount * (v2.y - v1.y); |
|
|
|
result.z = v1.z + amount * (v2.z - v1.z); |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate reflected vector to normal |
|
|
|
Vector3 VectorReflect(Vector3 vector, Vector3 normal) |
|
|
|
{ |
|
|
|
// I is the original vector |
|
|
|
// N is the normal of the incident plane |
|
|
|
// R = I - (2 * N * ( DotProduct[ I,N] )) |
|
|
|
|
|
|
|
Vector3 result; |
|
|
|
|
|
|
|
float dotProduct = VectorDotProduct(vector, normal); |
|
|
|
|
|
|
|
result.x = vector.x - (2.0 * normal.x) * dotProduct; |
|
|
|
result.y = vector.y - (2.0 * normal.y) * dotProduct; |
|
|
|
result.z = vector.z - (2.0 * normal.z) * dotProduct; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Transforms a Vector3 with a given Matrix |
|
|
|
void VectorTransform(Vector3 *v, Matrix mat) |
|
|
|
{ |
|
|
|
float x = v->x; |
|
|
|
float y = v->y; |
|
|
|
float z = v->z; |
|
|
|
|
|
|
|
//MatrixTranspose(&mat); |
|
|
|
|
|
|
|
v->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12; |
|
|
|
v->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13; |
|
|
|
v->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14; |
|
|
|
}; |
|
|
|
|
|
|
|
// Return a Vector3 init to zero |
|
|
|
Vector3 VectorZero(void) |
|
|
|
{ |
|
|
|
Vector3 zero = { 0.0f, 0.0f, 0.0f }; |
|
|
|
|
|
|
|
return zero; |
|
|
|
} |
|
|
|
|
|
|
|
//---------------------------------------------------------------------------------- |
|
|
|
// Module Functions Definition - Matrix math |
|
|
|
//---------------------------------------------------------------------------------- |
|
|
|
|
|
|
|
// Converts Matrix to float array |
|
|
|
// NOTE: Returned vector is a transposed version of the Matrix struct, |
|
|
|
// it should be this way because, despite raymath use OpenGL column-major convention, |
|
|
|
// Matrix struct memory alignment and variables naming are not coherent |
|
|
|
float *MatrixToFloat(Matrix mat) |
|
|
|
{ |
|
|
|
static float buffer[16]; |
|
|
|
|
|
|
|
buffer[0] = mat.m0; |
|
|
|
buffer[1] = mat.m4; |
|
|
|
buffer[2] = mat.m8; |
|
|
|
buffer[3] = mat.m12; |
|
|
|
buffer[4] = mat.m1; |
|
|
|
buffer[5] = mat.m5; |
|
|
|
buffer[6] = mat.m9; |
|
|
|
buffer[7] = mat.m13; |
|
|
|
buffer[8] = mat.m2; |
|
|
|
buffer[9] = mat.m6; |
|
|
|
buffer[10] = mat.m10; |
|
|
|
buffer[11] = mat.m14; |
|
|
|
buffer[12] = mat.m3; |
|
|
|
buffer[13] = mat.m7; |
|
|
|
buffer[14] = mat.m11; |
|
|
|
buffer[15] = mat.m15; |
|
|
|
|
|
|
|
return buffer; |
|
|
|
} |
|
|
|
|
|
|
|
// Compute matrix determinant |
|
|
|
float MatrixDeterminant(Matrix mat) |
|
|
|
{ |
|
|
|
float result; |
|
|
|
|
|
|
|
// Cache the matrix values (speed optimization) |
|
|
|
float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; |
|
|
|
float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; |
|
|
|
float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; |
|
|
|
float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15; |
|
|
|
|
|
|
|
result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 + |
|
|
|
a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 + |
|
|
|
a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 + |
|
|
|
a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 + |
|
|
|
a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 + |
|
|
|
a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns the trace of the matrix (sum of the values along the diagonal) |
|
|
|
float MatrixTrace(Matrix mat) |
|
|
|
{ |
|
|
|
return (mat.m0 + mat.m5 + mat.m10 + mat.m15); |
|
|
|
} |
|
|
|
|
|
|
|
// Transposes provided matrix |
|
|
|
void MatrixTranspose(Matrix *mat) |
|
|
|
{ |
|
|
|
Matrix temp; |
|
|
|
|
|
|
|
temp.m0 = mat->m0; |
|
|
|
temp.m1 = mat->m4; |
|
|
|
temp.m2 = mat->m8; |
|
|
|
temp.m3 = mat->m12; |
|
|
|
temp.m4 = mat->m1; |
|
|
|
temp.m5 = mat->m5; |
|
|
|
temp.m6 = mat->m9; |
|
|
|
temp.m7 = mat->m13; |
|
|
|
temp.m8 = mat->m2; |
|
|
|
temp.m9 = mat->m6; |
|
|
|
temp.m10 = mat->m10; |
|
|
|
temp.m11 = mat->m14; |
|
|
|
temp.m12 = mat->m3; |
|
|
|
temp.m13 = mat->m7; |
|
|
|
temp.m14 = mat->m11; |
|
|
|
temp.m15 = mat->m15; |
|
|
|
|
|
|
|
*mat = temp; |
|
|
|
} |
|
|
|
|
|
|
|
// Invert provided matrix |
|
|
|
void MatrixInvert(Matrix *mat) |
|
|
|
{ |
|
|
|
Matrix temp; |
|
|
|
|
|
|
|
// Cache the matrix values (speed optimization) |
|
|
|
float a00 = mat->m0, a01 = mat->m1, a02 = mat->m2, a03 = mat->m3; |
|
|
|
float a10 = mat->m4, a11 = mat->m5, a12 = mat->m6, a13 = mat->m7; |
|
|
|
float a20 = mat->m8, a21 = mat->m9, a22 = mat->m10, a23 = mat->m11; |
|
|
|
float a30 = mat->m12, a31 = mat->m13, a32 = mat->m14, a33 = mat->m15; |
|
|
|
|
|
|
|
float b00 = a00*a11 - a01*a10; |
|
|
|
float b01 = a00*a12 - a02*a10; |
|
|
|
float b02 = a00*a13 - a03*a10; |
|
|
|
float b03 = a01*a12 - a02*a11; |
|
|
|
float b04 = a01*a13 - a03*a11; |
|
|
|
float b05 = a02*a13 - a03*a12; |
|
|
|
float b06 = a20*a31 - a21*a30; |
|
|
|
float b07 = a20*a32 - a22*a30; |
|
|
|
float b08 = a20*a33 - a23*a30; |
|
|
|
float b09 = a21*a32 - a22*a31; |
|
|
|
float b10 = a21*a33 - a23*a31; |
|
|
|
float b11 = a22*a33 - a23*a32; |
|
|
|
|
|
|
|
// Calculate the invert determinant (inlined to avoid double-caching) |
|
|
|
float invDet = 1/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06); |
|
|
|
|
|
|
|
temp.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet; |
|
|
|
temp.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet; |
|
|
|
temp.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet; |
|
|
|
temp.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet; |
|
|
|
temp.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet; |
|
|
|
temp.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet; |
|
|
|
temp.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet; |
|
|
|
temp.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet; |
|
|
|
temp.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet; |
|
|
|
temp.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet; |
|
|
|
temp.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet; |
|
|
|
temp.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet; |
|
|
|
temp.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet; |
|
|
|
temp.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet; |
|
|
|
temp.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet; |
|
|
|
temp.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet; |
|
|
|
|
|
|
|
*mat = temp; |
|
|
|
} |
|
|
|
|
|
|
|
// Normalize provided matrix |
|
|
|
void MatrixNormalize(Matrix *mat) |
|
|
|
{ |
|
|
|
float det = MatrixDeterminant(*mat); |
|
|
|
|
|
|
|
mat->m0 /= det; |
|
|
|
mat->m1 /= det; |
|
|
|
mat->m2 /= det; |
|
|
|
mat->m3 /= det; |
|
|
|
mat->m4 /= det; |
|
|
|
mat->m5 /= det; |
|
|
|
mat->m6 /= det; |
|
|
|
mat->m7 /= det; |
|
|
|
mat->m8 /= det; |
|
|
|
mat->m9 /= det; |
|
|
|
mat->m10 /= det; |
|
|
|
mat->m11 /= det; |
|
|
|
mat->m12 /= det; |
|
|
|
mat->m13 /= det; |
|
|
|
mat->m14 /= det; |
|
|
|
mat->m15 /= det; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns identity matrix |
|
|
|
Matrix MatrixIdentity(void) |
|
|
|
{ |
|
|
|
Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 }; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Add two matrices |
|
|
|
Matrix MatrixAdd(Matrix left, Matrix right) |
|
|
|
{ |
|
|
|
Matrix result = MatrixIdentity(); |
|
|
|
|
|
|
|
result.m0 = left.m0 + right.m0; |
|
|
|
result.m1 = left.m1 + right.m1; |
|
|
|
result.m2 = left.m2 + right.m2; |
|
|
|
result.m3 = left.m3 + right.m3; |
|
|
|
result.m4 = left.m4 + right.m4; |
|
|
|
result.m5 = left.m5 + right.m5; |
|
|
|
result.m6 = left.m6 + right.m6; |
|
|
|
result.m7 = left.m7 + right.m7; |
|
|
|
result.m8 = left.m8 + right.m8; |
|
|
|
result.m9 = left.m9 + right.m9; |
|
|
|
result.m10 = left.m10 + right.m10; |
|
|
|
result.m11 = left.m11 + right.m11; |
|
|
|
result.m12 = left.m12 + right.m12; |
|
|
|
result.m13 = left.m13 + right.m13; |
|
|
|
result.m14 = left.m14 + right.m14; |
|
|
|
result.m15 = left.m15 + right.m15; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Substract two matrices (left - right) |
|
|
|
Matrix MatrixSubstract(Matrix left, Matrix right) |
|
|
|
{ |
|
|
|
Matrix result = MatrixIdentity(); |
|
|
|
|
|
|
|
result.m0 = left.m0 - right.m0; |
|
|
|
result.m1 = left.m1 - right.m1; |
|
|
|
result.m2 = left.m2 - right.m2; |
|
|
|
result.m3 = left.m3 - right.m3; |
|
|
|
result.m4 = left.m4 - right.m4; |
|
|
|
result.m5 = left.m5 - right.m5; |
|
|
|
result.m6 = left.m6 - right.m6; |
|
|
|
result.m7 = left.m7 - right.m7; |
|
|
|
result.m8 = left.m8 - right.m8; |
|
|
|
result.m9 = left.m9 - right.m9; |
|
|
|
result.m10 = left.m10 - right.m10; |
|
|
|
result.m11 = left.m11 - right.m11; |
|
|
|
result.m12 = left.m12 - right.m12; |
|
|
|
result.m13 = left.m13 - right.m13; |
|
|
|
result.m14 = left.m14 - right.m14; |
|
|
|
result.m15 = left.m15 - right.m15; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns translation matrix |
|
|
|
Matrix MatrixTranslate(float x, float y, float z) |
|
|
|
{ |
|
|
|
Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 }; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Create rotation matrix from axis and angle |
|
|
|
// NOTE: Angle should be provided in radians |
|
|
|
Matrix MatrixRotate(float angle, Vector3 axis) |
|
|
|
{ |
|
|
|
Matrix result; |
|
|
|
|
|
|
|
Matrix mat = MatrixIdentity(); |
|
|
|
|
|
|
|
float x = axis.x, y = axis.y, z = axis.z; |
|
|
|
|
|
|
|
float length = sqrt(x*x + y*y + z*z); |
|
|
|
|
|
|
|
if ((length != 1) && (length != 0)) |
|
|
|
{ |
|
|
|
length = 1/length; |
|
|
|
x *= length; |
|
|
|
y *= length; |
|
|
|
z *= length; |
|
|
|
} |
|
|
|
|
|
|
|
float s = sinf(angle); |
|
|
|
float c = cosf(angle); |
|
|
|
float t = 1.0f - c; |
|
|
|
|
|
|
|
// Cache some matrix values (speed optimization) |
|
|
|
float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; |
|
|
|
float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; |
|
|
|
float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; |
|
|
|
|
|
|
|
// Construct the elements of the rotation matrix |
|
|
|
float b00 = x*x*t + c, b01 = y*x*t + z*s, b02 = z*x*t - y*s; |
|
|
|
float b10 = x*y*t - z*s, b11 = y*y*t + c, b12 = z*y*t + x*s; |
|
|
|
float b20 = x*z*t + y*s, b21 = y*z*t - x*s, b22 = z*z*t + c; |
|
|
|
|
|
|
|
// Perform rotation-specific matrix multiplication |
|
|
|
result.m0 = a00*b00 + a10*b01 + a20*b02; |
|
|
|
result.m1 = a01*b00 + a11*b01 + a21*b02; |
|
|
|
result.m2 = a02*b00 + a12*b01 + a22*b02; |
|
|
|
result.m3 = a03*b00 + a13*b01 + a23*b02; |
|
|
|
result.m4 = a00*b10 + a10*b11 + a20*b12; |
|
|
|
result.m5 = a01*b10 + a11*b11 + a21*b12; |
|
|
|
result.m6 = a02*b10 + a12*b11 + a22*b12; |
|
|
|
result.m7 = a03*b10 + a13*b11 + a23*b12; |
|
|
|
result.m8 = a00*b20 + a10*b21 + a20*b22; |
|
|
|
result.m9 = a01*b20 + a11*b21 + a21*b22; |
|
|
|
result.m10 = a02*b20 + a12*b21 + a22*b22; |
|
|
|
result.m11 = a03*b20 + a13*b21 + a23*b22; |
|
|
|
result.m12 = mat.m12; |
|
|
|
result.m13 = mat.m13; |
|
|
|
result.m14 = mat.m14; |
|
|
|
result.m15 = mat.m15; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
// Another implementation for MatrixRotate... |
|
|
|
Matrix MatrixRotate(float angle, float x, float y, float z) |
|
|
|
{ |
|
|
|
Matrix result = MatrixIdentity(); |
|
|
|
|
|
|
|
float c = cosf(angle); // cosine |
|
|
|
float s = sinf(angle); // sine |
|
|
|
float c1 = 1.0f - c; // 1 - c |
|
|
|
|
|
|
|
float m0 = result.m0, m4 = result.m4, m8 = result.m8, m12 = result.m12, |
|
|
|
m1 = result.m1, m5 = result.m5, m9 = result.m9, m13 = result.m13, |
|
|
|
m2 = result.m2, m6 = result.m6, m10 = result.m10, m14 = result.m14; |
|
|
|
|
|
|
|
// build rotation matrix |
|
|
|
float r0 = x * x * c1 + c; |
|
|
|
float r1 = x * y * c1 + z * s; |
|
|
|
float r2 = x * z * c1 - y * s; |
|
|
|
float r4 = x * y * c1 - z * s; |
|
|
|
float r5 = y * y * c1 + c; |
|
|
|
float r6 = y * z * c1 + x * s; |
|
|
|
float r8 = x * z * c1 + y * s; |
|
|
|
float r9 = y * z * c1 - x * s; |
|
|
|
float r10= z * z * c1 + c; |
|
|
|
|
|
|
|
// multiply rotation matrix |
|
|
|
result.m0 = r0*m0 + r4*m1 + r8*m2; |
|
|
|
result.m1 = r1*m0 + r5*m1 + r9*m2; |
|
|
|
result.m2 = r2*m0 + r6*m1 + r10*m2; |
|
|
|
result.m4 = r0*m4 + r4*m5 + r8*m6; |
|
|
|
result.m5 = r1*m4 + r5*m5 + r9*m6; |
|
|
|
result.m6 = r2*m4 + r6*m5 + r10*m6; |
|
|
|
result.m8 = r0*m8 + r4*m9 + r8*m10; |
|
|
|
result.m9 = r1*m8 + r5*m9 + r9*m10; |
|
|
|
result.m10 = r2*m8 + r6*m9 + r10*m10; |
|
|
|
result.m12 = r0*m12+ r4*m13 + r8*m14; |
|
|
|
result.m13 = r1*m12+ r5*m13 + r9*m14; |
|
|
|
result.m14 = r2*m12+ r6*m13 + r10*m14; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
*/ |
|
|
|
|
|
|
|
// Returns x-rotation matrix (angle in radians) |
|
|
|
Matrix MatrixRotateX(float angle) |
|
|
|
{ |
|
|
|
Matrix result = MatrixIdentity(); |
|
|
|
|
|
|
|
float cosres = (float)cos(angle); |
|
|
|
float sinres = (float)sin(angle); |
|
|
|
|
|
|
|
result.m5 = cosres; |
|
|
|
result.m6 = -sinres; |
|
|
|
result.m9 = sinres; |
|
|
|
result.m10 = cosres; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns y-rotation matrix (angle in radians) |
|
|
|
Matrix MatrixRotateY(float angle) |
|
|
|
{ |
|
|
|
Matrix result = MatrixIdentity(); |
|
|
|
|
|
|
|
float cosres = cosf(angle); |
|
|
|
float sinres = sinf(angle); |
|
|
|
|
|
|
|
result.m0 = cosres; |
|
|
|
result.m2 = sinres; |
|
|
|
result.m8 = -sinres; |
|
|
|
result.m10 = cosres; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns z-rotation matrix (angle in radians) |
|
|
|
Matrix MatrixRotateZ(float angle) |
|
|
|
{ |
|
|
|
Matrix result = MatrixIdentity(); |
|
|
|
|
|
|
|
float cosres = (float)cos(angle); |
|
|
|
float sinres = (float)sin(angle); |
|
|
|
|
|
|
|
result.m0 = cosres; |
|
|
|
result.m1 = -sinres; |
|
|
|
result.m4 = sinres; |
|
|
|
result.m5 = cosres; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns scaling matrix |
|
|
|
Matrix MatrixScale(float x, float y, float z) |
|
|
|
{ |
|
|
|
Matrix result = { x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 }; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns two matrix multiplication |
|
|
|
// NOTE: When multiplying matrices... the order matters! |
|
|
|
Matrix MatrixMultiply(Matrix left, Matrix right) |
|
|
|
{ |
|
|
|
Matrix result; |
|
|
|
|
|
|
|
result.m0 = right.m0*left.m0 + right.m1*left.m4 + right.m2*left.m8 + right.m3*left.m12; |
|
|
|
result.m1 = right.m0*left.m1 + right.m1*left.m5 + right.m2*left.m9 + right.m3*left.m13; |
|
|
|
result.m2 = right.m0*left.m2 + right.m1*left.m6 + right.m2*left.m10 + right.m3*left.m14; |
|
|
|
result.m3 = right.m0*left.m3 + right.m1*left.m7 + right.m2*left.m11 + right.m3*left.m15; |
|
|
|
result.m4 = right.m4*left.m0 + right.m5*left.m4 + right.m6*left.m8 + right.m7*left.m12; |
|
|
|
result.m5 = right.m4*left.m1 + right.m5*left.m5 + right.m6*left.m9 + right.m7*left.m13; |
|
|
|
result.m6 = right.m4*left.m2 + right.m5*left.m6 + right.m6*left.m10 + right.m7*left.m14; |
|
|
|
result.m7 = right.m4*left.m3 + right.m5*left.m7 + right.m6*left.m11 + right.m7*left.m15; |
|
|
|
result.m8 = right.m8*left.m0 + right.m9*left.m4 + right.m10*left.m8 + right.m11*left.m12; |
|
|
|
result.m9 = right.m8*left.m1 + right.m9*left.m5 + right.m10*left.m9 + right.m11*left.m13; |
|
|
|
result.m10 = right.m8*left.m2 + right.m9*left.m6 + right.m10*left.m10 + right.m11*left.m14; |
|
|
|
result.m11 = right.m8*left.m3 + right.m9*left.m7 + right.m10*left.m11 + right.m11*left.m15; |
|
|
|
result.m12 = right.m12*left.m0 + right.m13*left.m4 + right.m14*left.m8 + right.m15*left.m12; |
|
|
|
result.m13 = right.m12*left.m1 + right.m13*left.m5 + right.m14*left.m9 + right.m15*left.m13; |
|
|
|
result.m14 = right.m12*left.m2 + right.m13*left.m6 + right.m14*left.m10 + right.m15*left.m14; |
|
|
|
result.m15 = right.m12*left.m3 + right.m13*left.m7 + right.m14*left.m11 + right.m15*left.m15; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns perspective projection matrix |
|
|
|
Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far) |
|
|
|
{ |
|
|
|
Matrix result; |
|
|
|
|
|
|
|
float rl = (right - left); |
|
|
|
float tb = (top - bottom); |
|
|
|
float fn = (far - near); |
|
|
|
|
|
|
|
result.m0 = (near*2.0f) / rl; |
|
|
|
result.m1 = 0; |
|
|
|
result.m2 = 0; |
|
|
|
result.m3 = 0; |
|
|
|
|
|
|
|
result.m4 = 0; |
|
|
|
result.m5 = (near*2.0f) / tb; |
|
|
|
result.m6 = 0; |
|
|
|
result.m7 = 0; |
|
|
|
|
|
|
|
result.m8 = (right + left) / rl; |
|
|
|
result.m9 = (top + bottom) / tb; |
|
|
|
result.m10 = -(far + near) / fn; |
|
|
|
result.m11 = -1.0f; |
|
|
|
|
|
|
|
result.m12 = 0; |
|
|
|
result.m13 = 0; |
|
|
|
result.m14 = -(far*near*2.0f) / fn; |
|
|
|
result.m15 = 0; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns perspective projection matrix |
|
|
|
Matrix MatrixPerspective(double fovy, double aspect, double near, double far) |
|
|
|
{ |
|
|
|
double top = near*tanf(fovy*PI / 360.0f); |
|
|
|
double right = top*aspect; |
|
|
|
|
|
|
|
return MatrixFrustum(-right, right, -top, top, near, far); |
|
|
|
} |
|
|
|
|
|
|
|
// Returns orthographic projection matrix |
|
|
|
Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far) |
|
|
|
{ |
|
|
|
Matrix result; |
|
|
|
|
|
|
|
float rl = (right - left); |
|
|
|
float tb = (top - bottom); |
|
|
|
float fn = (far - near); |
|
|
|
|
|
|
|
result.m0 = 2 / rl; |
|
|
|
result.m1 = 0; |
|
|
|
result.m2 = 0; |
|
|
|
result.m3 = 0; |
|
|
|
result.m4 = 0; |
|
|
|
result.m5 = 2 / tb; |
|
|
|
result.m6 = 0; |
|
|
|
result.m7 = 0; |
|
|
|
result.m8 = 0; |
|
|
|
result.m9 = 0; |
|
|
|
result.m10 = -2 / fn; |
|
|
|
result.m11 = 0; |
|
|
|
result.m12 = -(left + right) / rl; |
|
|
|
result.m13 = -(top + bottom) / tb; |
|
|
|
result.m14 = -(far + near) / fn; |
|
|
|
result.m15 = 1; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns camera look-at matrix (view matrix) |
|
|
|
Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) |
|
|
|
{ |
|
|
|
Matrix result; |
|
|
|
|
|
|
|
Vector3 z = VectorSubtract(eye, target); |
|
|
|
VectorNormalize(&z); |
|
|
|
Vector3 x = VectorCrossProduct(up, z); |
|
|
|
VectorNormalize(&x); |
|
|
|
Vector3 y = VectorCrossProduct(z, x); |
|
|
|
VectorNormalize(&y); |
|
|
|
|
|
|
|
result.m0 = x.x; |
|
|
|
result.m1 = x.y; |
|
|
|
result.m2 = x.z; |
|
|
|
result.m3 = -((x.x * eye.x) + (x.y * eye.y) + (x.z * eye.z)); |
|
|
|
result.m4 = y.x; |
|
|
|
result.m5 = y.y; |
|
|
|
result.m6 = y.z; |
|
|
|
result.m7 = -((y.x * eye.x) + (y.y * eye.y) + (y.z * eye.z)); |
|
|
|
result.m8 = z.x; |
|
|
|
result.m9 = z.y; |
|
|
|
result.m10 = z.z; |
|
|
|
result.m11 = -((z.x * eye.x) + (z.y * eye.y) + (z.z * eye.z)); |
|
|
|
result.m12 = 0; |
|
|
|
result.m13 = 0; |
|
|
|
result.m14 = 0; |
|
|
|
result.m15 = 1; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Print matrix utility (for debug) |
|
|
|
void PrintMatrix(Matrix m) |
|
|
|
{ |
|
|
|
printf("----------------------\n"); |
|
|
|
printf("%2.2f %2.2f %2.2f %2.2f\n", m.m0, m.m4, m.m8, m.m12); |
|
|
|
printf("%2.2f %2.2f %2.2f %2.2f\n", m.m1, m.m5, m.m9, m.m13); |
|
|
|
printf("%2.2f %2.2f %2.2f %2.2f\n", m.m2, m.m6, m.m10, m.m14); |
|
|
|
printf("%2.2f %2.2f %2.2f %2.2f\n", m.m3, m.m7, m.m11, m.m15); |
|
|
|
printf("----------------------\n"); |
|
|
|
} |
|
|
|
|
|
|
|
//---------------------------------------------------------------------------------- |
|
|
|
// Module Functions Definition - Quaternion math |
|
|
|
//---------------------------------------------------------------------------------- |
|
|
|
|
|
|
|
// Computes the length of a quaternion |
|
|
|
float QuaternionLength(Quaternion quat) |
|
|
|
{ |
|
|
|
return sqrt(quat.x*quat.x + quat.y*quat.y + quat.z*quat.z + quat.w*quat.w); |
|
|
|
} |
|
|
|
|
|
|
|
// Normalize provided quaternion |
|
|
|
void QuaternionNormalize(Quaternion *q) |
|
|
|
{ |
|
|
|
float length, ilength; |
|
|
|
|
|
|
|
length = QuaternionLength(*q); |
|
|
|
|
|
|
|
if (length == 0) length = 1; |
|
|
|
|
|
|
|
ilength = 1.0/length; |
|
|
|
|
|
|
|
q->x *= ilength; |
|
|
|
q->y *= ilength; |
|
|
|
q->z *= ilength; |
|
|
|
q->w *= ilength; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate two quaternion multiplication |
|
|
|
Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2) |
|
|
|
{ |
|
|
|
Quaternion result; |
|
|
|
|
|
|
|
float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w; |
|
|
|
float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w; |
|
|
|
|
|
|
|
result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby; |
|
|
|
result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz; |
|
|
|
result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx; |
|
|
|
result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculates spherical linear interpolation between two quaternions |
|
|
|
Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount) |
|
|
|
{ |
|
|
|
Quaternion result; |
|
|
|
|
|
|
|
float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w; |
|
|
|
|
|
|
|
if (fabs(cosHalfTheta) >= 1.0f) result = q1; |
|
|
|
else |
|
|
|
{ |
|
|
|
float halfTheta = acos(cosHalfTheta); |
|
|
|
float sinHalfTheta = sqrt(1.0f - cosHalfTheta*cosHalfTheta); |
|
|
|
|
|
|
|
if (fabs(sinHalfTheta) < 0.001f) |
|
|
|
{ |
|
|
|
result.x = (q1.x*0.5f + q2.x*0.5f); |
|
|
|
result.y = (q1.y*0.5f + q2.y*0.5f); |
|
|
|
result.z = (q1.z*0.5f + q2.z*0.5f); |
|
|
|
result.w = (q1.w*0.5f + q2.w*0.5f); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
float ratioA = sin((1 - amount)*halfTheta) / sinHalfTheta; |
|
|
|
float ratioB = sin(amount*halfTheta) / sinHalfTheta; |
|
|
|
|
|
|
|
result.x = (q1.x*ratioA + q2.x*ratioB); |
|
|
|
result.y = (q1.y*ratioA + q2.y*ratioB); |
|
|
|
result.z = (q1.z*ratioA + q2.z*ratioB); |
|
|
|
result.w = (q1.w*ratioA + q2.w*ratioB); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns a quaternion for a given rotation matrix |
|
|
|
Quaternion QuaternionFromMatrix(Matrix matrix) |
|
|
|
{ |
|
|
|
Quaternion result; |
|
|
|
|
|
|
|
float trace = MatrixTrace(matrix); |
|
|
|
|
|
|
|
if (trace > 0) |
|
|
|
{ |
|
|
|
float s = (float)sqrt(trace + 1) * 2; |
|
|
|
float invS = 1 / s; |
|
|
|
|
|
|
|
result.w = s * 0.25; |
|
|
|
result.x = (matrix.m6 - matrix.m9) * invS; |
|
|
|
result.y = (matrix.m8 - matrix.m2) * invS; |
|
|
|
result.z = (matrix.m1 - matrix.m4) * invS; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
float m00 = matrix.m0, m11 = matrix.m5, m22 = matrix.m10; |
|
|
|
|
|
|
|
if (m00 > m11 && m00 > m22) |
|
|
|
{ |
|
|
|
float s = (float)sqrt(1 + m00 - m11 - m22) * 2; |
|
|
|
float invS = 1 / s; |
|
|
|
|
|
|
|
result.w = (matrix.m6 - matrix.m9) * invS; |
|
|
|
result.x = s * 0.25; |
|
|
|
result.y = (matrix.m4 + matrix.m1) * invS; |
|
|
|
result.z = (matrix.m8 + matrix.m2) * invS; |
|
|
|
} |
|
|
|
else if (m11 > m22) |
|
|
|
{ |
|
|
|
float s = (float)sqrt(1 + m11 - m00 - m22) * 2; |
|
|
|
float invS = 1 / s; |
|
|
|
|
|
|
|
result.w = (matrix.m8 - matrix.m2) * invS; |
|
|
|
result.x = (matrix.m4 + matrix.m1) * invS; |
|
|
|
result.y = s * 0.25; |
|
|
|
result.z = (matrix.m9 + matrix.m6) * invS; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
float s = (float)sqrt(1 + m22 - m00 - m11) * 2; |
|
|
|
float invS = 1 / s; |
|
|
|
|
|
|
|
result.w = (matrix.m1 - matrix.m4) * invS; |
|
|
|
result.x = (matrix.m8 + matrix.m2) * invS; |
|
|
|
result.y = (matrix.m9 + matrix.m6) * invS; |
|
|
|
result.z = s * 0.25; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns a matrix for a given quaternion |
|
|
|
Matrix QuaternionToMatrix(Quaternion q) |
|
|
|
{ |
|
|
|
Matrix result; |
|
|
|
|
|
|
|
float x = q.x, y = q.y, z = q.z, w = q.w; |
|
|
|
|
|
|
|
float x2 = x + x; |
|
|
|
float y2 = y + y; |
|
|
|
float z2 = z + z; |
|
|
|
|
|
|
|
float xx = x*x2; |
|
|
|
float xy = x*y2; |
|
|
|
float xz = x*z2; |
|
|
|
|
|
|
|
float yy = y*y2; |
|
|
|
float yz = y*z2; |
|
|
|
float zz = z*z2; |
|
|
|
|
|
|
|
float wx = w*x2; |
|
|
|
float wy = w*y2; |
|
|
|
float wz = w*z2; |
|
|
|
|
|
|
|
result.m0 = 1 - (yy + zz); |
|
|
|
result.m1 = xy - wz; |
|
|
|
result.m2 = xz + wy; |
|
|
|
result.m3 = 0; |
|
|
|
result.m4 = xy + wz; |
|
|
|
result.m5 = 1 - (xx + zz); |
|
|
|
result.m6 = yz - wx; |
|
|
|
result.m7 = 0; |
|
|
|
result.m8 = xz - wy; |
|
|
|
result.m9 = yz + wx; |
|
|
|
result.m10 = 1 - (xx + yy); |
|
|
|
result.m11 = 0; |
|
|
|
result.m12 = 0; |
|
|
|
result.m13 = 0; |
|
|
|
result.m14 = 0; |
|
|
|
result.m15 = 1; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns rotation quaternion for an angle and axis |
|
|
|
// NOTE: angle must be provided in radians |
|
|
|
Quaternion QuaternionFromAxisAngle(float angle, Vector3 axis) |
|
|
|
{ |
|
|
|
Quaternion result = { 0, 0, 0, 1 }; |
|
|
|
|
|
|
|
if (VectorLength(axis) != 0.0) |
|
|
|
|
|
|
|
angle *= 0.5; |
|
|
|
|
|
|
|
VectorNormalize(&axis); |
|
|
|
|
|
|
|
result.x = axis.x * (float)sin(angle); |
|
|
|
result.y = axis.y * (float)sin(angle); |
|
|
|
result.z = axis.z * (float)sin(angle); |
|
|
|
result.w = (float)cos(angle); |
|
|
|
|
|
|
|
QuaternionNormalize(&result); |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns the rotation angle and axis for a given quaternion |
|
|
|
void QuaternionToAxisAngle(Quaternion q, float *outAngle, Vector3 *outAxis) |
|
|
|
{ |
|
|
|
if (fabs(q.w) > 1.0f) QuaternionNormalize(&q); |
|
|
|
|
|
|
|
Vector3 resAxis = { 0, 0, 0 }; |
|
|
|
float resAngle = 0; |
|
|
|
|
|
|
|
resAngle = 2.0f * (float)acos(q.w); |
|
|
|
float den = (float)sqrt(1.0 - q.w * q.w); |
|
|
|
|
|
|
|
if (den > 0.0001f) |
|
|
|
{ |
|
|
|
resAxis.x = q.x / den; |
|
|
|
resAxis.y = q.y / den; |
|
|
|
resAxis.z = q.z / den; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
// This occurs when the angle is zero. |
|
|
|
// Not a problem: just set an arbitrary normalized axis. |
|
|
|
resAxis.x = 1.0; |
|
|
|
} |
|
|
|
|
|
|
|
*outAxis = resAxis; |
|
|
|
*outAngle = resAngle; |
|
|
|
} |
|
|
|
|
|
|
|
// Transform a quaternion given a transformation matrix |
|
|
|
void QuaternionTransform(Quaternion *q, Matrix mat) |
|
|
|
{ |
|
|
|
float x = q->x; |
|
|
|
float y = q->y; |
|
|
|
float z = q->z; |
|
|
|
float w = q->w; |
|
|
|
|
|
|
|
q->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12*w; |
|
|
|
q->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13*w; |
|
|
|
q->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14*w; |
|
|
|
q->w = mat.m3*x + mat.m7*y + mat.m11*z + mat.m15*w; |
|
|
|
} |