| @ -1,988 +0,0 @@ | |||
| /********************************************************************************************** | |||
| * | |||
| * raymath | |||
| * | |||
| * Some useful functions to work with Vector3, Matrix and Quaternions | |||
| * | |||
| * Copyright (c) 2015 Ramon Santamaria (@raysan5) | |||
| * | |||
| * This software is provided "as-is", without any express or implied warranty. In no event | |||
| * will the authors be held liable for any damages arising from the use of this software. | |||
| * | |||
| * Permission is granted to anyone to use this software for any purpose, including commercial | |||
| * applications, and to alter it and redistribute it freely, subject to the following restrictions: | |||
| * | |||
| * 1. The origin of this software must not be misrepresented; you must not claim that you | |||
| * wrote the original software. If you use this software in a product, an acknowledgment | |||
| * in the product documentation would be appreciated but is not required. | |||
| * | |||
| * 2. Altered source versions must be plainly marked as such, and must not be misrepresented | |||
| * as being the original software. | |||
| * | |||
| * 3. This notice may not be removed or altered from any source distribution. | |||
| * | |||
| **********************************************************************************************/ | |||
| #include "raymath.h" | |||
| #include <stdio.h> // Used only on PrintMatrix() | |||
| #include <math.h> // Standard math libary: sin(), cos(), tan()... | |||
| #include <stdlib.h> // Used for abs() | |||
| //---------------------------------------------------------------------------------- | |||
| // Defines and Macros | |||
| //---------------------------------------------------------------------------------- | |||
| //... | |||
| //---------------------------------------------------------------------------------- | |||
| // Module specific Functions Declaration | |||
| //---------------------------------------------------------------------------------- | |||
| // ... | |||
| //---------------------------------------------------------------------------------- | |||
| // Module Functions Definition - Vector3 math | |||
| //---------------------------------------------------------------------------------- | |||
| // Converts Vector3 to float array | |||
| float *VectorToFloat(Vector3 vec) | |||
| { | |||
| static float buffer[3]; | |||
| buffer[0] = vec.x; | |||
| buffer[1] = vec.y; | |||
| buffer[2] = vec.z; | |||
| return buffer; | |||
| } | |||
| // Add two vectors | |||
| Vector3 VectorAdd(Vector3 v1, Vector3 v2) | |||
| { | |||
| Vector3 result; | |||
| result.x = v1.x + v2.x; | |||
| result.y = v1.y + v2.y; | |||
| result.z = v1.z + v2.z; | |||
| return result; | |||
| } | |||
| // Substract two vectors | |||
| Vector3 VectorSubtract(Vector3 v1, Vector3 v2) | |||
| { | |||
| Vector3 result; | |||
| result.x = v1.x - v2.x; | |||
| result.y = v1.y - v2.y; | |||
| result.z = v1.z - v2.z; | |||
| return result; | |||
| } | |||
| // Calculate two vectors cross product | |||
| Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2) | |||
| { | |||
| Vector3 result; | |||
| result.x = v1.y*v2.z - v1.z*v2.y; | |||
| result.y = v1.z*v2.x - v1.x*v2.z; | |||
| result.z = v1.x*v2.y - v1.y*v2.x; | |||
| return result; | |||
| } | |||
| // Calculate one vector perpendicular vector | |||
| Vector3 VectorPerpendicular(Vector3 v) | |||
| { | |||
| Vector3 result; | |||
| float min = fabs(v.x); | |||
| Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f}; | |||
| if (fabs(v.y) < min) | |||
| { | |||
| min = fabs(v.y); | |||
| cardinalAxis = (Vector3){0.0f, 1.0f, 0.0f}; | |||
| } | |||
| if(fabs(v.z) < min) | |||
| { | |||
| cardinalAxis = (Vector3){0.0f, 0.0f, 1.0f}; | |||
| } | |||
| result = VectorCrossProduct(v, cardinalAxis); | |||
| return result; | |||
| } | |||
| // Calculate two vectors dot product | |||
| float VectorDotProduct(Vector3 v1, Vector3 v2) | |||
| { | |||
| float result; | |||
| result = v1.x*v2.x + v1.y*v2.y + v1.z*v2.z; | |||
| return result; | |||
| } | |||
| // Calculate vector lenght | |||
| float VectorLength(const Vector3 v) | |||
| { | |||
| float length; | |||
| length = sqrt(v.x*v.x + v.y*v.y + v.z*v.z); | |||
| return length; | |||
| } | |||
| // Scale provided vector | |||
| void VectorScale(Vector3 *v, float scale) | |||
| { | |||
| v->x *= scale; | |||
| v->y *= scale; | |||
| v->z *= scale; | |||
| } | |||
| // Negate provided vector (invert direction) | |||
| void VectorNegate(Vector3 *v) | |||
| { | |||
| v->x = -v->x; | |||
| v->y = -v->y; | |||
| v->z = -v->z; | |||
| } | |||
| // Normalize provided vector | |||
| void VectorNormalize(Vector3 *v) | |||
| { | |||
| float length, ilength; | |||
| length = VectorLength(*v); | |||
| if (length == 0) length = 1; | |||
| ilength = 1.0/length; | |||
| v->x *= ilength; | |||
| v->y *= ilength; | |||
| v->z *= ilength; | |||
| } | |||
| // Calculate distance between two points | |||
| float VectorDistance(Vector3 v1, Vector3 v2) | |||
| { | |||
| float result; | |||
| float dx = v2.x - v1.x; | |||
| float dy = v2.y - v1.y; | |||
| float dz = v2.z - v1.z; | |||
| result = sqrt(dx*dx + dy*dy + dz*dz); | |||
| return result; | |||
| } | |||
| // Calculate linear interpolation between two vectors | |||
| Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount) | |||
| { | |||
| Vector3 result; | |||
| result.x = v1.x + amount * (v2.x - v1.x); | |||
| result.y = v1.y + amount * (v2.y - v1.y); | |||
| result.z = v1.z + amount * (v2.z - v1.z); | |||
| return result; | |||
| } | |||
| // Calculate reflected vector to normal | |||
| Vector3 VectorReflect(Vector3 vector, Vector3 normal) | |||
| { | |||
| // I is the original vector | |||
| // N is the normal of the incident plane | |||
| // R = I - (2 * N * ( DotProduct[ I,N] )) | |||
| Vector3 result; | |||
| float dotProduct = VectorDotProduct(vector, normal); | |||
| result.x = vector.x - (2.0 * normal.x) * dotProduct; | |||
| result.y = vector.y - (2.0 * normal.y) * dotProduct; | |||
| result.z = vector.z - (2.0 * normal.z) * dotProduct; | |||
| return result; | |||
| } | |||
| // Transforms a Vector3 with a given Matrix | |||
| void VectorTransform(Vector3 *v, Matrix mat) | |||
| { | |||
| float x = v->x; | |||
| float y = v->y; | |||
| float z = v->z; | |||
| //MatrixTranspose(&mat); | |||
| v->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12; | |||
| v->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13; | |||
| v->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14; | |||
| }; | |||
| // Return a Vector3 init to zero | |||
| Vector3 VectorZero(void) | |||
| { | |||
| Vector3 zero = { 0.0f, 0.0f, 0.0f }; | |||
| return zero; | |||
| } | |||
| //---------------------------------------------------------------------------------- | |||
| // Module Functions Definition - Matrix math | |||
| //---------------------------------------------------------------------------------- | |||
| // Converts Matrix to float array | |||
| // NOTE: Returned vector is a transposed version of the Matrix struct, | |||
| // it should be this way because, despite raymath use OpenGL column-major convention, | |||
| // Matrix struct memory alignment and variables naming are not coherent | |||
| float *MatrixToFloat(Matrix mat) | |||
| { | |||
| static float buffer[16]; | |||
| buffer[0] = mat.m0; | |||
| buffer[1] = mat.m4; | |||
| buffer[2] = mat.m8; | |||
| buffer[3] = mat.m12; | |||
| buffer[4] = mat.m1; | |||
| buffer[5] = mat.m5; | |||
| buffer[6] = mat.m9; | |||
| buffer[7] = mat.m13; | |||
| buffer[8] = mat.m2; | |||
| buffer[9] = mat.m6; | |||
| buffer[10] = mat.m10; | |||
| buffer[11] = mat.m14; | |||
| buffer[12] = mat.m3; | |||
| buffer[13] = mat.m7; | |||
| buffer[14] = mat.m11; | |||
| buffer[15] = mat.m15; | |||
| return buffer; | |||
| } | |||
| // Compute matrix determinant | |||
| float MatrixDeterminant(Matrix mat) | |||
| { | |||
| float result; | |||
| // Cache the matrix values (speed optimization) | |||
| float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; | |||
| float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; | |||
| float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; | |||
| float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15; | |||
| result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 + | |||
| a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 + | |||
| a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 + | |||
| a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 + | |||
| a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 + | |||
| a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33; | |||
| return result; | |||
| } | |||
| // Returns the trace of the matrix (sum of the values along the diagonal) | |||
| float MatrixTrace(Matrix mat) | |||
| { | |||
| return (mat.m0 + mat.m5 + mat.m10 + mat.m15); | |||
| } | |||
| // Transposes provided matrix | |||
| void MatrixTranspose(Matrix *mat) | |||
| { | |||
| Matrix temp; | |||
| temp.m0 = mat->m0; | |||
| temp.m1 = mat->m4; | |||
| temp.m2 = mat->m8; | |||
| temp.m3 = mat->m12; | |||
| temp.m4 = mat->m1; | |||
| temp.m5 = mat->m5; | |||
| temp.m6 = mat->m9; | |||
| temp.m7 = mat->m13; | |||
| temp.m8 = mat->m2; | |||
| temp.m9 = mat->m6; | |||
| temp.m10 = mat->m10; | |||
| temp.m11 = mat->m14; | |||
| temp.m12 = mat->m3; | |||
| temp.m13 = mat->m7; | |||
| temp.m14 = mat->m11; | |||
| temp.m15 = mat->m15; | |||
| *mat = temp; | |||
| } | |||
| // Invert provided matrix | |||
| void MatrixInvert(Matrix *mat) | |||
| { | |||
| Matrix temp; | |||
| // Cache the matrix values (speed optimization) | |||
| float a00 = mat->m0, a01 = mat->m1, a02 = mat->m2, a03 = mat->m3; | |||
| float a10 = mat->m4, a11 = mat->m5, a12 = mat->m6, a13 = mat->m7; | |||
| float a20 = mat->m8, a21 = mat->m9, a22 = mat->m10, a23 = mat->m11; | |||
| float a30 = mat->m12, a31 = mat->m13, a32 = mat->m14, a33 = mat->m15; | |||
| float b00 = a00*a11 - a01*a10; | |||
| float b01 = a00*a12 - a02*a10; | |||
| float b02 = a00*a13 - a03*a10; | |||
| float b03 = a01*a12 - a02*a11; | |||
| float b04 = a01*a13 - a03*a11; | |||
| float b05 = a02*a13 - a03*a12; | |||
| float b06 = a20*a31 - a21*a30; | |||
| float b07 = a20*a32 - a22*a30; | |||
| float b08 = a20*a33 - a23*a30; | |||
| float b09 = a21*a32 - a22*a31; | |||
| float b10 = a21*a33 - a23*a31; | |||
| float b11 = a22*a33 - a23*a32; | |||
| // Calculate the invert determinant (inlined to avoid double-caching) | |||
| float invDet = 1/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06); | |||
| temp.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet; | |||
| temp.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet; | |||
| temp.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet; | |||
| temp.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet; | |||
| temp.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet; | |||
| temp.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet; | |||
| temp.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet; | |||
| temp.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet; | |||
| temp.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet; | |||
| temp.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet; | |||
| temp.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet; | |||
| temp.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet; | |||
| temp.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet; | |||
| temp.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet; | |||
| temp.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet; | |||
| temp.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet; | |||
| *mat = temp; | |||
| } | |||
| // Normalize provided matrix | |||
| void MatrixNormalize(Matrix *mat) | |||
| { | |||
| float det = MatrixDeterminant(*mat); | |||
| mat->m0 /= det; | |||
| mat->m1 /= det; | |||
| mat->m2 /= det; | |||
| mat->m3 /= det; | |||
| mat->m4 /= det; | |||
| mat->m5 /= det; | |||
| mat->m6 /= det; | |||
| mat->m7 /= det; | |||
| mat->m8 /= det; | |||
| mat->m9 /= det; | |||
| mat->m10 /= det; | |||
| mat->m11 /= det; | |||
| mat->m12 /= det; | |||
| mat->m13 /= det; | |||
| mat->m14 /= det; | |||
| mat->m15 /= det; | |||
| } | |||
| // Returns identity matrix | |||
| Matrix MatrixIdentity(void) | |||
| { | |||
| Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 }; | |||
| return result; | |||
| } | |||
| // Add two matrices | |||
| Matrix MatrixAdd(Matrix left, Matrix right) | |||
| { | |||
| Matrix result = MatrixIdentity(); | |||
| result.m0 = left.m0 + right.m0; | |||
| result.m1 = left.m1 + right.m1; | |||
| result.m2 = left.m2 + right.m2; | |||
| result.m3 = left.m3 + right.m3; | |||
| result.m4 = left.m4 + right.m4; | |||
| result.m5 = left.m5 + right.m5; | |||
| result.m6 = left.m6 + right.m6; | |||
| result.m7 = left.m7 + right.m7; | |||
| result.m8 = left.m8 + right.m8; | |||
| result.m9 = left.m9 + right.m9; | |||
| result.m10 = left.m10 + right.m10; | |||
| result.m11 = left.m11 + right.m11; | |||
| result.m12 = left.m12 + right.m12; | |||
| result.m13 = left.m13 + right.m13; | |||
| result.m14 = left.m14 + right.m14; | |||
| result.m15 = left.m15 + right.m15; | |||
| return result; | |||
| } | |||
| // Substract two matrices (left - right) | |||
| Matrix MatrixSubstract(Matrix left, Matrix right) | |||
| { | |||
| Matrix result = MatrixIdentity(); | |||
| result.m0 = left.m0 - right.m0; | |||
| result.m1 = left.m1 - right.m1; | |||
| result.m2 = left.m2 - right.m2; | |||
| result.m3 = left.m3 - right.m3; | |||
| result.m4 = left.m4 - right.m4; | |||
| result.m5 = left.m5 - right.m5; | |||
| result.m6 = left.m6 - right.m6; | |||
| result.m7 = left.m7 - right.m7; | |||
| result.m8 = left.m8 - right.m8; | |||
| result.m9 = left.m9 - right.m9; | |||
| result.m10 = left.m10 - right.m10; | |||
| result.m11 = left.m11 - right.m11; | |||
| result.m12 = left.m12 - right.m12; | |||
| result.m13 = left.m13 - right.m13; | |||
| result.m14 = left.m14 - right.m14; | |||
| result.m15 = left.m15 - right.m15; | |||
| return result; | |||
| } | |||
| // Returns translation matrix | |||
| Matrix MatrixTranslate(float x, float y, float z) | |||
| { | |||
| Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 }; | |||
| return result; | |||
| } | |||
| // Create rotation matrix from axis and angle | |||
| // NOTE: Angle should be provided in radians | |||
| Matrix MatrixRotate(float angle, Vector3 axis) | |||
| { | |||
| Matrix result; | |||
| Matrix mat = MatrixIdentity(); | |||
| float x = axis.x, y = axis.y, z = axis.z; | |||
| float length = sqrt(x*x + y*y + z*z); | |||
| if ((length != 1) && (length != 0)) | |||
| { | |||
| length = 1/length; | |||
| x *= length; | |||
| y *= length; | |||
| z *= length; | |||
| } | |||
| float s = sinf(angle); | |||
| float c = cosf(angle); | |||
| float t = 1.0f - c; | |||
| // Cache some matrix values (speed optimization) | |||
| float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; | |||
| float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; | |||
| float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; | |||
| // Construct the elements of the rotation matrix | |||
| float b00 = x*x*t + c, b01 = y*x*t + z*s, b02 = z*x*t - y*s; | |||
| float b10 = x*y*t - z*s, b11 = y*y*t + c, b12 = z*y*t + x*s; | |||
| float b20 = x*z*t + y*s, b21 = y*z*t - x*s, b22 = z*z*t + c; | |||
| // Perform rotation-specific matrix multiplication | |||
| result.m0 = a00*b00 + a10*b01 + a20*b02; | |||
| result.m1 = a01*b00 + a11*b01 + a21*b02; | |||
| result.m2 = a02*b00 + a12*b01 + a22*b02; | |||
| result.m3 = a03*b00 + a13*b01 + a23*b02; | |||
| result.m4 = a00*b10 + a10*b11 + a20*b12; | |||
| result.m5 = a01*b10 + a11*b11 + a21*b12; | |||
| result.m6 = a02*b10 + a12*b11 + a22*b12; | |||
| result.m7 = a03*b10 + a13*b11 + a23*b12; | |||
| result.m8 = a00*b20 + a10*b21 + a20*b22; | |||
| result.m9 = a01*b20 + a11*b21 + a21*b22; | |||
| result.m10 = a02*b20 + a12*b21 + a22*b22; | |||
| result.m11 = a03*b20 + a13*b21 + a23*b22; | |||
| result.m12 = mat.m12; | |||
| result.m13 = mat.m13; | |||
| result.m14 = mat.m14; | |||
| result.m15 = mat.m15; | |||
| return result; | |||
| } | |||
| /* | |||
| // Another implementation for MatrixRotate... | |||
| Matrix MatrixRotate(float angle, float x, float y, float z) | |||
| { | |||
| Matrix result = MatrixIdentity(); | |||
| float c = cosf(angle); // cosine | |||
| float s = sinf(angle); // sine | |||
| float c1 = 1.0f - c; // 1 - c | |||
| float m0 = result.m0, m4 = result.m4, m8 = result.m8, m12 = result.m12, | |||
| m1 = result.m1, m5 = result.m5, m9 = result.m9, m13 = result.m13, | |||
| m2 = result.m2, m6 = result.m6, m10 = result.m10, m14 = result.m14; | |||
| // build rotation matrix | |||
| float r0 = x * x * c1 + c; | |||
| float r1 = x * y * c1 + z * s; | |||
| float r2 = x * z * c1 - y * s; | |||
| float r4 = x * y * c1 - z * s; | |||
| float r5 = y * y * c1 + c; | |||
| float r6 = y * z * c1 + x * s; | |||
| float r8 = x * z * c1 + y * s; | |||
| float r9 = y * z * c1 - x * s; | |||
| float r10= z * z * c1 + c; | |||
| // multiply rotation matrix | |||
| result.m0 = r0*m0 + r4*m1 + r8*m2; | |||
| result.m1 = r1*m0 + r5*m1 + r9*m2; | |||
| result.m2 = r2*m0 + r6*m1 + r10*m2; | |||
| result.m4 = r0*m4 + r4*m5 + r8*m6; | |||
| result.m5 = r1*m4 + r5*m5 + r9*m6; | |||
| result.m6 = r2*m4 + r6*m5 + r10*m6; | |||
| result.m8 = r0*m8 + r4*m9 + r8*m10; | |||
| result.m9 = r1*m8 + r5*m9 + r9*m10; | |||
| result.m10 = r2*m8 + r6*m9 + r10*m10; | |||
| result.m12 = r0*m12+ r4*m13 + r8*m14; | |||
| result.m13 = r1*m12+ r5*m13 + r9*m14; | |||
| result.m14 = r2*m12+ r6*m13 + r10*m14; | |||
| return result; | |||
| } | |||
| */ | |||
| // Returns x-rotation matrix (angle in radians) | |||
| Matrix MatrixRotateX(float angle) | |||
| { | |||
| Matrix result = MatrixIdentity(); | |||
| float cosres = (float)cos(angle); | |||
| float sinres = (float)sin(angle); | |||
| result.m5 = cosres; | |||
| result.m6 = -sinres; | |||
| result.m9 = sinres; | |||
| result.m10 = cosres; | |||
| return result; | |||
| } | |||
| // Returns y-rotation matrix (angle in radians) | |||
| Matrix MatrixRotateY(float angle) | |||
| { | |||
| Matrix result = MatrixIdentity(); | |||
| float cosres = cosf(angle); | |||
| float sinres = sinf(angle); | |||
| result.m0 = cosres; | |||
| result.m2 = sinres; | |||
| result.m8 = -sinres; | |||
| result.m10 = cosres; | |||
| return result; | |||
| } | |||
| // Returns z-rotation matrix (angle in radians) | |||
| Matrix MatrixRotateZ(float angle) | |||
| { | |||
| Matrix result = MatrixIdentity(); | |||
| float cosres = (float)cos(angle); | |||
| float sinres = (float)sin(angle); | |||
| result.m0 = cosres; | |||
| result.m1 = -sinres; | |||
| result.m4 = sinres; | |||
| result.m5 = cosres; | |||
| return result; | |||
| } | |||
| // Returns scaling matrix | |||
| Matrix MatrixScale(float x, float y, float z) | |||
| { | |||
| Matrix result = { x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 }; | |||
| return result; | |||
| } | |||
| // Returns two matrix multiplication | |||
| // NOTE: When multiplying matrices... the order matters! | |||
| Matrix MatrixMultiply(Matrix left, Matrix right) | |||
| { | |||
| Matrix result; | |||
| result.m0 = right.m0*left.m0 + right.m1*left.m4 + right.m2*left.m8 + right.m3*left.m12; | |||
| result.m1 = right.m0*left.m1 + right.m1*left.m5 + right.m2*left.m9 + right.m3*left.m13; | |||
| result.m2 = right.m0*left.m2 + right.m1*left.m6 + right.m2*left.m10 + right.m3*left.m14; | |||
| result.m3 = right.m0*left.m3 + right.m1*left.m7 + right.m2*left.m11 + right.m3*left.m15; | |||
| result.m4 = right.m4*left.m0 + right.m5*left.m4 + right.m6*left.m8 + right.m7*left.m12; | |||
| result.m5 = right.m4*left.m1 + right.m5*left.m5 + right.m6*left.m9 + right.m7*left.m13; | |||
| result.m6 = right.m4*left.m2 + right.m5*left.m6 + right.m6*left.m10 + right.m7*left.m14; | |||
| result.m7 = right.m4*left.m3 + right.m5*left.m7 + right.m6*left.m11 + right.m7*left.m15; | |||
| result.m8 = right.m8*left.m0 + right.m9*left.m4 + right.m10*left.m8 + right.m11*left.m12; | |||
| result.m9 = right.m8*left.m1 + right.m9*left.m5 + right.m10*left.m9 + right.m11*left.m13; | |||
| result.m10 = right.m8*left.m2 + right.m9*left.m6 + right.m10*left.m10 + right.m11*left.m14; | |||
| result.m11 = right.m8*left.m3 + right.m9*left.m7 + right.m10*left.m11 + right.m11*left.m15; | |||
| result.m12 = right.m12*left.m0 + right.m13*left.m4 + right.m14*left.m8 + right.m15*left.m12; | |||
| result.m13 = right.m12*left.m1 + right.m13*left.m5 + right.m14*left.m9 + right.m15*left.m13; | |||
| result.m14 = right.m12*left.m2 + right.m13*left.m6 + right.m14*left.m10 + right.m15*left.m14; | |||
| result.m15 = right.m12*left.m3 + right.m13*left.m7 + right.m14*left.m11 + right.m15*left.m15; | |||
| return result; | |||
| } | |||
| // Returns perspective projection matrix | |||
| Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far) | |||
| { | |||
| Matrix result; | |||
| float rl = (right - left); | |||
| float tb = (top - bottom); | |||
| float fn = (far - near); | |||
| result.m0 = (near*2.0f) / rl; | |||
| result.m1 = 0; | |||
| result.m2 = 0; | |||
| result.m3 = 0; | |||
| result.m4 = 0; | |||
| result.m5 = (near*2.0f) / tb; | |||
| result.m6 = 0; | |||
| result.m7 = 0; | |||
| result.m8 = (right + left) / rl; | |||
| result.m9 = (top + bottom) / tb; | |||
| result.m10 = -(far + near) / fn; | |||
| result.m11 = -1.0f; | |||
| result.m12 = 0; | |||
| result.m13 = 0; | |||
| result.m14 = -(far*near*2.0f) / fn; | |||
| result.m15 = 0; | |||
| return result; | |||
| } | |||
| // Returns perspective projection matrix | |||
| Matrix MatrixPerspective(double fovy, double aspect, double near, double far) | |||
| { | |||
| double top = near*tanf(fovy*PI / 360.0f); | |||
| double right = top*aspect; | |||
| return MatrixFrustum(-right, right, -top, top, near, far); | |||
| } | |||
| // Returns orthographic projection matrix | |||
| Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far) | |||
| { | |||
| Matrix result; | |||
| float rl = (right - left); | |||
| float tb = (top - bottom); | |||
| float fn = (far - near); | |||
| result.m0 = 2 / rl; | |||
| result.m1 = 0; | |||
| result.m2 = 0; | |||
| result.m3 = 0; | |||
| result.m4 = 0; | |||
| result.m5 = 2 / tb; | |||
| result.m6 = 0; | |||
| result.m7 = 0; | |||
| result.m8 = 0; | |||
| result.m9 = 0; | |||
| result.m10 = -2 / fn; | |||
| result.m11 = 0; | |||
| result.m12 = -(left + right) / rl; | |||
| result.m13 = -(top + bottom) / tb; | |||
| result.m14 = -(far + near) / fn; | |||
| result.m15 = 1; | |||
| return result; | |||
| } | |||
| // Returns camera look-at matrix (view matrix) | |||
| Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) | |||
| { | |||
| Matrix result; | |||
| Vector3 z = VectorSubtract(eye, target); | |||
| VectorNormalize(&z); | |||
| Vector3 x = VectorCrossProduct(up, z); | |||
| VectorNormalize(&x); | |||
| Vector3 y = VectorCrossProduct(z, x); | |||
| VectorNormalize(&y); | |||
| result.m0 = x.x; | |||
| result.m1 = x.y; | |||
| result.m2 = x.z; | |||
| result.m3 = -((x.x * eye.x) + (x.y * eye.y) + (x.z * eye.z)); | |||
| result.m4 = y.x; | |||
| result.m5 = y.y; | |||
| result.m6 = y.z; | |||
| result.m7 = -((y.x * eye.x) + (y.y * eye.y) + (y.z * eye.z)); | |||
| result.m8 = z.x; | |||
| result.m9 = z.y; | |||
| result.m10 = z.z; | |||
| result.m11 = -((z.x * eye.x) + (z.y * eye.y) + (z.z * eye.z)); | |||
| result.m12 = 0; | |||
| result.m13 = 0; | |||
| result.m14 = 0; | |||
| result.m15 = 1; | |||
| return result; | |||
| } | |||
| // Print matrix utility (for debug) | |||
| void PrintMatrix(Matrix m) | |||
| { | |||
| printf("----------------------\n"); | |||
| printf("%2.2f %2.2f %2.2f %2.2f\n", m.m0, m.m4, m.m8, m.m12); | |||
| printf("%2.2f %2.2f %2.2f %2.2f\n", m.m1, m.m5, m.m9, m.m13); | |||
| printf("%2.2f %2.2f %2.2f %2.2f\n", m.m2, m.m6, m.m10, m.m14); | |||
| printf("%2.2f %2.2f %2.2f %2.2f\n", m.m3, m.m7, m.m11, m.m15); | |||
| printf("----------------------\n"); | |||
| } | |||
| //---------------------------------------------------------------------------------- | |||
| // Module Functions Definition - Quaternion math | |||
| //---------------------------------------------------------------------------------- | |||
| // Computes the length of a quaternion | |||
| float QuaternionLength(Quaternion quat) | |||
| { | |||
| return sqrt(quat.x*quat.x + quat.y*quat.y + quat.z*quat.z + quat.w*quat.w); | |||
| } | |||
| // Normalize provided quaternion | |||
| void QuaternionNormalize(Quaternion *q) | |||
| { | |||
| float length, ilength; | |||
| length = QuaternionLength(*q); | |||
| if (length == 0) length = 1; | |||
| ilength = 1.0/length; | |||
| q->x *= ilength; | |||
| q->y *= ilength; | |||
| q->z *= ilength; | |||
| q->w *= ilength; | |||
| } | |||
| // Calculate two quaternion multiplication | |||
| Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2) | |||
| { | |||
| Quaternion result; | |||
| float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w; | |||
| float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w; | |||
| result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby; | |||
| result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz; | |||
| result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx; | |||
| result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz; | |||
| return result; | |||
| } | |||
| // Calculates spherical linear interpolation between two quaternions | |||
| Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount) | |||
| { | |||
| Quaternion result; | |||
| float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w; | |||
| if (fabs(cosHalfTheta) >= 1.0f) result = q1; | |||
| else | |||
| { | |||
| float halfTheta = acos(cosHalfTheta); | |||
| float sinHalfTheta = sqrt(1.0f - cosHalfTheta*cosHalfTheta); | |||
| if (fabs(sinHalfTheta) < 0.001f) | |||
| { | |||
| result.x = (q1.x*0.5f + q2.x*0.5f); | |||
| result.y = (q1.y*0.5f + q2.y*0.5f); | |||
| result.z = (q1.z*0.5f + q2.z*0.5f); | |||
| result.w = (q1.w*0.5f + q2.w*0.5f); | |||
| } | |||
| else | |||
| { | |||
| float ratioA = sin((1 - amount)*halfTheta) / sinHalfTheta; | |||
| float ratioB = sin(amount*halfTheta) / sinHalfTheta; | |||
| result.x = (q1.x*ratioA + q2.x*ratioB); | |||
| result.y = (q1.y*ratioA + q2.y*ratioB); | |||
| result.z = (q1.z*ratioA + q2.z*ratioB); | |||
| result.w = (q1.w*ratioA + q2.w*ratioB); | |||
| } | |||
| } | |||
| return result; | |||
| } | |||
| // Returns a quaternion for a given rotation matrix | |||
| Quaternion QuaternionFromMatrix(Matrix matrix) | |||
| { | |||
| Quaternion result; | |||
| float trace = MatrixTrace(matrix); | |||
| if (trace > 0) | |||
| { | |||
| float s = (float)sqrt(trace + 1) * 2; | |||
| float invS = 1 / s; | |||
| result.w = s * 0.25; | |||
| result.x = (matrix.m6 - matrix.m9) * invS; | |||
| result.y = (matrix.m8 - matrix.m2) * invS; | |||
| result.z = (matrix.m1 - matrix.m4) * invS; | |||
| } | |||
| else | |||
| { | |||
| float m00 = matrix.m0, m11 = matrix.m5, m22 = matrix.m10; | |||
| if (m00 > m11 && m00 > m22) | |||
| { | |||
| float s = (float)sqrt(1 + m00 - m11 - m22) * 2; | |||
| float invS = 1 / s; | |||
| result.w = (matrix.m6 - matrix.m9) * invS; | |||
| result.x = s * 0.25; | |||
| result.y = (matrix.m4 + matrix.m1) * invS; | |||
| result.z = (matrix.m8 + matrix.m2) * invS; | |||
| } | |||
| else if (m11 > m22) | |||
| { | |||
| float s = (float)sqrt(1 + m11 - m00 - m22) * 2; | |||
| float invS = 1 / s; | |||
| result.w = (matrix.m8 - matrix.m2) * invS; | |||
| result.x = (matrix.m4 + matrix.m1) * invS; | |||
| result.y = s * 0.25; | |||
| result.z = (matrix.m9 + matrix.m6) * invS; | |||
| } | |||
| else | |||
| { | |||
| float s = (float)sqrt(1 + m22 - m00 - m11) * 2; | |||
| float invS = 1 / s; | |||
| result.w = (matrix.m1 - matrix.m4) * invS; | |||
| result.x = (matrix.m8 + matrix.m2) * invS; | |||
| result.y = (matrix.m9 + matrix.m6) * invS; | |||
| result.z = s * 0.25; | |||
| } | |||
| } | |||
| return result; | |||
| } | |||
| // Returns a matrix for a given quaternion | |||
| Matrix QuaternionToMatrix(Quaternion q) | |||
| { | |||
| Matrix result; | |||
| float x = q.x, y = q.y, z = q.z, w = q.w; | |||
| float x2 = x + x; | |||
| float y2 = y + y; | |||
| float z2 = z + z; | |||
| float xx = x*x2; | |||
| float xy = x*y2; | |||
| float xz = x*z2; | |||
| float yy = y*y2; | |||
| float yz = y*z2; | |||
| float zz = z*z2; | |||
| float wx = w*x2; | |||
| float wy = w*y2; | |||
| float wz = w*z2; | |||
| result.m0 = 1 - (yy + zz); | |||
| result.m1 = xy - wz; | |||
| result.m2 = xz + wy; | |||
| result.m3 = 0; | |||
| result.m4 = xy + wz; | |||
| result.m5 = 1 - (xx + zz); | |||
| result.m6 = yz - wx; | |||
| result.m7 = 0; | |||
| result.m8 = xz - wy; | |||
| result.m9 = yz + wx; | |||
| result.m10 = 1 - (xx + yy); | |||
| result.m11 = 0; | |||
| result.m12 = 0; | |||
| result.m13 = 0; | |||
| result.m14 = 0; | |||
| result.m15 = 1; | |||
| return result; | |||
| } | |||
| // Returns rotation quaternion for an angle and axis | |||
| // NOTE: angle must be provided in radians | |||
| Quaternion QuaternionFromAxisAngle(float angle, Vector3 axis) | |||
| { | |||
| Quaternion result = { 0, 0, 0, 1 }; | |||
| if (VectorLength(axis) != 0.0) | |||
| angle *= 0.5; | |||
| VectorNormalize(&axis); | |||
| result.x = axis.x * (float)sin(angle); | |||
| result.y = axis.y * (float)sin(angle); | |||
| result.z = axis.z * (float)sin(angle); | |||
| result.w = (float)cos(angle); | |||
| QuaternionNormalize(&result); | |||
| return result; | |||
| } | |||
| // Returns the rotation angle and axis for a given quaternion | |||
| void QuaternionToAxisAngle(Quaternion q, float *outAngle, Vector3 *outAxis) | |||
| { | |||
| if (fabs(q.w) > 1.0f) QuaternionNormalize(&q); | |||
| Vector3 resAxis = { 0, 0, 0 }; | |||
| float resAngle = 0; | |||
| resAngle = 2.0f * (float)acos(q.w); | |||
| float den = (float)sqrt(1.0 - q.w * q.w); | |||
| if (den > 0.0001f) | |||
| { | |||
| resAxis.x = q.x / den; | |||
| resAxis.y = q.y / den; | |||
| resAxis.z = q.z / den; | |||
| } | |||
| else | |||
| { | |||
| // This occurs when the angle is zero. | |||
| // Not a problem: just set an arbitrary normalized axis. | |||
| resAxis.x = 1.0; | |||
| } | |||
| *outAxis = resAxis; | |||
| *outAngle = resAngle; | |||
| } | |||
| // Transform a quaternion given a transformation matrix | |||
| void QuaternionTransform(Quaternion *q, Matrix mat) | |||
| { | |||
| float x = q->x; | |||
| float y = q->y; | |||
| float z = q->z; | |||
| float w = q->w; | |||
| q->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12*w; | |||
| q->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13*w; | |||
| q->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14*w; | |||
| q->w = mat.m3*x + mat.m7*y + mat.m11*z + mat.m15*w; | |||
| } | |||