diff --git a/src/audio.c b/src/audio.c index 90bf4968e..bf66f929b 100644 --- a/src/audio.c +++ b/src/audio.c @@ -79,6 +79,10 @@ #define JAR_MOD_IMPLEMENTATION #include "external/jar_mod.h" // MOD loading functions +#define DR_FLAC_IMPLEMENTATION +#define DR_FLAC_NO_WIN32_IO +#include "external/dr_flac.h" // FLAC loading functions + #ifdef _MSC_VER #undef bool #endif @@ -98,12 +102,13 @@ // Types and Structures Definition //---------------------------------------------------------------------------------- -typedef enum { MUSIC_AUDIO_OGG = 0, MUSIC_MODULE_XM, MUSIC_MODULE_MOD } MusicContextType; +typedef enum { MUSIC_AUDIO_OGG = 0, MUSIC_AUDIO_FLAC, MUSIC_MODULE_XM, MUSIC_MODULE_MOD } MusicContextType; // Music type (file streaming from memory) typedef struct MusicData { MusicContextType ctxType; // Type of music context (OGG, XM, MOD) stb_vorbis *ctxOgg; // OGG audio context + drflac *ctxFlac; // FLAC audio context jar_xm_context_t *ctxXm; // XM chiptune context jar_mod_context_t ctxMod; // MOD chiptune context @@ -128,6 +133,7 @@ typedef enum { INFO = 0, ERROR, WARNING, DEBUG, OTHER } TraceLogType; //---------------------------------------------------------------------------------- static Wave LoadWAV(const char *fileName); // Load WAV file static Wave LoadOGG(const char *fileName); // Load OGG file +static Wave LoadFLAC(const char *fileName); // Load FLAC file #if defined(AUDIO_STANDALONE) const char *GetExtension(const char *fileName); // Get the extension for a filename @@ -212,6 +218,7 @@ Wave LoadWave(const char *fileName) if (strcmp(GetExtension(fileName), "wav") == 0) wave = LoadWAV(fileName); else if (strcmp(GetExtension(fileName), "ogg") == 0) wave = LoadOGG(fileName); + else if (strcmp(GetExtension(fileName), "flac") == 0) wave = LoadFLAC(fileName); else TraceLog(WARNING, "[%s] File extension not recognized, it can't be loaded", fileName); return wave; @@ -672,7 +679,7 @@ Music LoadMusicStream(const char *fileName) // Open ogg audio stream music->ctxOgg = stb_vorbis_open_filename(fileName, NULL, NULL); - if (music->ctxOgg == NULL) TraceLog(WARNING, "[%s] OGG audio file could not be opened", fileName); + if (music->ctxOgg == NULL) TraceLog(WARNING, "[%s] OGG audio file could not be opened", fileName); else { stb_vorbis_info info = stb_vorbis_get_info(music->ctxOgg); // Get Ogg file info @@ -691,6 +698,24 @@ Music LoadMusicStream(const char *fileName) } } + else if (strcmp(GetExtension(fileName), "flac") == 0) + { + music->ctxFlac = drflac_open_file(fileName); + + if (music->ctxFlac == NULL) TraceLog(WARNING, "[%s] FLAC audio file could not be opened", fileName); + else + { + music->stream = InitAudioStream(music->ctxFlac->sampleRate, music->ctxFlac->bitsPerSample, music->ctxFlac->channels); + music->totalSamples = music->ctxFlac->totalSampleCount; + music->samplesLeft = music->totalSamples; + music->ctxType = MUSIC_AUDIO_FLAC; + music->loop = true; // We loop by default + + TraceLog(DEBUG, "[%s] FLAC sample rate: %i", fileName, music->ctxFlac->sampleRate); + TraceLog(DEBUG, "[%s] FLAC bits per sample: %i", fileName, music->ctxFlac->bitsPerSample); + TraceLog(DEBUG, "[%s] FLAC channels: %i", fileName, music->ctxFlac->channels); + } + } else if (strcmp(GetExtension(fileName), "xm") == 0) { int result = jar_xm_create_context_from_file(&music->ctxXm, 48000, fileName); @@ -739,6 +764,7 @@ void UnloadMusicStream(Music music) CloseAudioStream(music->stream); if (music->ctxType == MUSIC_AUDIO_OGG) stb_vorbis_close(music->ctxOgg); + else if (music->ctxType == MUSIC_AUDIO_FLAC) drflac_free(music->ctxFlac); else if (music->ctxType == MUSIC_MODULE_XM) jar_xm_free_context(music->ctxXm); else if (music->ctxType == MUSIC_MODULE_MOD) jar_mod_unload(&music->ctxMod); @@ -818,6 +844,20 @@ void UpdateMusicStream(Music music) UpdateAudioStream(music->stream, pcm, numSamplesOgg*music->stream.channels); music->samplesLeft -= (numSamplesOgg*music->stream.channels); + } break; + case MUSIC_AUDIO_FLAC: + { + if (music->samplesLeft >= AUDIO_BUFFER_SIZE) numSamples = AUDIO_BUFFER_SIZE; + else numSamples = music->samplesLeft; + + int pcmi[AUDIO_BUFFER_SIZE]; + + // NOTE: Returns the number of samples to process (should be the same as numSamples) + int numSamplesFlac = drflac_read_s32(music->ctxFlac, numSamples, pcmi); + + UpdateAudioStream(music->stream, pcmi, numSamples*music->stream.channels); + music->samplesLeft -= (numSamples*music->stream.channels); + } break; case MUSIC_MODULE_XM: { @@ -1214,6 +1254,24 @@ static Wave LoadOGG(const char *fileName) return wave; } +// Load FLAC file into Wave structure +// NOTE: Using dr_flac library +static Wave LoadFLAC(const char *fileName) +{ + Wave wave; + + // Decode an entire FLAC file in one go + uint64_t totalSampleCount; + wave.data = drflac_open_and_decode_file_s32(fileName, &wave.channels, &wave.sampleRate, &totalSampleCount); + + wave.sampleCount = (int)totalSampleCount; + wave.sampleSize = 32; + + if (wave.data == NULL) TraceLog(WARNING, "[%s] FLAC data could not be loaded", fileName); + + return wave; +} + // Some required functions for audio standalone module version #if defined(AUDIO_STANDALONE) // Get the extension for a filename diff --git a/src/external/dr_flac.h b/src/external/dr_flac.h new file mode 100644 index 000000000..d7b66f206 --- /dev/null +++ b/src/external/dr_flac.h @@ -0,0 +1,4395 @@ +// FLAC audio decoder. Public domain. See "unlicense" statement at the end of this file. +// dr_flac - v0.4 - 2016-09-29 +// +// David Reid - mackron@gmail.com + +// USAGE +// +// dr_flac is a single-file library. To use it, do something like the following in one .c file. +// #define DR_FLAC_IMPLEMENTATION +// #include "dr_flac.h" +// +// You can then #include this file in other parts of the program as you would with any other header file. To decode audio data, +// do something like the following: +// +// drflac* pFlac = drflac_open_file("MySong.flac"); +// if (pFlac == NULL) { +// // Failed to open FLAC file +// } +// +// int32_t* pSamples = malloc(pFlac->totalSampleCount * sizeof(int32_t)); +// uint64_t numberOfInterleavedSamplesActuallyRead = drflac_read_s32(pFlac, pFlac->totalSampleCount, pSamples); +// +// The drflac object represents the decoder. It is a transparent type so all the information you need, such as the number of +// channels and the bits per sample, should be directly accessible - just make sure you don't change their values. Samples are +// always output as interleaved signed 32-bit PCM. In the example above a native FLAC stream was opened, however dr_flac has +// seamless support for Ogg encapsulated FLAC streams as well. +// +// You do not need to decode the entire stream in one go - you just specify how many samples you'd like at any given time and +// the decoder will give you as many samples as it can, up to the amount requested. Later on when you need the next batch of +// samples, just call it again. Example: +// +// while (drflac_read_s32(pFlac, chunkSize, pChunkSamples) > 0) { +// do_something(); +// } +// +// You can seek to a specific sample with drflac_seek_to_sample(). The given sample is based on interleaving. So for example, +// if you were to seek to the sample at index 0 in a stereo stream, you'll be seeking to the first sample of the left channel. +// The sample at index 1 will be the first sample of the right channel. The sample at index 2 will be the second sample of the +// left channel, etc. +// +// +// If you just want to quickly decode an entire FLAC file in one go you can do something like this: +// +// unsigned int channels; +// unsigned int sampleRate; +// uint64_t totalSampleCount; +// int32_t* pSampleData = drflac_open_and_decode_file("MySong.flac", &channels, &sampleRate, &totalSampleCount); +// if (pSampleData == NULL) { +// // Failed to open and decode FLAC file. +// } +// +// ... +// +// drflac_free(pSampleData); +// +// +// If you need access to metadata (album art, etc.), use drflac_open_with_metadata(), drflac_open_file_with_metdata() or +// drflac_open_memory_with_metadata(). The rationale for keeping these APIs separate is that they're slightly slower than the +// normal versions and also just a little bit harder to use. +// +// dr_flac reports metadata to the application through the use of a callback, and every metadata block is reported before +// drflac_open_with_metdata() returns. See https://github.com/mackron/dr_libs_tests/blob/master/dr_flac/dr_flac_test_2.c for +// an example on how to read metadata. +// +// +// +// OPTIONS +// #define these options before including this file. +// +// #define DR_FLAC_NO_STDIO +// Disable drflac_open_file(). +// +// #define DR_FLAC_NO_OGG +// Disables support for Ogg/FLAC streams. +// +// #define DR_FLAC_NO_WIN32_IO +// In the Win32 build, dr_flac uses the Win32 IO APIs for drflac_open_file() by default. This setting will make it use the +// standard FILE APIs instead. Ignored when DR_FLAC_NO_STDIO is #defined. (The rationale for this configuration is that +// there's a bug in one compiler's Win32 implementation of the FILE APIs which is not present in the Win32 IO APIs.) +// +// #define DR_FLAC_BUFFER_SIZE +// Defines the size of the internal buffer to store data from onRead(). This buffer is used to reduce the number of calls +// back to the client for more data. Larger values means more memory, but better performance. My tests show diminishing +// returns after about 4KB (which is the default). Consider reducing this if you have a very efficient implementation of +// onRead(), or increase it if it's very inefficient. Must be a multiple of 8. +// +// +// +// QUICK NOTES +// - Based on my tests, the performance of the 32-bit build is at about parity with the reference implementation. The 64-bit build +// is slightly faster. +// - dr_flac does not currently do any CRC checks. +// - dr_flac should work fine with valid native FLAC files, but for broadcast streams it won't work if the header and STREAMINFO +// block is unavailable. +// - Audio data is output as signed 32-bit PCM, regardless of the bits per sample the FLAC stream is encoded as. +// - This has not been tested on big-endian architectures. +// - Rice codes in unencoded binary form (see https://xiph.org/flac/format.html#rice_partition) has not been tested. If anybody +// knows where I can find some test files for this, let me know. +// - Perverse and erroneous files have not been tested. Again, if you know where I can get some test files let me know. +// - dr_flac is not thread-safe, but it's APIs can be called from any thread so long as you do your own synchronization. + +#ifndef dr_flac_h +#define dr_flac_h + +#include +#include + +#ifndef DR_BOOL_DEFINED +#define DR_BOOL_DEFINED +#ifdef _WIN32 +typedef char drBool8; +typedef int drBool32; +#else +#include +typedef int8_t drBool8; +typedef int32_t drBool32; +#endif +#define DR_TRUE 1 +#define DR_FALSE 0 +#endif + +// As data is read from the client it is placed into an internal buffer for fast access. This controls the +// size of that buffer. Larger values means more speed, but also more memory. In my testing there is diminishing +// returns after about 4KB, but you can fiddle with this to suit your own needs. Must be a multiple of 8. +#ifndef DR_FLAC_BUFFER_SIZE +#define DR_FLAC_BUFFER_SIZE 4096 +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +// Check if we can enable 64-bit optimizations. +#if defined(_WIN64) +#define DRFLAC_64BIT +#endif + +#if defined(__GNUC__) +#if defined(__x86_64__) || defined(__ppc64__) +#define DRFLAC_64BIT +#endif +#endif + +#ifdef DRFLAC_64BIT +typedef uint64_t drflac_cache_t; +#else +typedef uint32_t drflac_cache_t; +#endif + +// The various metadata block types. +#define DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO 0 +#define DRFLAC_METADATA_BLOCK_TYPE_PADDING 1 +#define DRFLAC_METADATA_BLOCK_TYPE_APPLICATION 2 +#define DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE 3 +#define DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT 4 +#define DRFLAC_METADATA_BLOCK_TYPE_CUESHEET 5 +#define DRFLAC_METADATA_BLOCK_TYPE_PICTURE 6 +#define DRFLAC_METADATA_BLOCK_TYPE_INVALID 127 + +// The various picture types specified in the PICTURE block. +#define DRFLAC_PICTURE_TYPE_OTHER 0 +#define DRFLAC_PICTURE_TYPE_FILE_ICON 1 +#define DRFLAC_PICTURE_TYPE_OTHER_FILE_ICON 2 +#define DRFLAC_PICTURE_TYPE_COVER_FRONT 3 +#define DRFLAC_PICTURE_TYPE_COVER_BACK 4 +#define DRFLAC_PICTURE_TYPE_LEAFLET_PAGE 5 +#define DRFLAC_PICTURE_TYPE_MEDIA 6 +#define DRFLAC_PICTURE_TYPE_LEAD_ARTIST 7 +#define DRFLAC_PICTURE_TYPE_ARTIST 8 +#define DRFLAC_PICTURE_TYPE_CONDUCTOR 9 +#define DRFLAC_PICTURE_TYPE_BAND 10 +#define DRFLAC_PICTURE_TYPE_COMPOSER 11 +#define DRFLAC_PICTURE_TYPE_LYRICIST 12 +#define DRFLAC_PICTURE_TYPE_RECORDING_LOCATION 13 +#define DRFLAC_PICTURE_TYPE_DURING_RECORDING 14 +#define DRFLAC_PICTURE_TYPE_DURING_PERFORMANCE 15 +#define DRFLAC_PICTURE_TYPE_SCREEN_CAPTURE 16 +#define DRFLAC_PICTURE_TYPE_BRIGHT_COLORED_FISH 17 +#define DRFLAC_PICTURE_TYPE_ILLUSTRATION 18 +#define DRFLAC_PICTURE_TYPE_BAND_LOGOTYPE 19 +#define DRFLAC_PICTURE_TYPE_PUBLISHER_LOGOTYPE 20 + +typedef enum +{ + drflac_container_native, + drflac_container_ogg +} drflac_container; + +typedef enum +{ + drflac_seek_origin_start, + drflac_seek_origin_current +} drflac_seek_origin; + +// Packing is important on this structure because we map this directly to the raw data within the SEEKTABLE metadata block. +#pragma pack(2) +typedef struct +{ + uint64_t firstSample; + uint64_t frameOffset; // The offset from the first byte of the header of the first frame. + uint16_t sampleCount; +} drflac_seekpoint; +#pragma pack() + +typedef struct +{ + uint16_t minBlockSize; + uint16_t maxBlockSize; + uint32_t minFrameSize; + uint32_t maxFrameSize; + uint32_t sampleRate; + uint8_t channels; + uint8_t bitsPerSample; + uint64_t totalSampleCount; + uint8_t md5[16]; +} drflac_streaminfo; + +typedef struct +{ + // The metadata type. Use this to know how to interpret the data below. + uint32_t type; + + // A pointer to the raw data. This points to a temporary buffer so don't hold on to it. It's best to + // not modify the contents of this buffer. Use the structures below for more meaningful and structured + // information about the metadata. It's possible for this to be null. + const void* pRawData; + + // The size in bytes of the block and the buffer pointed to by pRawData if it's non-NULL. + uint32_t rawDataSize; + + union + { + drflac_streaminfo streaminfo; + + struct + { + int unused; + } padding; + + struct + { + uint32_t id; + const void* pData; + uint32_t dataSize; + } application; + + struct + { + uint32_t seekpointCount; + const drflac_seekpoint* pSeekpoints; + } seektable; + + struct + { + uint32_t vendorLength; + const char* vendor; + uint32_t commentCount; + const char* comments; + } vorbis_comment; + + struct + { + char catalog[128]; + uint64_t leadInSampleCount; + drBool32 isCD; + uint8_t trackCount; + const uint8_t* pTrackData; + } cuesheet; + + struct + { + uint32_t type; + uint32_t mimeLength; + const char* mime; + uint32_t descriptionLength; + const char* description; + uint32_t width; + uint32_t height; + uint32_t colorDepth; + uint32_t indexColorCount; + uint32_t pictureDataSize; + const uint8_t* pPictureData; + } picture; + } data; + +} drflac_metadata; + + +// Callback for when data needs to be read from the client. +// +// pUserData [in] The user data that was passed to drflac_open() and family. +// pBufferOut [out] The output buffer. +// bytesToRead [in] The number of bytes to read. +// +// Returns the number of bytes actually read. +typedef size_t (* drflac_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead); + +// Callback for when data needs to be seeked. +// +// pUserData [in] The user data that was passed to drflac_open() and family. +// offset [in] The number of bytes to move, relative to the origin. Will never be negative. +// origin [in] The origin of the seek - the current position or the start of the stream. +// +// Returns whether or not the seek was successful. +// +// The offset will never be negative. Whether or not it is relative to the beginning or current position is determined +// by the "origin" parameter which will be either drflac_seek_origin_start or drflac_seek_origin_current. +typedef drBool32 (* drflac_seek_proc)(void* pUserData, int offset, drflac_seek_origin origin); + +// Callback for when a metadata block is read. +// +// pUserData [in] The user data that was passed to drflac_open() and family. +// pMetadata [in] A pointer to a structure containing the data of the metadata block. +// +// Use pMetadata->type to determine which metadata block is being handled and how to read the data. +typedef void (* drflac_meta_proc)(void* pUserData, drflac_metadata* pMetadata); + + +// Structure for internal use. Only used for decoders opened with drflac_open_memory. +typedef struct +{ + const uint8_t* data; + size_t dataSize; + size_t currentReadPos; +} drflac__memory_stream; + +// Structure for internal use. Used for bit streaming. +typedef struct +{ + // The function to call when more data needs to be read. + drflac_read_proc onRead; + + // The function to call when the current read position needs to be moved. + drflac_seek_proc onSeek; + + // The user data to pass around to onRead and onSeek. + void* pUserData; + + + // The number of unaligned bytes in the L2 cache. This will always be 0 until the end of the stream is hit. At the end of the + // stream there will be a number of bytes that don't cleanly fit in an L1 cache line, so we use this variable to know whether + // or not the bistreamer needs to run on a slower path to read those last bytes. This will never be more than sizeof(drflac_cache_t). + size_t unalignedByteCount; + + // The content of the unaligned bytes. + drflac_cache_t unalignedCache; + + // The index of the next valid cache line in the "L2" cache. + size_t nextL2Line; + + // The number of bits that have been consumed by the cache. This is used to determine how many valid bits are remaining. + size_t consumedBits; + + // The cached data which was most recently read from the client. There are two levels of cache. Data flows as such: + // Client -> L2 -> L1. The L2 -> L1 movement is aligned and runs on a fast path in just a few instructions. + drflac_cache_t cacheL2[DR_FLAC_BUFFER_SIZE/sizeof(drflac_cache_t)]; + drflac_cache_t cache; + +} drflac_bs; + +typedef struct +{ + // The type of the subframe: SUBFRAME_CONSTANT, SUBFRAME_VERBATIM, SUBFRAME_FIXED or SUBFRAME_LPC. + uint8_t subframeType; + + // The number of wasted bits per sample as specified by the sub-frame header. + uint8_t wastedBitsPerSample; + + // The order to use for the prediction stage for SUBFRAME_FIXED and SUBFRAME_LPC. + uint8_t lpcOrder; + + // The number of bits per sample for this subframe. This is not always equal to the current frame's bit per sample because + // an extra bit is required for side channels when interchannel decorrelation is being used. + uint32_t bitsPerSample; + + // A pointer to the buffer containing the decoded samples in the subframe. This pointer is an offset from drflac::pExtraData, or + // NULL if the heap is not being used. Note that it's a signed 32-bit integer for each value. + int32_t* pDecodedSamples; + +} drflac_subframe; + +typedef struct +{ + // If the stream uses variable block sizes, this will be set to the index of the first sample. If fixed block sizes are used, this will + // always be set to 0. + uint64_t sampleNumber; + + // If the stream uses fixed block sizes, this will be set to the frame number. If variable block sizes are used, this will always be 0. + uint32_t frameNumber; + + // The sample rate of this frame. + uint32_t sampleRate; + + // The number of samples in each sub-frame within this frame. + uint16_t blockSize; + + // The channel assignment of this frame. This is not always set to the channel count. If interchannel decorrelation is being used this + // will be set to DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE, DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE or DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE. + uint8_t channelAssignment; + + // The number of bits per sample within this frame. + uint8_t bitsPerSample; + + // The frame's CRC. This is set, but unused at the moment. + uint8_t crc8; + +} drflac_frame_header; + +typedef struct +{ + // The header. + drflac_frame_header header; + + // The number of samples left to be read in this frame. This is initially set to the block size multiplied by the channel count. As samples + // are read, this will be decremented. When it reaches 0, the decoder will see this frame as fully consumed and load the next frame. + uint32_t samplesRemaining; + + // The list of sub-frames within the frame. There is one sub-frame for each channel, and there's a maximum of 8 channels. + drflac_subframe subframes[8]; + +} drflac_frame; + +typedef struct +{ + // The function to call when a metadata block is read. + drflac_meta_proc onMeta; + + // The user data posted to the metadata callback function. + void* pUserDataMD; + + + // The sample rate. Will be set to something like 44100. + uint32_t sampleRate; + + // The number of channels. This will be set to 1 for monaural streams, 2 for stereo, etc. Maximum 8. This is set based on the + // value specified in the STREAMINFO block. + uint8_t channels; + + // The bits per sample. Will be set to somthing like 16, 24, etc. + uint8_t bitsPerSample; + + // The maximum block size, in samples. This number represents the number of samples in each channel (not combined). + uint16_t maxBlockSize; + + // The total number of samples making up the stream. This includes every channel. For example, if the stream has 2 channels, + // with each channel having a total of 4096, this value will be set to 2*4096 = 8192. Can be 0 in which case it's still a + // valid stream, but just means the total sample count is unknown. Likely the case with streams like internet radio. + uint64_t totalSampleCount; + + + // The container type. This is set based on whether or not the decoder was opened from a native or Ogg stream. + drflac_container container; + + + // The position of the seektable in the file. + uint64_t seektablePos; + + // The size of the seektable. + uint32_t seektableSize; + + + // Information about the frame the decoder is currently sitting on. + drflac_frame currentFrame; + + // The position of the first frame in the stream. This is only ever used for seeking. + uint64_t firstFramePos; + + + // A hack to avoid a malloc() when opening a decoder with drflac_open_memory(). + drflac__memory_stream memoryStream; + + + + // A pointer to the decoded sample data. This is an offset of pExtraData. + int32_t* pDecodedSamples; + + + // The bit streamer. The raw FLAC data is fed through this object. + drflac_bs bs; + + // Variable length extra data. We attach this to the end of the object so we avoid unnecessary mallocs. + uint8_t pExtraData[1]; + +} drflac; + + +// Opens a FLAC decoder. +// +// onRead [in] The function to call when data needs to be read from the client. +// onSeek [in] The function to call when the read position of the client data needs to move. +// pUserData [in, optional] A pointer to application defined data that will be passed to onRead and onSeek. +// +// Returns a pointer to an object representing the decoder. +// +// Close the decoder with drflac_close(). +// +// This function will automatically detect whether or not you are attempting to open a native or Ogg encapsulated +// FLAC, both of which should work seamlessly without any manual intervention. Ogg encapsulation also works with +// multiplexed streams which basically means it can play FLAC encoded audio tracks in videos. +// +// This is the lowest level function for opening a FLAC stream. You can also use drflac_open_file() and drflac_open_memory() +// to open the stream from a file or from a block of memory respectively. +// +// The STREAMINFO block must be present for this to succeed. +// +// See also: drflac_open_file(), drflac_open_memory(), drflac_open_with_metadata(), drflac_close() +drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData); + +// Opens a FLAC decoder and notifies the caller of the metadata chunks (album art, etc.). +// +// onRead [in] The function to call when data needs to be read from the client. +// onSeek [in] The function to call when the read position of the client data needs to move. +// onMeta [in] The function to call for every metadata block. +// pUserData [in, optional] A pointer to application defined data that will be passed to onRead, onSeek and onMeta. +// +// Returns a pointer to an object representing the decoder. +// +// Close the decoder with drflac_close(). +// +// This is slower than drflac_open(), so avoid this one if you don't need metadata. Internally, this will do a malloc() +// and free() for every metadata block except for STREAMINFO and PADDING blocks. +// +// The caller is notified of the metadata via the onMeta callback. All metadata blocks with be handled before the function +// returns. +// +// See also: drflac_open_file_with_metadata(), drflac_open_memory_with_metadata(), drflac_open(), drflac_close() +drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData); + +// Closes the given FLAC decoder. +// +// pFlac [in] The decoder to close. +// +// This will destroy the decoder object. +void drflac_close(drflac* pFlac); + + +// Reads sample data from the given FLAC decoder, output as interleaved signed 32-bit PCM. +// +// pFlac [in] The decoder. +// samplesToRead [in] The number of samples to read. +// pBufferOut [out, optional] A pointer to the buffer that will receive the decoded samples. +// +// Returns the number of samples actually read. +// +// pBufferOut can be null, in which case the call will act as a seek, and the return value will be the number of samples +// seeked. +uint64_t drflac_read_s32(drflac* pFlac, uint64_t samplesToRead, int32_t* pBufferOut); + +// Seeks to the sample at the given index. +// +// pFlac [in] The decoder. +// sampleIndex [in] The index of the sample to seek to. See notes below. +// +// Returns DR_TRUE if successful; DR_FALSE otherwise. +// +// The sample index is based on interleaving. In a stereo stream, for example, the sample at index 0 is the first sample +// in the left channel; the sample at index 1 is the first sample on the right channel, and so on. +// +// When seeking, you will likely want to ensure it's rounded to a multiple of the channel count. You can do this with +// something like drflac_seek_to_sample(pFlac, (mySampleIndex + (mySampleIndex % pFlac->channels))) +drBool32 drflac_seek_to_sample(drflac* pFlac, uint64_t sampleIndex); + + + +#ifndef DR_FLAC_NO_STDIO +// Opens a FLAC decoder from the file at the given path. +// +// filename [in] The path of the file to open, either absolute or relative to the current directory. +// +// Returns a pointer to an object representing the decoder. +// +// Close the decoder with drflac_close(). +// +// This will hold a handle to the file until the decoder is closed with drflac_close(). Some platforms will restrict the +// number of files a process can have open at any given time, so keep this mind if you have many decoders open at the +// same time. +// +// See also: drflac_open(), drflac_open_file_with_metadata(), drflac_close() +drflac* drflac_open_file(const char* filename); + +// Opens a FLAC decoder from the file at the given path and notifies the caller of the metadata chunks (album art, etc.) +// +// Look at the documentation for drflac_open_with_metadata() for more information on how metadata is handled. +drflac* drflac_open_file_with_metadata(const char* filename, drflac_meta_proc onMeta, void* pUserData); +#endif + +// Opens a FLAC decoder from a pre-allocated block of memory +// +// This does not create a copy of the data. It is up to the application to ensure the buffer remains valid for +// the lifetime of the decoder. +drflac* drflac_open_memory(const void* data, size_t dataSize); + +// Opens a FLAC decoder from a pre-allocated block of memory and notifies the caller of the metadata chunks (album art, etc.) +// +// Look at the documentation for drflac_open_with_metadata() for more information on how metadata is handled. +drflac* drflac_open_memory_with_metadata(const void* data, size_t dataSize, drflac_meta_proc onMeta, void* pUserData); + + + +//// High Level APIs //// + +// Opens a FLAC stream from the given callbacks and fully decodes it in a single operation. The return value is a +// pointer to the sample data as interleaved signed 32-bit PCM. The returned data must be freed with drflac_free(). +// +// Sometimes a FLAC file won't keep track of the total sample count. In this situation the function will continuously +// read samples into a dynamically sized buffer on the heap until no samples are left. +// +// Do not call this function on a broadcast type of stream (like internet radio streams and whatnot). +int32_t* drflac_open_and_decode_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, uint64_t* totalSampleCount); + +#ifndef DR_FLAC_NO_STDIO +// Same as drflac_open_and_decode_s32() except opens the decoder from a file. +int32_t* drflac_open_and_decode_file_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, uint64_t* totalSampleCount); +#endif + +// Same as drflac_open_and_decode_s32() except opens the decoder from a block of memory. +int32_t* drflac_open_and_decode_memory_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, uint64_t* totalSampleCount); + +// Frees data returned by drflac_open_and_decode_*(). +void drflac_free(void* pSampleDataReturnedByOpenAndDecode); + + +// Structure representing an iterator for vorbis comments in a VORBIS_COMMENT metadata block. +typedef struct +{ + uint32_t countRemaining; + const char* pRunningData; +} drflac_vorbis_comment_iterator; + +// Initializes a vorbis comment iterator. This can be used for iterating over the vorbis comments in a VORBIS_COMMENT +// metadata block. +void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, uint32_t commentCount, const char* pComments); + +// Goes to the next vorbis comment in the given iterator. If null is returned it means there are no more comments. The +// returned string is NOT null terminated. +const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, uint32_t* pCommentLengthOut); + + + +#ifdef __cplusplus +} +#endif +#endif //dr_flac_h + + +/////////////////////////////////////////////////////////////////////////////// +// +// IMPLEMENTATION +// +/////////////////////////////////////////////////////////////////////////////// +#ifdef DR_FLAC_IMPLEMENTATION +#include +#include +#include + +#ifdef _MSC_VER +#include // For _byteswap_ulong and _byteswap_uint64 +#endif + +#ifdef __linux__ +#define _BSD_SOURCE +#include +#endif + +#ifdef _MSC_VER +#define DRFLAC_INLINE __forceinline +#else +#define DRFLAC_INLINE inline +#endif + +#define DRFLAC_SUBFRAME_CONSTANT 0 +#define DRFLAC_SUBFRAME_VERBATIM 1 +#define DRFLAC_SUBFRAME_FIXED 8 +#define DRFLAC_SUBFRAME_LPC 32 +#define DRFLAC_SUBFRAME_RESERVED 255 + +#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE 0 +#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2 1 + +#define DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT 0 +#define DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE 8 +#define DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE 9 +#define DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE 10 + + +//// Endian Management //// +static DRFLAC_INLINE drBool32 drflac__is_little_endian() +{ + int n = 1; + return (*(char*)&n) == 1; +} + +static DRFLAC_INLINE uint16_t drflac__swap_endian_uint16(uint16_t n) +{ +#ifdef _MSC_VER + return _byteswap_ushort(n); +#elif defined(__GNUC__) && ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) + return __builtin_bswap16(n); +#else + return ((n & 0xFF00) >> 8) | + ((n & 0x00FF) << 8); +#endif +} + +static DRFLAC_INLINE uint32_t drflac__swap_endian_uint32(uint32_t n) +{ +#ifdef _MSC_VER + return _byteswap_ulong(n); +#elif defined(__GNUC__) && ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) + return __builtin_bswap32(n); +#else + return ((n & 0xFF000000) >> 24) | + ((n & 0x00FF0000) >> 8) | + ((n & 0x0000FF00) << 8) | + ((n & 0x000000FF) << 24); +#endif +} + +static DRFLAC_INLINE uint64_t drflac__swap_endian_uint64(uint64_t n) +{ +#ifdef _MSC_VER + return _byteswap_uint64(n); +#elif defined(__GNUC__) && ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) + return __builtin_bswap64(n); +#else + return ((n & 0xFF00000000000000ULL) >> 56) | + ((n & 0x00FF000000000000ULL) >> 40) | + ((n & 0x0000FF0000000000ULL) >> 24) | + ((n & 0x000000FF00000000ULL) >> 8) | + ((n & 0x00000000FF000000ULL) << 8) | + ((n & 0x0000000000FF0000ULL) << 24) | + ((n & 0x000000000000FF00ULL) << 40) | + ((n & 0x00000000000000FFULL) << 56); +#endif +} + +static DRFLAC_INLINE uint16_t drflac__be2host_16(uint16_t n) +{ +#ifdef __linux__ + return be16toh(n); +#else + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint16(n); + } + + return n; +#endif +} + +static DRFLAC_INLINE uint32_t drflac__be2host_32(uint32_t n) +{ +#ifdef __linux__ + return be32toh(n); +#else + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint32(n); + } + + return n; +#endif +} + +static DRFLAC_INLINE uint64_t drflac__be2host_64(uint64_t n) +{ +#ifdef __linux__ + return be64toh(n); +#else + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint64(n); + } + + return n; +#endif +} + + +static DRFLAC_INLINE uint32_t drflac__le2host_32(uint32_t n) +{ +#ifdef __linux__ + return le32toh(n); +#else + if (!drflac__is_little_endian()) { + return drflac__swap_endian_uint32(n); + } + + return n; +#endif +} + + +#ifdef DRFLAC_64BIT +#define drflac__be2host__cache_line drflac__be2host_64 +#else +#define drflac__be2host__cache_line drflac__be2host_32 +#endif + + +// BIT READING ATTEMPT #2 +// +// This uses a 32- or 64-bit bit-shifted cache - as bits are read, the cache is shifted such that the first valid bit is sitting +// on the most significant bit. It uses the notion of an L1 and L2 cache (borrowed from CPU architecture), where the L1 cache +// is a 32- or 64-bit unsigned integer (depending on whether or not a 32- or 64-bit build is being compiled) and the L2 is an +// array of "cache lines", with each cache line being the same size as the L1. The L2 is a buffer of about 4KB and is where data +// from onRead() is read into. +#define DRFLAC_CACHE_L1_SIZE_BYTES(bs) (sizeof((bs)->cache)) +#define DRFLAC_CACHE_L1_SIZE_BITS(bs) (sizeof((bs)->cache)*8) +#define DRFLAC_CACHE_L1_BITS_REMAINING(bs) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - ((bs)->consumedBits)) +#ifdef DRFLAC_64BIT +#define DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount) (~(((uint64_t)-1LL) >> (_bitCount))) +#else +#define DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount) (~(((uint32_t)-1) >> (_bitCount))) +#endif +#define DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (_bitCount)) +#define DRFLAC_CACHE_L1_SELECT(bs, _bitCount) (((bs)->cache) & DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount)) +#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SELECT((bs), _bitCount) >> DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), _bitCount)) +#define DRFLAC_CACHE_L2_SIZE_BYTES(bs) (sizeof((bs)->cacheL2)) +#define DRFLAC_CACHE_L2_LINE_COUNT(bs) (DRFLAC_CACHE_L2_SIZE_BYTES(bs) / sizeof((bs)->cacheL2[0])) +#define DRFLAC_CACHE_L2_LINES_REMAINING(bs) (DRFLAC_CACHE_L2_LINE_COUNT(bs) - (bs)->nextL2Line) + +static DRFLAC_INLINE drBool32 drflac__reload_l1_cache_from_l2(drflac_bs* bs) +{ + // Fast path. Try loading straight from L2. + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DR_TRUE; + } + + // If we get here it means we've run out of data in the L2 cache. We'll need to fetch more from the client, if there's + // any left. + if (bs->unalignedByteCount > 0) { + return DR_FALSE; // If we have any unaligned bytes it means there's not more aligned bytes left in the client. + } + + size_t bytesRead = bs->onRead(bs->pUserData, bs->cacheL2, DRFLAC_CACHE_L2_SIZE_BYTES(bs)); + + bs->nextL2Line = 0; + if (bytesRead == DRFLAC_CACHE_L2_SIZE_BYTES(bs)) { + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DR_TRUE; + } + + + // If we get here it means we were unable to retrieve enough data to fill the entire L2 cache. It probably + // means we've just reached the end of the file. We need to move the valid data down to the end of the buffer + // and adjust the index of the next line accordingly. Also keep in mind that the L2 cache must be aligned to + // the size of the L1 so we'll need to seek backwards by any misaligned bytes. + size_t alignedL1LineCount = bytesRead / DRFLAC_CACHE_L1_SIZE_BYTES(bs); + + // We need to keep track of any unaligned bytes for later use. + bs->unalignedByteCount = bytesRead - (alignedL1LineCount * DRFLAC_CACHE_L1_SIZE_BYTES(bs)); + if (bs->unalignedByteCount > 0) { + bs->unalignedCache = bs->cacheL2[alignedL1LineCount]; + } + + if (alignedL1LineCount > 0) + { + size_t offset = DRFLAC_CACHE_L2_LINE_COUNT(bs) - alignedL1LineCount; + for (size_t i = alignedL1LineCount; i > 0; --i) { + bs->cacheL2[i-1 + offset] = bs->cacheL2[i-1]; + } + + bs->nextL2Line = offset; + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DR_TRUE; + } + else + { + // If we get into this branch it means we weren't able to load any L1-aligned data. + bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); + return DR_FALSE; + } +} + +static drBool32 drflac__reload_cache(drflac_bs* bs) +{ + // Fast path. Try just moving the next value in the L2 cache to the L1 cache. + if (drflac__reload_l1_cache_from_l2(bs)) { + bs->cache = drflac__be2host__cache_line(bs->cache); + bs->consumedBits = 0; + return DR_TRUE; + } + + // Slow path. + + // If we get here it means we have failed to load the L1 cache from the L2. Likely we've just reached the end of the stream and the last + // few bytes did not meet the alignment requirements for the L2 cache. In this case we need to fall back to a slower path and read the + // data from the unaligned cache. + size_t bytesRead = bs->unalignedByteCount; + if (bytesRead == 0) { + return DR_FALSE; + } + + assert(bytesRead < DRFLAC_CACHE_L1_SIZE_BYTES(bs)); + bs->consumedBits = (DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bytesRead) * 8; + + bs->cache = drflac__be2host__cache_line(bs->unalignedCache); + bs->cache &= DRFLAC_CACHE_L1_SELECTION_MASK(DRFLAC_CACHE_L1_SIZE_BITS(bs) - bs->consumedBits); // <-- Make sure the consumed bits are always set to zero. Other parts of the library depend on this property. + return DR_TRUE; +} + +static void drflac__reset_cache(drflac_bs* bs) +{ + bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); // <-- This clears the L2 cache. + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); // <-- This clears the L1 cache. + bs->cache = 0; + bs->unalignedByteCount = 0; // <-- This clears the trailing unaligned bytes. + bs->unalignedCache = 0; +} + +static drBool32 drflac__seek_bits(drflac_bs* bs, size_t bitsToSeek) +{ + if (bitsToSeek <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + bs->consumedBits += bitsToSeek; + bs->cache <<= bitsToSeek; + return DR_TRUE; + } else { + // It straddles the cached data. This function isn't called too frequently so I'm favouring simplicity here. + bitsToSeek -= DRFLAC_CACHE_L1_BITS_REMAINING(bs); + bs->consumedBits += DRFLAC_CACHE_L1_BITS_REMAINING(bs); + bs->cache = 0; + + size_t wholeBytesRemaining = bitsToSeek/8; + if (wholeBytesRemaining > 0) + { + // The next bytes to seek will be located in the L2 cache. The problem is that the L2 cache is not byte aligned, + // but rather DRFLAC_CACHE_L1_SIZE_BYTES aligned (usually 4 or 8). If, for example, the number of bytes to seek is + // 3, we'll need to handle it in a special way. + size_t wholeCacheLinesRemaining = wholeBytesRemaining / DRFLAC_CACHE_L1_SIZE_BYTES(bs); + if (wholeCacheLinesRemaining < DRFLAC_CACHE_L2_LINES_REMAINING(bs)) + { + wholeBytesRemaining -= wholeCacheLinesRemaining * DRFLAC_CACHE_L1_SIZE_BYTES(bs); + bitsToSeek -= wholeCacheLinesRemaining * DRFLAC_CACHE_L1_SIZE_BITS(bs); + bs->nextL2Line += wholeCacheLinesRemaining; + } + else + { + wholeBytesRemaining -= DRFLAC_CACHE_L2_LINES_REMAINING(bs) * DRFLAC_CACHE_L1_SIZE_BYTES(bs); + bitsToSeek -= DRFLAC_CACHE_L2_LINES_REMAINING(bs) * DRFLAC_CACHE_L1_SIZE_BITS(bs); + bs->nextL2Line += DRFLAC_CACHE_L2_LINES_REMAINING(bs); + + if (wholeBytesRemaining > 0) { + bs->onSeek(bs->pUserData, (int)wholeBytesRemaining, drflac_seek_origin_current); + bitsToSeek -= wholeBytesRemaining*8; + } + } + } + + + if (bitsToSeek > 0) { + if (!drflac__reload_cache(bs)) { + return DR_FALSE; + } + + return drflac__seek_bits(bs, bitsToSeek); + } + + return DR_TRUE; + } +} + +static drBool32 drflac__read_uint32(drflac_bs* bs, unsigned int bitCount, uint32_t* pResultOut) +{ + assert(bs != NULL); + assert(pResultOut != NULL); + assert(bitCount > 0); + assert(bitCount <= 32); + + if (bs->consumedBits == DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + if (!drflac__reload_cache(bs)) { + return DR_FALSE; + } + } + + if (bitCount <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + if (bitCount < DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + *pResultOut = DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount); + bs->consumedBits += bitCount; + bs->cache <<= bitCount; + } else { + *pResultOut = (uint32_t)bs->cache; + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); + bs->cache = 0; + } + return DR_TRUE; + } else { + // It straddles the cached data. It will never cover more than the next chunk. We just read the number in two parts and combine them. + size_t bitCountHi = DRFLAC_CACHE_L1_BITS_REMAINING(bs); + size_t bitCountLo = bitCount - bitCountHi; + uint32_t resultHi = DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountHi); + + if (!drflac__reload_cache(bs)) { + return DR_FALSE; + } + + *pResultOut = (resultHi << bitCountLo) | DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountLo); + bs->consumedBits += bitCountLo; + bs->cache <<= bitCountLo; + return DR_TRUE; + } +} + +static drBool32 drflac__read_int32(drflac_bs* bs, unsigned int bitCount, int32_t* pResult) +{ + assert(bs != NULL); + assert(pResult != NULL); + assert(bitCount > 0); + assert(bitCount <= 32); + + uint32_t result; + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DR_FALSE; + } + + uint32_t signbit = ((result >> (bitCount-1)) & 0x01); + result |= (~signbit + 1) << bitCount; + + *pResult = (int32_t)result; + return DR_TRUE; +} + +static drBool32 drflac__read_uint64(drflac_bs* bs, unsigned int bitCount, uint64_t* pResultOut) +{ + assert(bitCount <= 64); + assert(bitCount > 32); + + uint32_t resultHi; + if (!drflac__read_uint32(bs, bitCount - 32, &resultHi)) { + return DR_FALSE; + } + + uint32_t resultLo; + if (!drflac__read_uint32(bs, 32, &resultLo)) { + return DR_FALSE; + } + + *pResultOut = (((uint64_t)resultHi) << 32) | ((uint64_t)resultLo); + return DR_TRUE; +} + +// Function below is unused, but leaving it here in case I need to quickly add it again. +#if 0 +static drBool32 drflac__read_int64(drflac_bs* bs, unsigned int bitCount, int64_t* pResultOut) +{ + assert(bitCount <= 64); + + uint64_t result; + if (!drflac__read_uint64(bs, bitCount, &result)) { + return DR_FALSE; + } + + uint64_t signbit = ((result >> (bitCount-1)) & 0x01); + result |= (~signbit + 1) << bitCount; + + *pResultOut = (int64_t)result; + return DR_TRUE; +} +#endif + +static drBool32 drflac__read_uint16(drflac_bs* bs, unsigned int bitCount, uint16_t* pResult) +{ + assert(bs != NULL); + assert(pResult != NULL); + assert(bitCount > 0); + assert(bitCount <= 16); + + uint32_t result; + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DR_FALSE; + } + + *pResult = (uint16_t)result; + return DR_TRUE; +} + +static drBool32 drflac__read_int16(drflac_bs* bs, unsigned int bitCount, int16_t* pResult) +{ + assert(bs != NULL); + assert(pResult != NULL); + assert(bitCount > 0); + assert(bitCount <= 16); + + int32_t result; + if (!drflac__read_int32(bs, bitCount, &result)) { + return DR_FALSE; + } + + *pResult = (int16_t)result; + return DR_TRUE; +} + +static drBool32 drflac__read_uint8(drflac_bs* bs, unsigned int bitCount, uint8_t* pResult) +{ + assert(bs != NULL); + assert(pResult != NULL); + assert(bitCount > 0); + assert(bitCount <= 8); + + uint32_t result; + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DR_FALSE; + } + + *pResult = (uint8_t)result; + return DR_TRUE; +} + +static drBool32 drflac__read_int8(drflac_bs* bs, unsigned int bitCount, int8_t* pResult) +{ + assert(bs != NULL); + assert(pResult != NULL); + assert(bitCount > 0); + assert(bitCount <= 8); + + int32_t result; + if (!drflac__read_int32(bs, bitCount, &result)) { + return DR_FALSE; + } + + *pResult = (int8_t)result; + return DR_TRUE; +} + + +static inline drBool32 drflac__seek_past_next_set_bit(drflac_bs* bs, unsigned int* pOffsetOut) +{ + unsigned int zeroCounter = 0; + while (bs->cache == 0) { + zeroCounter += (unsigned int)DRFLAC_CACHE_L1_BITS_REMAINING(bs); + if (!drflac__reload_cache(bs)) { + return DR_FALSE; + } + } + + // At this point the cache should not be zero, in which case we know the first set bit should be somewhere in here. There is + // no need for us to perform any cache reloading logic here which should make things much faster. + assert(bs->cache != 0); + + unsigned int bitOffsetTable[] = { + 0, + 4, + 3, 3, + 2, 2, 2, 2, + 1, 1, 1, 1, 1, 1, 1, 1 + }; + + unsigned int setBitOffsetPlus1 = bitOffsetTable[DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, 4)]; + if (setBitOffsetPlus1 == 0) { + if (bs->cache == 1) { + setBitOffsetPlus1 = DRFLAC_CACHE_L1_SIZE_BITS(bs); + } else { + setBitOffsetPlus1 = 5; + for (;;) + { + if ((bs->cache & DRFLAC_CACHE_L1_SELECT(bs, setBitOffsetPlus1))) { + break; + } + + setBitOffsetPlus1 += 1; + } + } + } + + bs->consumedBits += setBitOffsetPlus1; + bs->cache <<= setBitOffsetPlus1; + + *pOffsetOut = zeroCounter + setBitOffsetPlus1 - 1; + return DR_TRUE; +} + + + +static drBool32 drflac__seek_to_byte(drflac_bs* bs, uint64_t offsetFromStart) +{ + assert(bs != NULL); + assert(offsetFromStart > 0); + + // Seeking from the start is not quite as trivial as it sounds because the onSeek callback takes a signed 32-bit integer (which + // is intentional because it simplifies the implementation of the onSeek callbacks), however offsetFromStart is unsigned 64-bit. + // To resolve we just need to do an initial seek from the start, and then a series of offset seeks to make up the remainder. + if (offsetFromStart > 0x7FFFFFFF) + { + uint64_t bytesRemaining = offsetFromStart; + if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) { + return DR_FALSE; + } + bytesRemaining -= 0x7FFFFFFF; + + + while (bytesRemaining > 0x7FFFFFFF) { + if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) { + return DR_FALSE; + } + bytesRemaining -= 0x7FFFFFFF; + } + + + if (bytesRemaining > 0) { + if (!bs->onSeek(bs->pUserData, (int)bytesRemaining, drflac_seek_origin_current)) { + return DR_FALSE; + } + } + } + else + { + if (!bs->onSeek(bs->pUserData, (int)offsetFromStart, drflac_seek_origin_start)) { + return DR_FALSE; + } + } + + + // The cache should be reset to force a reload of fresh data from the client. + drflac__reset_cache(bs); + return DR_TRUE; +} + + +static drBool32 drflac__read_utf8_coded_number(drflac_bs* bs, uint64_t* pNumberOut) +{ + assert(bs != NULL); + assert(pNumberOut != NULL); + + unsigned char utf8[7] = {0}; + if (!drflac__read_uint8(bs, 8, utf8)) { + *pNumberOut = 0; + return DR_FALSE; + } + + if ((utf8[0] & 0x80) == 0) { + *pNumberOut = utf8[0]; + return DR_TRUE; + } + + int byteCount = 1; + if ((utf8[0] & 0xE0) == 0xC0) { + byteCount = 2; + } else if ((utf8[0] & 0xF0) == 0xE0) { + byteCount = 3; + } else if ((utf8[0] & 0xF8) == 0xF0) { + byteCount = 4; + } else if ((utf8[0] & 0xFC) == 0xF8) { + byteCount = 5; + } else if ((utf8[0] & 0xFE) == 0xFC) { + byteCount = 6; + } else if ((utf8[0] & 0xFF) == 0xFE) { + byteCount = 7; + } else { + *pNumberOut = 0; + return DR_FALSE; // Bad UTF-8 encoding. + } + + // Read extra bytes. + assert(byteCount > 1); + + uint64_t result = (uint64_t)(utf8[0] & (0xFF >> (byteCount + 1))); + for (int i = 1; i < byteCount; ++i) { + if (!drflac__read_uint8(bs, 8, utf8 + i)) { + *pNumberOut = 0; + return DR_FALSE; + } + + result = (result << 6) | (utf8[i] & 0x3F); + } + + *pNumberOut = result; + return DR_TRUE; +} + + + +static DRFLAC_INLINE drBool32 drflac__read_and_seek_rice(drflac_bs* bs, uint8_t m) +{ + unsigned int unused; + if (!drflac__seek_past_next_set_bit(bs, &unused)) { + return DR_FALSE; + } + + if (m > 0) { + if (!drflac__seek_bits(bs, m)) { + return DR_FALSE; + } + } + + return DR_TRUE; +} + + +// The next two functions are responsible for calculating the prediction. +// +// When the bits per sample is >16 we need to use 64-bit integer arithmetic because otherwise we'll run out of precision. It's +// safe to assume this will be slower on 32-bit platforms so we use a more optimal solution when the bits per sample is <=16. +static DRFLAC_INLINE int32_t drflac__calculate_prediction_32(uint32_t order, int32_t shift, const int16_t* coefficients, int32_t* pDecodedSamples) +{ + assert(order <= 32); + + // 32-bit version. + + // VC++ optimizes this to a single jmp. I've not yet verified this for other compilers. + int32_t prediction = 0; + + switch (order) + { + case 32: prediction += coefficients[31] * pDecodedSamples[-32]; + case 31: prediction += coefficients[30] * pDecodedSamples[-31]; + case 30: prediction += coefficients[29] * pDecodedSamples[-30]; + case 29: prediction += coefficients[28] * pDecodedSamples[-29]; + case 28: prediction += coefficients[27] * pDecodedSamples[-28]; + case 27: prediction += coefficients[26] * pDecodedSamples[-27]; + case 26: prediction += coefficients[25] * pDecodedSamples[-26]; + case 25: prediction += coefficients[24] * pDecodedSamples[-25]; + case 24: prediction += coefficients[23] * pDecodedSamples[-24]; + case 23: prediction += coefficients[22] * pDecodedSamples[-23]; + case 22: prediction += coefficients[21] * pDecodedSamples[-22]; + case 21: prediction += coefficients[20] * pDecodedSamples[-21]; + case 20: prediction += coefficients[19] * pDecodedSamples[-20]; + case 19: prediction += coefficients[18] * pDecodedSamples[-19]; + case 18: prediction += coefficients[17] * pDecodedSamples[-18]; + case 17: prediction += coefficients[16] * pDecodedSamples[-17]; + case 16: prediction += coefficients[15] * pDecodedSamples[-16]; + case 15: prediction += coefficients[14] * pDecodedSamples[-15]; + case 14: prediction += coefficients[13] * pDecodedSamples[-14]; + case 13: prediction += coefficients[12] * pDecodedSamples[-13]; + case 12: prediction += coefficients[11] * pDecodedSamples[-12]; + case 11: prediction += coefficients[10] * pDecodedSamples[-11]; + case 10: prediction += coefficients[ 9] * pDecodedSamples[-10]; + case 9: prediction += coefficients[ 8] * pDecodedSamples[- 9]; + case 8: prediction += coefficients[ 7] * pDecodedSamples[- 8]; + case 7: prediction += coefficients[ 6] * pDecodedSamples[- 7]; + case 6: prediction += coefficients[ 5] * pDecodedSamples[- 6]; + case 5: prediction += coefficients[ 4] * pDecodedSamples[- 5]; + case 4: prediction += coefficients[ 3] * pDecodedSamples[- 4]; + case 3: prediction += coefficients[ 2] * pDecodedSamples[- 3]; + case 2: prediction += coefficients[ 1] * pDecodedSamples[- 2]; + case 1: prediction += coefficients[ 0] * pDecodedSamples[- 1]; + } + + return (int32_t)(prediction >> shift); +} + +static DRFLAC_INLINE int32_t drflac__calculate_prediction_64(uint32_t order, int32_t shift, const int16_t* coefficients, int32_t* pDecodedSamples) +{ + assert(order <= 32); + + // 64-bit version. + + // This method is faster on the 32-bit build when compiling with VC++. See note below. +#ifndef DRFLAC_64BIT + int64_t prediction; + if (order == 8) + { + prediction = coefficients[0] * (int64_t)pDecodedSamples[-1]; + prediction += coefficients[1] * (int64_t)pDecodedSamples[-2]; + prediction += coefficients[2] * (int64_t)pDecodedSamples[-3]; + prediction += coefficients[3] * (int64_t)pDecodedSamples[-4]; + prediction += coefficients[4] * (int64_t)pDecodedSamples[-5]; + prediction += coefficients[5] * (int64_t)pDecodedSamples[-6]; + prediction += coefficients[6] * (int64_t)pDecodedSamples[-7]; + prediction += coefficients[7] * (int64_t)pDecodedSamples[-8]; + } + else if (order == 7) + { + prediction = coefficients[0] * (int64_t)pDecodedSamples[-1]; + prediction += coefficients[1] * (int64_t)pDecodedSamples[-2]; + prediction += coefficients[2] * (int64_t)pDecodedSamples[-3]; + prediction += coefficients[3] * (int64_t)pDecodedSamples[-4]; + prediction += coefficients[4] * (int64_t)pDecodedSamples[-5]; + prediction += coefficients[5] * (int64_t)pDecodedSamples[-6]; + prediction += coefficients[6] * (int64_t)pDecodedSamples[-7]; + } + else if (order == 3) + { + prediction = coefficients[0] * (int64_t)pDecodedSamples[-1]; + prediction += coefficients[1] * (int64_t)pDecodedSamples[-2]; + prediction += coefficients[2] * (int64_t)pDecodedSamples[-3]; + } + else if (order == 6) + { + prediction = coefficients[0] * (int64_t)pDecodedSamples[-1]; + prediction += coefficients[1] * (int64_t)pDecodedSamples[-2]; + prediction += coefficients[2] * (int64_t)pDecodedSamples[-3]; + prediction += coefficients[3] * (int64_t)pDecodedSamples[-4]; + prediction += coefficients[4] * (int64_t)pDecodedSamples[-5]; + prediction += coefficients[5] * (int64_t)pDecodedSamples[-6]; + } + else if (order == 5) + { + prediction = coefficients[0] * (int64_t)pDecodedSamples[-1]; + prediction += coefficients[1] * (int64_t)pDecodedSamples[-2]; + prediction += coefficients[2] * (int64_t)pDecodedSamples[-3]; + prediction += coefficients[3] * (int64_t)pDecodedSamples[-4]; + prediction += coefficients[4] * (int64_t)pDecodedSamples[-5]; + } + else if (order == 4) + { + prediction = coefficients[0] * (int64_t)pDecodedSamples[-1]; + prediction += coefficients[1] * (int64_t)pDecodedSamples[-2]; + prediction += coefficients[2] * (int64_t)pDecodedSamples[-3]; + prediction += coefficients[3] * (int64_t)pDecodedSamples[-4]; + } + else if (order == 12) + { + prediction = coefficients[0] * (int64_t)pDecodedSamples[-1]; + prediction += coefficients[1] * (int64_t)pDecodedSamples[-2]; + prediction += coefficients[2] * (int64_t)pDecodedSamples[-3]; + prediction += coefficients[3] * (int64_t)pDecodedSamples[-4]; + prediction += coefficients[4] * (int64_t)pDecodedSamples[-5]; + prediction += coefficients[5] * (int64_t)pDecodedSamples[-6]; + prediction += coefficients[6] * (int64_t)pDecodedSamples[-7]; + prediction += coefficients[7] * (int64_t)pDecodedSamples[-8]; + prediction += coefficients[8] * (int64_t)pDecodedSamples[-9]; + prediction += coefficients[9] * (int64_t)pDecodedSamples[-10]; + prediction += coefficients[10] * (int64_t)pDecodedSamples[-11]; + prediction += coefficients[11] * (int64_t)pDecodedSamples[-12]; + } + else if (order == 2) + { + prediction = coefficients[0] * (int64_t)pDecodedSamples[-1]; + prediction += coefficients[1] * (int64_t)pDecodedSamples[-2]; + } + else if (order == 1) + { + prediction = coefficients[0] * (int64_t)pDecodedSamples[-1]; + } + else if (order == 10) + { + prediction = coefficients[0] * (int64_t)pDecodedSamples[-1]; + prediction += coefficients[1] * (int64_t)pDecodedSamples[-2]; + prediction += coefficients[2] * (int64_t)pDecodedSamples[-3]; + prediction += coefficients[3] * (int64_t)pDecodedSamples[-4]; + prediction += coefficients[4] * (int64_t)pDecodedSamples[-5]; + prediction += coefficients[5] * (int64_t)pDecodedSamples[-6]; + prediction += coefficients[6] * (int64_t)pDecodedSamples[-7]; + prediction += coefficients[7] * (int64_t)pDecodedSamples[-8]; + prediction += coefficients[8] * (int64_t)pDecodedSamples[-9]; + prediction += coefficients[9] * (int64_t)pDecodedSamples[-10]; + } + else if (order == 9) + { + prediction = coefficients[0] * (int64_t)pDecodedSamples[-1]; + prediction += coefficients[1] * (int64_t)pDecodedSamples[-2]; + prediction += coefficients[2] * (int64_t)pDecodedSamples[-3]; + prediction += coefficients[3] * (int64_t)pDecodedSamples[-4]; + prediction += coefficients[4] * (int64_t)pDecodedSamples[-5]; + prediction += coefficients[5] * (int64_t)pDecodedSamples[-6]; + prediction += coefficients[6] * (int64_t)pDecodedSamples[-7]; + prediction += coefficients[7] * (int64_t)pDecodedSamples[-8]; + prediction += coefficients[8] * (int64_t)pDecodedSamples[-9]; + } + else if (order == 11) + { + prediction = coefficients[0] * (int64_t)pDecodedSamples[-1]; + prediction += coefficients[1] * (int64_t)pDecodedSamples[-2]; + prediction += coefficients[2] * (int64_t)pDecodedSamples[-3]; + prediction += coefficients[3] * (int64_t)pDecodedSamples[-4]; + prediction += coefficients[4] * (int64_t)pDecodedSamples[-5]; + prediction += coefficients[5] * (int64_t)pDecodedSamples[-6]; + prediction += coefficients[6] * (int64_t)pDecodedSamples[-7]; + prediction += coefficients[7] * (int64_t)pDecodedSamples[-8]; + prediction += coefficients[8] * (int64_t)pDecodedSamples[-9]; + prediction += coefficients[9] * (int64_t)pDecodedSamples[-10]; + prediction += coefficients[10] * (int64_t)pDecodedSamples[-11]; + } + else + { + prediction = 0; + for (int j = 0; j < (int)order; ++j) { + prediction += coefficients[j] * (int64_t)pDecodedSamples[-j-1]; + } + } +#endif + + // VC++ optimizes this to a single jmp instruction, but only the 64-bit build. The 32-bit build generates less efficient code for some + // reason. The ugly version above is faster so we'll just switch between the two depending on the target platform. +#ifdef DRFLAC_64BIT + int64_t prediction = 0; + + switch (order) + { + case 32: prediction += coefficients[31] * (int64_t)pDecodedSamples[-32]; + case 31: prediction += coefficients[30] * (int64_t)pDecodedSamples[-31]; + case 30: prediction += coefficients[29] * (int64_t)pDecodedSamples[-30]; + case 29: prediction += coefficients[28] * (int64_t)pDecodedSamples[-29]; + case 28: prediction += coefficients[27] * (int64_t)pDecodedSamples[-28]; + case 27: prediction += coefficients[26] * (int64_t)pDecodedSamples[-27]; + case 26: prediction += coefficients[25] * (int64_t)pDecodedSamples[-26]; + case 25: prediction += coefficients[24] * (int64_t)pDecodedSamples[-25]; + case 24: prediction += coefficients[23] * (int64_t)pDecodedSamples[-24]; + case 23: prediction += coefficients[22] * (int64_t)pDecodedSamples[-23]; + case 22: prediction += coefficients[21] * (int64_t)pDecodedSamples[-22]; + case 21: prediction += coefficients[20] * (int64_t)pDecodedSamples[-21]; + case 20: prediction += coefficients[19] * (int64_t)pDecodedSamples[-20]; + case 19: prediction += coefficients[18] * (int64_t)pDecodedSamples[-19]; + case 18: prediction += coefficients[17] * (int64_t)pDecodedSamples[-18]; + case 17: prediction += coefficients[16] * (int64_t)pDecodedSamples[-17]; + case 16: prediction += coefficients[15] * (int64_t)pDecodedSamples[-16]; + case 15: prediction += coefficients[14] * (int64_t)pDecodedSamples[-15]; + case 14: prediction += coefficients[13] * (int64_t)pDecodedSamples[-14]; + case 13: prediction += coefficients[12] * (int64_t)pDecodedSamples[-13]; + case 12: prediction += coefficients[11] * (int64_t)pDecodedSamples[-12]; + case 11: prediction += coefficients[10] * (int64_t)pDecodedSamples[-11]; + case 10: prediction += coefficients[ 9] * (int64_t)pDecodedSamples[-10]; + case 9: prediction += coefficients[ 8] * (int64_t)pDecodedSamples[- 9]; + case 8: prediction += coefficients[ 7] * (int64_t)pDecodedSamples[- 8]; + case 7: prediction += coefficients[ 6] * (int64_t)pDecodedSamples[- 7]; + case 6: prediction += coefficients[ 5] * (int64_t)pDecodedSamples[- 6]; + case 5: prediction += coefficients[ 4] * (int64_t)pDecodedSamples[- 5]; + case 4: prediction += coefficients[ 3] * (int64_t)pDecodedSamples[- 4]; + case 3: prediction += coefficients[ 2] * (int64_t)pDecodedSamples[- 3]; + case 2: prediction += coefficients[ 1] * (int64_t)pDecodedSamples[- 2]; + case 1: prediction += coefficients[ 0] * (int64_t)pDecodedSamples[- 1]; + } +#endif + + return (int32_t)(prediction >> shift); +} + + +// Reads and decodes a string of residual values as Rice codes. The decoder should be sitting on the first bit of the Rice codes. +// +// This is the most frequently called function in the library. It does both the Rice decoding and the prediction in a single loop +// iteration. The prediction is done at the end, and there's an annoying branch I'd like to avoid so the main function is defined +// as a #define - sue me! +#define DRFLAC__DECODE_SAMPLES_WITH_RESIDULE__RICE__PROC(funcName, predictionFunc) \ +static drBool32 funcName (drflac_bs* bs, uint32_t count, uint8_t riceParam, uint32_t order, int32_t shift, const int16_t* coefficients, int32_t* pSamplesOut) \ +{ \ + assert(bs != NULL); \ + assert(count > 0); \ + assert(pSamplesOut != NULL); \ + \ + static unsigned int bitOffsetTable[] = { \ + 0, \ + 4, \ + 3, 3, \ + 2, 2, 2, 2, \ + 1, 1, 1, 1, 1, 1, 1, 1 \ + }; \ + \ + drflac_cache_t riceParamMask = DRFLAC_CACHE_L1_SELECTION_MASK(riceParam); \ + drflac_cache_t resultHiShift = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParam; \ + \ + for (int i = 0; i < (int)count; ++i) \ + { \ + unsigned int zeroCounter = 0; \ + while (bs->cache == 0) { \ + zeroCounter += (unsigned int)DRFLAC_CACHE_L1_BITS_REMAINING(bs); \ + if (!drflac__reload_cache(bs)) { \ + return DR_FALSE; \ + } \ + } \ + \ + /* At this point the cache should not be zero, in which case we know the first set bit should be somewhere in here. There is \ + no need for us to perform any cache reloading logic here which should make things much faster. */ \ + assert(bs->cache != 0); \ + unsigned int decodedRice; \ + \ + unsigned int setBitOffsetPlus1 = bitOffsetTable[DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, 4)]; \ + if (setBitOffsetPlus1 > 0) { \ + decodedRice = (zeroCounter + (setBitOffsetPlus1-1)) << riceParam; \ + } else { \ + if (bs->cache == 1) { \ + setBitOffsetPlus1 = DRFLAC_CACHE_L1_SIZE_BITS(bs); \ + decodedRice = (zeroCounter + (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1)) << riceParam; \ + } else { \ + setBitOffsetPlus1 = 5; \ + for (;;) \ + { \ + if ((bs->cache & DRFLAC_CACHE_L1_SELECT(bs, setBitOffsetPlus1))) { \ + decodedRice = (zeroCounter + (setBitOffsetPlus1-1)) << riceParam; \ + break; \ + } \ + \ + setBitOffsetPlus1 += 1; \ + } \ + } \ + } \ + \ + \ + unsigned int bitsLo = 0; \ + unsigned int riceLength = setBitOffsetPlus1 + riceParam; \ + if (riceLength < DRFLAC_CACHE_L1_BITS_REMAINING(bs)) \ + { \ + bitsLo = (unsigned int)((bs->cache & (riceParamMask >> setBitOffsetPlus1)) >> (DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceLength)); \ + \ + bs->consumedBits += riceLength; \ + bs->cache <<= riceLength; \ + } \ + else \ + { \ + bs->consumedBits += riceLength; \ + bs->cache <<= setBitOffsetPlus1; \ + \ + /* It straddles the cached data. It will never cover more than the next chunk. We just read the number in two parts and combine them. */ \ + size_t bitCountLo = bs->consumedBits - DRFLAC_CACHE_L1_SIZE_BITS(bs); \ + drflac_cache_t resultHi = bs->cache & riceParamMask; /* <-- This mask is OK because all bits after the first bits are always zero. */ \ + \ + \ + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { \ + bs->cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); \ + } else { \ + /* Slow path. We need to fetch more data from the client. */ \ + if (!drflac__reload_cache(bs)) { \ + return DR_FALSE; \ + } \ + } \ + \ + bitsLo = (unsigned int)((resultHi >> resultHiShift) | DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountLo)); \ + bs->consumedBits = bitCountLo; \ + bs->cache <<= bitCountLo; \ + } \ + \ + decodedRice |= bitsLo; \ + decodedRice = (decodedRice >> 1) ^ (~(decodedRice & 0x01) + 1); /* <-- Ah, much faster! :) */ \ + /* \ + if ((decodedRice & 0x01)) { \ + decodedRice = ~(decodedRice >> 1); \ + } else { \ + decodedRice = (decodedRice >> 1); \ + } \ + */ \ + \ + /* In order to properly calculate the prediction when the bits per sample is >16 we need to do it using 64-bit arithmetic. We can assume this \ + is probably going to be slower on 32-bit systems so we'll do a more optimized 32-bit version when the bits per sample is low enough.*/ \ + pSamplesOut[i] = ((int)decodedRice + predictionFunc(order, shift, coefficients, pSamplesOut + i)); \ + } \ + \ + return DR_TRUE; \ +} \ + +DRFLAC__DECODE_SAMPLES_WITH_RESIDULE__RICE__PROC(drflac__decode_samples_with_residual__rice_64, drflac__calculate_prediction_64) +DRFLAC__DECODE_SAMPLES_WITH_RESIDULE__RICE__PROC(drflac__decode_samples_with_residual__rice_32, drflac__calculate_prediction_32) + + +// Reads and seeks past a string of residual values as Rice codes. The decoder should be sitting on the first bit of the Rice codes. +static drBool32 drflac__read_and_seek_residual__rice(drflac_bs* bs, uint32_t count, uint8_t riceParam) +{ + assert(bs != NULL); + assert(count > 0); + + for (uint32_t i = 0; i < count; ++i) { + if (!drflac__read_and_seek_rice(bs, riceParam)) { + return DR_FALSE; + } + } + + return DR_TRUE; +} + +static drBool32 drflac__decode_samples_with_residual__unencoded(drflac_bs* bs, uint32_t bitsPerSample, uint32_t count, uint8_t unencodedBitsPerSample, uint32_t order, int32_t shift, const int16_t* coefficients, int32_t* pSamplesOut) +{ + assert(bs != NULL); + assert(count > 0); + assert(unencodedBitsPerSample > 0 && unencodedBitsPerSample <= 32); + assert(pSamplesOut != NULL); + + for (unsigned int i = 0; i < count; ++i) + { + if (!drflac__read_int32(bs, unencodedBitsPerSample, pSamplesOut + i)) { + return DR_FALSE; + } + + if (bitsPerSample > 16) { + pSamplesOut[i] += drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i); + } else { + pSamplesOut[i] += drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i); + } + } + + return DR_TRUE; +} + + +// Reads and decodes the residual for the sub-frame the decoder is currently sitting on. This function should be called +// when the decoder is sitting at the very start of the RESIDUAL block. The first residuals will be ignored. The +// and parameters are used to determine how many residual values need to be decoded. +static drBool32 drflac__decode_samples_with_residual(drflac_bs* bs, uint32_t bitsPerSample, uint32_t blockSize, uint32_t order, int32_t shift, const int16_t* coefficients, int32_t* pDecodedSamples) +{ + assert(bs != NULL); + assert(blockSize != 0); + assert(pDecodedSamples != NULL); // <-- Should we allow NULL, in which case we just seek past the residual rather than do a full decode? + + uint8_t residualMethod; + if (!drflac__read_uint8(bs, 2, &residualMethod)) { + return DR_FALSE; + } + + if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + return DR_FALSE; // Unknown or unsupported residual coding method. + } + + // Ignore the first values. + pDecodedSamples += order; + + + uint8_t partitionOrder; + if (!drflac__read_uint8(bs, 4, &partitionOrder)) { + return DR_FALSE; + } + + + uint32_t samplesInPartition = (blockSize / (1 << partitionOrder)) - order; + uint32_t partitionsRemaining = (1 << partitionOrder); + for (;;) + { + uint8_t riceParam = 0; + if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) { + if (!drflac__read_uint8(bs, 4, &riceParam)) { + return DR_FALSE; + } + if (riceParam == 16) { + riceParam = 0xFF; + } + } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + if (!drflac__read_uint8(bs, 5, &riceParam)) { + return DR_FALSE; + } + if (riceParam == 32) { + riceParam = 0xFF; + } + } + + if (riceParam != 0xFF) { + if (bitsPerSample > 16) { + if (!drflac__decode_samples_with_residual__rice_64(bs, samplesInPartition, riceParam, order, shift, coefficients, pDecodedSamples)) { + return DR_FALSE; + } + } else { + if (!drflac__decode_samples_with_residual__rice_32(bs, samplesInPartition, riceParam, order, shift, coefficients, pDecodedSamples)) { + return DR_FALSE; + } + } + } else { + unsigned char unencodedBitsPerSample = 0; + if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) { + return DR_FALSE; + } + + if (!drflac__decode_samples_with_residual__unencoded(bs, bitsPerSample, samplesInPartition, unencodedBitsPerSample, order, shift, coefficients, pDecodedSamples)) { + return DR_FALSE; + } + } + + pDecodedSamples += samplesInPartition; + + + if (partitionsRemaining == 1) { + break; + } + + partitionsRemaining -= 1; + samplesInPartition = blockSize / (1 << partitionOrder); + } + + return DR_TRUE; +} + +// Reads and seeks past the residual for the sub-frame the decoder is currently sitting on. This function should be called +// when the decoder is sitting at the very start of the RESIDUAL block. The first residuals will be set to 0. The +// and parameters are used to determine how many residual values need to be decoded. +static drBool32 drflac__read_and_seek_residual(drflac_bs* bs, uint32_t blockSize, uint32_t order) +{ + assert(bs != NULL); + assert(blockSize != 0); + + uint8_t residualMethod; + if (!drflac__read_uint8(bs, 2, &residualMethod)) { + return DR_FALSE; + } + + if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + return DR_FALSE; // Unknown or unsupported residual coding method. + } + + uint8_t partitionOrder; + if (!drflac__read_uint8(bs, 4, &partitionOrder)) { + return DR_FALSE; + } + + uint32_t samplesInPartition = (blockSize / (1 << partitionOrder)) - order; + uint32_t partitionsRemaining = (1 << partitionOrder); + for (;;) + { + uint8_t riceParam = 0; + if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) { + if (!drflac__read_uint8(bs, 4, &riceParam)) { + return DR_FALSE; + } + if (riceParam == 16) { + riceParam = 0xFF; + } + } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + if (!drflac__read_uint8(bs, 5, &riceParam)) { + return DR_FALSE; + } + if (riceParam == 32) { + riceParam = 0xFF; + } + } + + if (riceParam != 0xFF) { + if (!drflac__read_and_seek_residual__rice(bs, samplesInPartition, riceParam)) { + return DR_FALSE; + } + } else { + unsigned char unencodedBitsPerSample = 0; + if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) { + return DR_FALSE; + } + + if (!drflac__seek_bits(bs, unencodedBitsPerSample * samplesInPartition)) { + return DR_FALSE; + } + } + + + if (partitionsRemaining == 1) { + break; + } + + partitionsRemaining -= 1; + samplesInPartition = blockSize / (1 << partitionOrder); + } + + return DR_TRUE; +} + + +static drBool32 drflac__decode_samples__constant(drflac_bs* bs, uint32_t blockSize, uint32_t bitsPerSample, int32_t* pDecodedSamples) +{ + // Only a single sample needs to be decoded here. + int32_t sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DR_FALSE; + } + + // We don't really need to expand this, but it does simplify the process of reading samples. If this becomes a performance issue (unlikely) + // we'll want to look at a more efficient way. + for (uint32_t i = 0; i < blockSize; ++i) { + pDecodedSamples[i] = sample; + } + + return DR_TRUE; +} + +static drBool32 drflac__decode_samples__verbatim(drflac_bs* bs, uint32_t blockSize, uint32_t bitsPerSample, int32_t* pDecodedSamples) +{ + for (uint32_t i = 0; i < blockSize; ++i) { + int32_t sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DR_FALSE; + } + + pDecodedSamples[i] = sample; + } + + return DR_TRUE; +} + +static drBool32 drflac__decode_samples__fixed(drflac_bs* bs, uint32_t blockSize, uint32_t bitsPerSample, uint8_t lpcOrder, int32_t* pDecodedSamples) +{ + short lpcCoefficientsTable[5][4] = { + {0, 0, 0, 0}, + {1, 0, 0, 0}, + {2, -1, 0, 0}, + {3, -3, 1, 0}, + {4, -6, 4, -1} + }; + + // Warm up samples and coefficients. + for (uint32_t i = 0; i < lpcOrder; ++i) { + int32_t sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DR_FALSE; + } + + pDecodedSamples[i] = sample; + } + + + if (!drflac__decode_samples_with_residual(bs, bitsPerSample, blockSize, lpcOrder, 0, lpcCoefficientsTable[lpcOrder], pDecodedSamples)) { + return DR_FALSE; + } + + return DR_TRUE; +} + +static drBool32 drflac__decode_samples__lpc(drflac_bs* bs, uint32_t blockSize, uint32_t bitsPerSample, uint8_t lpcOrder, int32_t* pDecodedSamples) +{ + // Warm up samples. + for (uint8_t i = 0; i < lpcOrder; ++i) { + int32_t sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DR_FALSE; + } + + pDecodedSamples[i] = sample; + } + + uint8_t lpcPrecision; + if (!drflac__read_uint8(bs, 4, &lpcPrecision)) { + return DR_FALSE; + } + if (lpcPrecision == 15) { + return DR_FALSE; // Invalid. + } + lpcPrecision += 1; + + + int8_t lpcShift; + if (!drflac__read_int8(bs, 5, &lpcShift)) { + return DR_FALSE; + } + + + int16_t coefficients[32]; + for (uint8_t i = 0; i < lpcOrder; ++i) { + if (!drflac__read_int16(bs, lpcPrecision, coefficients + i)) { + return DR_FALSE; + } + } + + if (!drflac__decode_samples_with_residual(bs, bitsPerSample, blockSize, lpcOrder, lpcShift, coefficients, pDecodedSamples)) { + return DR_FALSE; + } + + return DR_TRUE; +} + + +static drBool32 drflac__read_next_frame_header(drflac_bs* bs, uint8_t streaminfoBitsPerSample, drflac_frame_header* header) +{ + assert(bs != NULL); + assert(header != NULL); + + // At the moment the sync code is as a form of basic validation. The CRC is stored, but is unused at the moment. This + // should probably be handled better in the future. + + const uint32_t sampleRateTable[12] = {0, 88200, 176400, 192000, 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000}; + const uint8_t bitsPerSampleTable[8] = {0, 8, 12, (uint8_t)-1, 16, 20, 24, (uint8_t)-1}; // -1 = reserved. + + uint16_t syncCode = 0; + if (!drflac__read_uint16(bs, 14, &syncCode)) { + return DR_FALSE; + } + + if (syncCode != 0x3FFE) { + // TODO: Try and recover by attempting to seek to and read the next frame? + return DR_FALSE; + } + + uint8_t reserved; + if (!drflac__read_uint8(bs, 1, &reserved)) { + return DR_FALSE; + } + + uint8_t blockingStrategy = 0; + if (!drflac__read_uint8(bs, 1, &blockingStrategy)) { + return DR_FALSE; + } + + + + uint8_t blockSize = 0; + if (!drflac__read_uint8(bs, 4, &blockSize)) { + return DR_FALSE; + } + + uint8_t sampleRate = 0; + if (!drflac__read_uint8(bs, 4, &sampleRate)) { + return DR_FALSE; + } + + uint8_t channelAssignment = 0; + if (!drflac__read_uint8(bs, 4, &channelAssignment)) { + return DR_FALSE; + } + + uint8_t bitsPerSample = 0; + if (!drflac__read_uint8(bs, 3, &bitsPerSample)) { + return DR_FALSE; + } + + if (!drflac__read_uint8(bs, 1, &reserved)) { + return DR_FALSE; + } + + + drBool32 isVariableBlockSize = blockingStrategy == 1; + if (isVariableBlockSize) { + uint64_t sampleNumber; + if (!drflac__read_utf8_coded_number(bs, &sampleNumber)) { + return DR_FALSE; + } + header->frameNumber = 0; + header->sampleNumber = sampleNumber; + } else { + uint64_t frameNumber = 0; + if (!drflac__read_utf8_coded_number(bs, &frameNumber)) { + return DR_FALSE; + } + header->frameNumber = (uint32_t)frameNumber; // <-- Safe cast. + header->sampleNumber = 0; + } + + + if (blockSize == 1) { + header->blockSize = 192; + } else if (blockSize >= 2 && blockSize <= 5) { + header->blockSize = 576 * (1 << (blockSize - 2)); + } else if (blockSize == 6) { + if (!drflac__read_uint16(bs, 8, &header->blockSize)) { + return DR_FALSE; + } + header->blockSize += 1; + } else if (blockSize == 7) { + if (!drflac__read_uint16(bs, 16, &header->blockSize)) { + return DR_FALSE; + } + header->blockSize += 1; + } else { + header->blockSize = 256 * (1 << (blockSize - 8)); + } + + + if (sampleRate <= 11) { + header->sampleRate = sampleRateTable[sampleRate]; + } else if (sampleRate == 12) { + if (!drflac__read_uint32(bs, 8, &header->sampleRate)) { + return DR_FALSE; + } + header->sampleRate *= 1000; + } else if (sampleRate == 13) { + if (!drflac__read_uint32(bs, 16, &header->sampleRate)) { + return DR_FALSE; + } + } else if (sampleRate == 14) { + if (!drflac__read_uint32(bs, 16, &header->sampleRate)) { + return DR_FALSE; + } + header->sampleRate *= 10; + } else { + return DR_FALSE; // Invalid. + } + + + header->channelAssignment = channelAssignment; + + header->bitsPerSample = bitsPerSampleTable[bitsPerSample]; + if (header->bitsPerSample == 0) { + header->bitsPerSample = streaminfoBitsPerSample; + } + + if (drflac__read_uint8(bs, 8, &header->crc8) != 1) { + return DR_FALSE; + } + + return DR_TRUE; +} + +static drBool32 drflac__read_subframe_header(drflac_bs* bs, drflac_subframe* pSubframe) +{ + uint8_t header; + if (!drflac__read_uint8(bs, 8, &header)) { + return DR_FALSE; + } + + // First bit should always be 0. + if ((header & 0x80) != 0) { + return DR_FALSE; + } + + int type = (header & 0x7E) >> 1; + if (type == 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_CONSTANT; + } else if (type == 1) { + pSubframe->subframeType = DRFLAC_SUBFRAME_VERBATIM; + } else { + if ((type & 0x20) != 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_LPC; + pSubframe->lpcOrder = (type & 0x1F) + 1; + } else if ((type & 0x08) != 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_FIXED; + pSubframe->lpcOrder = (type & 0x07); + if (pSubframe->lpcOrder > 4) { + pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED; + pSubframe->lpcOrder = 0; + } + } else { + pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED; + } + } + + if (pSubframe->subframeType == DRFLAC_SUBFRAME_RESERVED) { + return DR_FALSE; + } + + // Wasted bits per sample. + pSubframe->wastedBitsPerSample = 0; + if ((header & 0x01) == 1) { + unsigned int wastedBitsPerSample; + if (!drflac__seek_past_next_set_bit(bs, &wastedBitsPerSample)) { + return DR_FALSE; + } + pSubframe->wastedBitsPerSample = (unsigned char)wastedBitsPerSample + 1; + } + + return DR_TRUE; +} + +static drBool32 drflac__decode_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex, int32_t* pDecodedSamplesOut) +{ + assert(bs != NULL); + assert(frame != NULL); + + drflac_subframe* pSubframe = frame->subframes + subframeIndex; + if (!drflac__read_subframe_header(bs, pSubframe)) { + return DR_FALSE; + } + + // Side channels require an extra bit per sample. Took a while to figure that one out... + pSubframe->bitsPerSample = frame->header.bitsPerSample; + if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) { + pSubframe->bitsPerSample += 1; + } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) { + pSubframe->bitsPerSample += 1; + } + + // Need to handle wasted bits per sample. + pSubframe->bitsPerSample -= pSubframe->wastedBitsPerSample; + pSubframe->pDecodedSamples = pDecodedSamplesOut; + + switch (pSubframe->subframeType) + { + case DRFLAC_SUBFRAME_CONSTANT: + { + drflac__decode_samples__constant(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->pDecodedSamples); + } break; + + case DRFLAC_SUBFRAME_VERBATIM: + { + drflac__decode_samples__verbatim(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->pDecodedSamples); + } break; + + case DRFLAC_SUBFRAME_FIXED: + { + drflac__decode_samples__fixed(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->lpcOrder, pSubframe->pDecodedSamples); + } break; + + case DRFLAC_SUBFRAME_LPC: + { + drflac__decode_samples__lpc(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->lpcOrder, pSubframe->pDecodedSamples); + } break; + + default: return DR_FALSE; + } + + return DR_TRUE; +} + +static drBool32 drflac__seek_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex) +{ + assert(bs != NULL); + assert(frame != NULL); + + drflac_subframe* pSubframe = frame->subframes + subframeIndex; + if (!drflac__read_subframe_header(bs, pSubframe)) { + return DR_FALSE; + } + + // Side channels require an extra bit per sample. Took a while to figure that one out... + pSubframe->bitsPerSample = frame->header.bitsPerSample; + if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) { + pSubframe->bitsPerSample += 1; + } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) { + pSubframe->bitsPerSample += 1; + } + + // Need to handle wasted bits per sample. + pSubframe->bitsPerSample -= pSubframe->wastedBitsPerSample; + pSubframe->pDecodedSamples = NULL; + //pSubframe->pDecodedSamples = pFlac->pDecodedSamples + (pFlac->currentFrame.header.blockSize * subframeIndex); + + switch (pSubframe->subframeType) + { + case DRFLAC_SUBFRAME_CONSTANT: + { + if (!drflac__seek_bits(bs, pSubframe->bitsPerSample)) { + return DR_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_VERBATIM: + { + unsigned int bitsToSeek = frame->header.blockSize * pSubframe->bitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DR_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_FIXED: + { + unsigned int bitsToSeek = pSubframe->lpcOrder * pSubframe->bitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DR_FALSE; + } + + if (!drflac__read_and_seek_residual(bs, frame->header.blockSize, pSubframe->lpcOrder)) { + return DR_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_LPC: + { + unsigned int bitsToSeek = pSubframe->lpcOrder * pSubframe->bitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DR_FALSE; + } + + unsigned char lpcPrecision; + if (!drflac__read_uint8(bs, 4, &lpcPrecision)) { + return DR_FALSE; + } + if (lpcPrecision == 15) { + return DR_FALSE; // Invalid. + } + lpcPrecision += 1; + + + bitsToSeek = (pSubframe->lpcOrder * lpcPrecision) + 5; // +5 for shift. + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DR_FALSE; + } + + if (!drflac__read_and_seek_residual(bs, frame->header.blockSize, pSubframe->lpcOrder)) { + return DR_FALSE; + } + } break; + + default: return DR_FALSE; + } + + return DR_TRUE; +} + + +static DRFLAC_INLINE uint8_t drflac__get_channel_count_from_channel_assignment(int8_t channelAssignment) +{ + assert(channelAssignment <= 10); + + uint8_t lookup[] = {1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 2}; + return lookup[channelAssignment]; +} + +static drBool32 drflac__decode_frame(drflac* pFlac) +{ + // This function should be called while the stream is sitting on the first byte after the frame header. + memset(pFlac->currentFrame.subframes, 0, sizeof(pFlac->currentFrame.subframes)); + + int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + for (int i = 0; i < channelCount; ++i) + { + if (!drflac__decode_subframe(&pFlac->bs, &pFlac->currentFrame, i, pFlac->pDecodedSamples + (pFlac->currentFrame.header.blockSize * i))) { + return DR_FALSE; + } + } + + // At the end of the frame sits the padding and CRC. We don't use these so we can just seek past. + if (!drflac__seek_bits(&pFlac->bs, (DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7) + 16)) { + return DR_FALSE; + } + + + pFlac->currentFrame.samplesRemaining = pFlac->currentFrame.header.blockSize * channelCount; + + return DR_TRUE; +} + +static drBool32 drflac__seek_frame(drflac* pFlac) +{ + int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + for (int i = 0; i < channelCount; ++i) + { + if (!drflac__seek_subframe(&pFlac->bs, &pFlac->currentFrame, i)) { + return DR_FALSE; + } + } + + // Padding and CRC. + return drflac__seek_bits(&pFlac->bs, (DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7) + 16); +} + +static drBool32 drflac__read_and_decode_next_frame(drflac* pFlac) +{ + assert(pFlac != NULL); + + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DR_FALSE; + } + + return drflac__decode_frame(pFlac); +} + + +static void drflac__get_current_frame_sample_range(drflac* pFlac, uint64_t* pFirstSampleInFrameOut, uint64_t* pLastSampleInFrameOut) +{ + assert(pFlac != NULL); + + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + + uint64_t firstSampleInFrame = pFlac->currentFrame.header.sampleNumber; + if (firstSampleInFrame == 0) { + firstSampleInFrame = pFlac->currentFrame.header.frameNumber * pFlac->maxBlockSize*channelCount; + } + + uint64_t lastSampleInFrame = firstSampleInFrame + (pFlac->currentFrame.header.blockSize*channelCount); + if (lastSampleInFrame > 0) { + lastSampleInFrame -= 1; // Needs to be zero based. + } + + + if (pFirstSampleInFrameOut) { + *pFirstSampleInFrameOut = firstSampleInFrame; + } + if (pLastSampleInFrameOut) { + *pLastSampleInFrameOut = lastSampleInFrame; + } +} + +static drBool32 drflac__seek_to_first_frame(drflac* pFlac) +{ + assert(pFlac != NULL); + + drBool32 result = drflac__seek_to_byte(&pFlac->bs, pFlac->firstFramePos); + + memset(&pFlac->currentFrame, 0, sizeof(pFlac->currentFrame)); + return result; +} + +static DRFLAC_INLINE drBool32 drflac__seek_to_next_frame(drflac* pFlac) +{ + // This function should only ever be called while the decoder is sitting on the first byte past the FRAME_HEADER section. + assert(pFlac != NULL); + return drflac__seek_frame(pFlac); +} + +static drBool32 drflac__seek_to_frame_containing_sample(drflac* pFlac, uint64_t sampleIndex) +{ + assert(pFlac != NULL); + + if (!drflac__seek_to_first_frame(pFlac)) { + return DR_FALSE; + } + + uint64_t firstSampleInFrame = 0; + uint64_t lastSampleInFrame = 0; + for (;;) + { + // We need to read the frame's header in order to determine the range of samples it contains. + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DR_FALSE; + } + + drflac__get_current_frame_sample_range(pFlac, &firstSampleInFrame, &lastSampleInFrame); + if (sampleIndex >= firstSampleInFrame && sampleIndex <= lastSampleInFrame) { + break; // The sample is in this frame. + } + + if (!drflac__seek_to_next_frame(pFlac)) { + return DR_FALSE; + } + } + + // If we get here we should be right at the start of the frame containing the sample. + return DR_TRUE; +} + +static drBool32 drflac__seek_to_sample__brute_force(drflac* pFlac, uint64_t sampleIndex) +{ + if (!drflac__seek_to_frame_containing_sample(pFlac, sampleIndex)) { + return DR_FALSE; + } + + // At this point we should be sitting on the first byte of the frame containing the sample. We need to decode every sample up to (but + // not including) the sample we're seeking to. + uint64_t firstSampleInFrame = 0; + drflac__get_current_frame_sample_range(pFlac, &firstSampleInFrame, NULL); + + assert(firstSampleInFrame <= sampleIndex); + size_t samplesToDecode = (size_t)(sampleIndex - firstSampleInFrame); // <-- Safe cast because the maximum number of samples in a frame is 65535. + if (samplesToDecode == 0) { + return DR_TRUE; + } + + // At this point we are just sitting on the byte after the frame header. We need to decode the frame before reading anything from it. + if (!drflac__decode_frame(pFlac)) { + return DR_FALSE; + } + + return drflac_read_s32(pFlac, samplesToDecode, NULL) != 0; +} + + +static drBool32 drflac__seek_to_sample__seek_table(drflac* pFlac, uint64_t sampleIndex) +{ + assert(pFlac != NULL); + + if (pFlac->seektablePos == 0) { + return DR_FALSE; + } + + if (!drflac__seek_to_byte(&pFlac->bs, pFlac->seektablePos)) { + return DR_FALSE; + } + + // The number of seek points is derived from the size of the SEEKTABLE block. + uint32_t seekpointCount = pFlac->seektableSize / 18; // 18 = the size of each seek point. + if (seekpointCount == 0) { + return DR_FALSE; // Would this ever happen? + } + + + drflac_seekpoint closestSeekpoint = {0, 0, 0}; + + uint32_t seekpointsRemaining = seekpointCount; + while (seekpointsRemaining > 0) + { + drflac_seekpoint seekpoint; + if (!drflac__read_uint64(&pFlac->bs, 64, &seekpoint.firstSample)) { + break; + } + if (!drflac__read_uint64(&pFlac->bs, 64, &seekpoint.frameOffset)) { + break; + } + if (!drflac__read_uint16(&pFlac->bs, 16, &seekpoint.sampleCount)) { + break; + } + + if (seekpoint.firstSample * pFlac->channels > sampleIndex) { + break; + } + + closestSeekpoint = seekpoint; + seekpointsRemaining -= 1; + } + + // At this point we should have found the seekpoint closest to our sample. We need to seek to it using basically the same + // technique as we use with the brute force method. + if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFramePos + closestSeekpoint.frameOffset)) { + return DR_FALSE; + } + + + uint64_t firstSampleInFrame = 0; + uint64_t lastSampleInFrame = 0; + for (;;) + { + // We need to read the frame's header in order to determine the range of samples it contains. + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DR_FALSE; + } + + drflac__get_current_frame_sample_range(pFlac, &firstSampleInFrame, &lastSampleInFrame); + if (sampleIndex >= firstSampleInFrame && sampleIndex <= lastSampleInFrame) { + break; // The sample is in this frame. + } + + if (!drflac__seek_to_next_frame(pFlac)) { + return DR_FALSE; + } + } + + assert(firstSampleInFrame <= sampleIndex); + + // At this point we are just sitting on the byte after the frame header. We need to decode the frame before reading anything from it. + if (!drflac__decode_frame(pFlac)) { + return DR_FALSE; + } + + size_t samplesToDecode = (size_t)(sampleIndex - firstSampleInFrame); // <-- Safe cast because the maximum number of samples in a frame is 65535. + return drflac_read_s32(pFlac, samplesToDecode, NULL) == samplesToDecode; +} + + +#ifndef DR_FLAC_NO_OGG +typedef struct +{ + uint8_t capturePattern[4]; // Should be "OggS" + uint8_t structureVersion; // Always 0. + uint8_t headerType; + uint64_t granulePosition; + uint32_t serialNumber; + uint32_t sequenceNumber; + uint32_t checksum; + uint8_t segmentCount; + uint8_t segmentTable[255]; +} drflac_ogg_page_header; +#endif + +typedef struct +{ + drflac_read_proc onRead; + drflac_seek_proc onSeek; + drflac_meta_proc onMeta; + void* pUserData; + void* pUserDataMD; + drflac_container container; + uint32_t sampleRate; + uint8_t channels; + uint8_t bitsPerSample; + uint64_t totalSampleCount; + uint16_t maxBlockSize; + uint64_t runningFilePos; + drBool32 hasMetadataBlocks; + +#ifndef DR_FLAC_NO_OGG + uint32_t oggSerial; + uint64_t oggFirstBytePos; + drflac_ogg_page_header oggBosHeader; +#endif +} drflac_init_info; + +static DRFLAC_INLINE void drflac__decode_block_header(uint32_t blockHeader, uint8_t* isLastBlock, uint8_t* blockType, uint32_t* blockSize) +{ + blockHeader = drflac__be2host_32(blockHeader); + *isLastBlock = (blockHeader & (0x01 << 31)) >> 31; + *blockType = (blockHeader & (0x7F << 24)) >> 24; + *blockSize = (blockHeader & 0xFFFFFF); +} + +static DRFLAC_INLINE drBool32 drflac__read_and_decode_block_header(drflac_read_proc onRead, void* pUserData, uint8_t* isLastBlock, uint8_t* blockType, uint32_t* blockSize) +{ + uint32_t blockHeader; + if (onRead(pUserData, &blockHeader, 4) != 4) { + return DR_FALSE; + } + + drflac__decode_block_header(blockHeader, isLastBlock, blockType, blockSize); + return DR_TRUE; +} + +drBool32 drflac__read_streaminfo(drflac_read_proc onRead, void* pUserData, drflac_streaminfo* pStreamInfo) +{ + // min/max block size. + uint32_t blockSizes; + if (onRead(pUserData, &blockSizes, 4) != 4) { + return DR_FALSE; + } + + // min/max frame size. + uint64_t frameSizes = 0; + if (onRead(pUserData, &frameSizes, 6) != 6) { + return DR_FALSE; + } + + // Sample rate, channels, bits per sample and total sample count. + uint64_t importantProps; + if (onRead(pUserData, &importantProps, 8) != 8) { + return DR_FALSE; + } + + // MD5 + uint8_t md5[16]; + if (onRead(pUserData, md5, sizeof(md5)) != sizeof(md5)) { + return DR_FALSE; + } + + blockSizes = drflac__be2host_32(blockSizes); + frameSizes = drflac__be2host_64(frameSizes); + importantProps = drflac__be2host_64(importantProps); + + pStreamInfo->minBlockSize = (blockSizes & 0xFFFF0000) >> 16; + pStreamInfo->maxBlockSize = blockSizes & 0x0000FFFF; + pStreamInfo->minFrameSize = (uint32_t)((frameSizes & 0xFFFFFF0000000000ULL) >> 40ULL); + pStreamInfo->maxFrameSize = (uint32_t)((frameSizes & 0x000000FFFFFF0000ULL) >> 16ULL); + pStreamInfo->sampleRate = (uint32_t)((importantProps & 0xFFFFF00000000000ULL) >> 44ULL); + pStreamInfo->channels = (uint8_t )((importantProps & 0x00000E0000000000ULL) >> 41ULL) + 1; + pStreamInfo->bitsPerSample = (uint8_t )((importantProps & 0x000001F000000000ULL) >> 36ULL) + 1; + pStreamInfo->totalSampleCount = (importantProps & 0x0000000FFFFFFFFFULL) * pStreamInfo->channels; + memcpy(pStreamInfo->md5, md5, sizeof(md5)); + + return DR_TRUE; +} + +drBool32 drflac__read_and_decode_metadata(drflac* pFlac) +{ + assert(pFlac != NULL); + + // We want to keep track of the byte position in the stream of the seektable. At the time of calling this function we know that + // we'll be sitting on byte 42. + uint64_t runningFilePos = 42; + uint64_t seektablePos = 0; + uint32_t seektableSize = 0; + + for (;;) + { + uint8_t isLastBlock = 0; + uint8_t blockType; + uint32_t blockSize; + if (!drflac__read_and_decode_block_header(pFlac->bs.onRead, pFlac->bs.pUserData, &isLastBlock, &blockType, &blockSize)) { + return DR_FALSE; + } + runningFilePos += 4; + + + drflac_metadata metadata; + metadata.type = blockType; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + + switch (blockType) + { + case DRFLAC_METADATA_BLOCK_TYPE_APPLICATION: + { + if (pFlac->onMeta) { + void* pRawData = malloc(blockSize); + if (pRawData == NULL) { + return DR_FALSE; + } + + if (pFlac->bs.onRead(pFlac->bs.pUserData, pRawData, blockSize) != blockSize) { + free(pRawData); + return DR_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + metadata.data.application.id = drflac__be2host_32(*(uint32_t*)pRawData); + metadata.data.application.pData = (const void*)((uint8_t*)pRawData + sizeof(uint32_t)); + metadata.data.application.dataSize = blockSize - sizeof(uint32_t); + pFlac->onMeta(pFlac->pUserDataMD, &metadata); + + free(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE: + { + seektablePos = runningFilePos; + seektableSize = blockSize; + + if (pFlac->onMeta) { + void* pRawData = malloc(blockSize); + if (pRawData == NULL) { + return DR_FALSE; + } + + if (pFlac->bs.onRead(pFlac->bs.pUserData, pRawData, blockSize) != blockSize) { + free(pRawData); + return DR_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + metadata.data.seektable.seekpointCount = blockSize/sizeof(drflac_seekpoint); + metadata.data.seektable.pSeekpoints = (const drflac_seekpoint*)pRawData; + + // Endian swap. + for (uint32_t iSeekpoint = 0; iSeekpoint < metadata.data.seektable.seekpointCount; ++iSeekpoint) { + drflac_seekpoint* pSeekpoint = (drflac_seekpoint*)pRawData + iSeekpoint; + pSeekpoint->firstSample = drflac__be2host_64(pSeekpoint->firstSample); + pSeekpoint->frameOffset = drflac__be2host_64(pSeekpoint->frameOffset); + pSeekpoint->sampleCount = drflac__be2host_16(pSeekpoint->sampleCount); + } + + pFlac->onMeta(pFlac->pUserDataMD, &metadata); + + free(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT: + { + if (pFlac->onMeta) { + void* pRawData = malloc(blockSize); + if (pRawData == NULL) { + return DR_FALSE; + } + + if (pFlac->bs.onRead(pFlac->bs.pUserData, pRawData, blockSize) != blockSize) { + free(pRawData); + return DR_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + const char* pRunningData = (const char*)pRawData; + metadata.data.vorbis_comment.vendorLength = drflac__le2host_32(*(uint32_t*)pRunningData); pRunningData += 4; + metadata.data.vorbis_comment.vendor = pRunningData; pRunningData += metadata.data.vorbis_comment.vendorLength; + metadata.data.vorbis_comment.commentCount = drflac__le2host_32(*(uint32_t*)pRunningData); pRunningData += 4; + metadata.data.vorbis_comment.comments = pRunningData; + pFlac->onMeta(pFlac->pUserDataMD, &metadata); + + free(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_CUESHEET: + { + if (pFlac->onMeta) { + void* pRawData = malloc(blockSize); + if (pRawData == NULL) { + return DR_FALSE; + } + + if (pFlac->bs.onRead(pFlac->bs.pUserData, pRawData, blockSize) != blockSize) { + free(pRawData); + return DR_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + const char* pRunningData = (const char*)pRawData; + memcpy(metadata.data.cuesheet.catalog, pRunningData, 128); pRunningData += 128; + metadata.data.cuesheet.leadInSampleCount = drflac__be2host_64(*(uint64_t*)pRunningData); pRunningData += 4; + metadata.data.cuesheet.isCD = ((pRunningData[0] & 0x80) >> 7) != 0; pRunningData += 259; + metadata.data.cuesheet.trackCount = pRunningData[0]; pRunningData += 1; + metadata.data.cuesheet.pTrackData = (const uint8_t*)pRunningData; + pFlac->onMeta(pFlac->pUserDataMD, &metadata); + + free(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_PICTURE: + { + if (pFlac->onMeta) { + void* pRawData = malloc(blockSize); + if (pRawData == NULL) { + return DR_FALSE; + } + + if (pFlac->bs.onRead(pFlac->bs.pUserData, pRawData, blockSize) != blockSize) { + free(pRawData); + return DR_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + const char* pRunningData = (const char*)pRawData; + metadata.data.picture.type = drflac__be2host_32(*(uint32_t*)pRunningData); pRunningData += 4; + metadata.data.picture.mimeLength = drflac__be2host_32(*(uint32_t*)pRunningData); pRunningData += 4; + metadata.data.picture.mime = pRunningData; pRunningData += metadata.data.picture.mimeLength; + metadata.data.picture.descriptionLength = drflac__be2host_32(*(uint32_t*)pRunningData); pRunningData += 4; + metadata.data.picture.description = pRunningData; + metadata.data.picture.width = drflac__be2host_32(*(uint32_t*)pRunningData); pRunningData += 4; + metadata.data.picture.height = drflac__be2host_32(*(uint32_t*)pRunningData); pRunningData += 4; + metadata.data.picture.colorDepth = drflac__be2host_32(*(uint32_t*)pRunningData); pRunningData += 4; + metadata.data.picture.indexColorCount = drflac__be2host_32(*(uint32_t*)pRunningData); pRunningData += 4; + metadata.data.picture.pictureDataSize = drflac__be2host_32(*(uint32_t*)pRunningData); pRunningData += 4; + metadata.data.picture.pPictureData = (const uint8_t*)pRunningData; + pFlac->onMeta(pFlac->pUserDataMD, &metadata); + + free(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_PADDING: + { + if (pFlac->onMeta) { + metadata.data.padding.unused = 0; + + // Padding doesn't have anything meaningful in it, so just skip over it. + if (!pFlac->bs.onSeek(pFlac->bs.pUserData, blockSize, drflac_seek_origin_current)) { + return DR_FALSE; + } + + pFlac->onMeta(pFlac->pUserDataMD, &metadata); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_INVALID: + { + // Invalid chunk. Just skip over this one. + if (pFlac->onMeta) { + if (!pFlac->bs.onSeek(pFlac->bs.pUserData, blockSize, drflac_seek_origin_current)) { + return DR_FALSE; + } + } + } + + default: + { + // It's an unknown chunk, but not necessarily invalid. There's a chance more metadata blocks might be defined later on, so we + // can at the very least report the chunk to the application and let it look at the raw data. + if (pFlac->onMeta) { + void* pRawData = malloc(blockSize); + if (pRawData == NULL) { + return DR_FALSE; + } + + if (pFlac->bs.onRead(pFlac->bs.pUserData, pRawData, blockSize) != blockSize) { + free(pRawData); + return DR_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + pFlac->onMeta(pFlac->pUserDataMD, &metadata); + + free(pRawData); + } + } break; + } + + // If we're not handling metadata, just skip over the block. If we are, it will have been handled earlier in the switch statement above. + if (pFlac->onMeta == NULL) { + if (!pFlac->bs.onSeek(pFlac->bs.pUserData, blockSize, drflac_seek_origin_current)) { + return DR_FALSE; + } + } + + runningFilePos += blockSize; + if (isLastBlock) { + break; + } + } + + pFlac->seektablePos = seektablePos; + pFlac->seektableSize = seektableSize; + pFlac->firstFramePos = runningFilePos; + + return DR_TRUE; +} + +drBool32 drflac__init_private__native(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD) +{ + (void)onSeek; + + // Pre: The bit stream should be sitting just past the 4-byte id header. + + pInit->container = drflac_container_native; + + // The first metadata block should be the STREAMINFO block. + uint8_t isLastBlock; + uint8_t blockType; + uint32_t blockSize; + if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { + return DR_FALSE; + } + + if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) { + return DR_FALSE; // Invalid block type. First block must be the STREAMINFO block. + } + + + drflac_streaminfo streaminfo; + if (!drflac__read_streaminfo(onRead, pUserData, &streaminfo)) { + return DR_FALSE; + } + + pInit->sampleRate = streaminfo.sampleRate; + pInit->channels = streaminfo.channels; + pInit->bitsPerSample = streaminfo.bitsPerSample; + pInit->totalSampleCount = streaminfo.totalSampleCount; + pInit->maxBlockSize = streaminfo.maxBlockSize; // Don't care about the min block size - only the max (used for determining the size of the memory allocation). + + if (onMeta) { + drflac_metadata metadata; + metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + metadata.data.streaminfo = streaminfo; + onMeta(pUserDataMD, &metadata); + } + + pInit->hasMetadataBlocks = !isLastBlock; + return DR_TRUE; +} + +#ifndef DR_FLAC_NO_OGG +static DRFLAC_INLINE drBool32 drflac_ogg__is_capture_pattern(uint8_t pattern[4]) +{ + return pattern[0] == 'O' && pattern[1] == 'g' && pattern[2] == 'g' && pattern[3] == 'S'; +} + +static DRFLAC_INLINE uint32_t drflac_ogg__get_page_header_size(drflac_ogg_page_header* pHeader) +{ + return 27 + pHeader->segmentCount; +} + +static DRFLAC_INLINE uint32_t drflac_ogg__get_page_body_size(drflac_ogg_page_header* pHeader) +{ + uint32_t pageBodySize = 0; + for (int i = 0; i < pHeader->segmentCount; ++i) { + pageBodySize += pHeader->segmentTable[i]; + } + + return pageBodySize; +} + +drBool32 drflac_ogg__read_page_header_after_capture_pattern(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, uint32_t* pHeaderSize) +{ + if (onRead(pUserData, &pHeader->structureVersion, 1) != 1 || pHeader->structureVersion != 0) { + return DR_FALSE; // Unknown structure version. Possibly corrupt stream. + } + if (onRead(pUserData, &pHeader->headerType, 1) != 1) { + return DR_FALSE; + } + if (onRead(pUserData, &pHeader->granulePosition, 8) != 8) { + return DR_FALSE; + } + if (onRead(pUserData, &pHeader->serialNumber, 4) != 4) { + return DR_FALSE; + } + if (onRead(pUserData, &pHeader->sequenceNumber, 4) != 4) { + return DR_FALSE; + } + if (onRead(pUserData, &pHeader->checksum, 4) != 4) { + return DR_FALSE; + } + if (onRead(pUserData, &pHeader->segmentCount, 1) != 1 || pHeader->segmentCount == 0) { + return DR_FALSE; // Should not have a segment count of 0. + } + if (onRead(pUserData, &pHeader->segmentTable, pHeader->segmentCount) != pHeader->segmentCount) { + return DR_FALSE; + } + + if (pHeaderSize) *pHeaderSize = (27 + pHeader->segmentCount); + return DR_TRUE; +} + +drBool32 drflac_ogg__read_page_header(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, uint32_t* pHeaderSize) +{ + uint8_t id[4]; + if (onRead(pUserData, id, 4) != 4) { + return DR_FALSE; + } + + if (id[0] != 'O' || id[1] != 'g' || id[2] != 'g' || id[3] != 'S') { + return DR_FALSE; + } + + return drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, pHeader, pHeaderSize); +} + + +// The main part of the Ogg encapsulation is the conversion from the physical Ogg bitstream to the native FLAC bitstream. It works +// in three general stages: Ogg Physical Bitstream -> Ogg/FLAC Logical Bitstream -> FLAC Native Bitstream. dr_flac is architecured +// in such a way that the core sections assume everything is delivered in native format. Therefore, for each encapsulation type +// dr_flac is supporting there needs to be a layer sitting on top of the onRead and onSeek callbacks that ensures the bits read from +// the physical Ogg bitstream are converted and delivered in native FLAC format. +typedef struct +{ + drflac_read_proc onRead; // The original onRead callback from drflac_open() and family. + drflac_seek_proc onSeek; // The original onSeek callback from drflac_open() and family. + void* pUserData; // The user data passed on onRead and onSeek. This is the user data that was passed on drflac_open() and family. + uint64_t currentBytePos; // The position of the byte we are sitting on in the physical byte stream. Used for efficient seeking. + uint64_t firstBytePos; // The position of the first byte in the physical bitstream. Points to the start of the "OggS" identifier of the FLAC bos page. + uint32_t serialNumber; // The serial number of the FLAC audio pages. This is determined by the initial header page that was read during initialization. + drflac_ogg_page_header bosPageHeader; // Used for seeking. + drflac_ogg_page_header currentPageHeader; + uint32_t bytesRemainingInPage; +} drflac_oggbs; // oggbs = Ogg Bitstream + +static size_t drflac_oggbs__read_physical(drflac_oggbs* oggbs, void* bufferOut, size_t bytesToRead) +{ + size_t bytesActuallyRead = oggbs->onRead(oggbs->pUserData, bufferOut, bytesToRead); + oggbs->currentBytePos += bytesActuallyRead; + + return bytesActuallyRead; +} + +static drBool32 drflac_oggbs__seek_physical(drflac_oggbs* oggbs, uint64_t offset, drflac_seek_origin origin) +{ + if (origin == drflac_seek_origin_start) + { + if (offset <= 0x7FFFFFFF) { + if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_start)) { + return DR_FALSE; + } + oggbs->currentBytePos = offset; + + return DR_TRUE; + } else { + if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) { + return DR_FALSE; + } + oggbs->currentBytePos = offset; + + return drflac_oggbs__seek_physical(oggbs, offset - 0x7FFFFFFF, drflac_seek_origin_current); + } + } + else + { + while (offset > 0x7FFFFFFF) { + if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) { + return DR_FALSE; + } + oggbs->currentBytePos += 0x7FFFFFFF; + offset -= 0x7FFFFFFF; + } + + if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_current)) { // <-- Safe cast thanks to the loop above. + return DR_FALSE; + } + oggbs->currentBytePos += offset; + + return DR_TRUE; + } +} + +static drBool32 drflac_oggbs__goto_next_page(drflac_oggbs* oggbs) +{ + drflac_ogg_page_header header; + for (;;) + { + uint32_t headerSize; + if (!drflac_ogg__read_page_header(oggbs->onRead, oggbs->pUserData, &header, &headerSize)) { + return DR_FALSE; + } + oggbs->currentBytePos += headerSize; + + + uint32_t pageBodySize = drflac_ogg__get_page_body_size(&header); + + if (header.serialNumber == oggbs->serialNumber) { + oggbs->currentPageHeader = header; + oggbs->bytesRemainingInPage = pageBodySize; + return DR_TRUE; + } + + // If we get here it means the page is not a FLAC page - skip it. + if (pageBodySize > 0 && !drflac_oggbs__seek_physical(oggbs, pageBodySize, drflac_seek_origin_current)) { // <-- Safe cast - maximum size of a page is way below that of an int. + return DR_FALSE; + } + } +} + +// Function below is unused at the moment, but I might be re-adding it later. +#if 0 +static uint8_t drflac_oggbs__get_current_segment_index(drflac_oggbs* oggbs, uint8_t* pBytesRemainingInSeg) +{ + uint32_t bytesConsumedInPage = drflac_ogg__get_page_body_size(&oggbs->currentPageHeader) - oggbs->bytesRemainingInPage; + uint8_t iSeg = 0; + uint32_t iByte = 0; + while (iByte < bytesConsumedInPage) + { + uint8_t segmentSize = oggbs->currentPageHeader.segmentTable[iSeg]; + if (iByte + segmentSize > bytesConsumedInPage) { + break; + } else { + iSeg += 1; + iByte += segmentSize; + } + } + + *pBytesRemainingInSeg = oggbs->currentPageHeader.segmentTable[iSeg] - (uint8_t)(bytesConsumedInPage - iByte); + return iSeg; +} + +static drBool32 drflac_oggbs__seek_to_next_packet(drflac_oggbs* oggbs) +{ + // The current packet ends when we get to the segment with a lacing value of < 255 which is not at the end of a page. + for (;;) // <-- Loop over pages. + { + drBool32 atEndOfPage = DR_FALSE; + + uint8_t bytesRemainingInSeg; + uint8_t iFirstSeg = drflac_oggbs__get_current_segment_index(oggbs, &bytesRemainingInSeg); + + uint32_t bytesToEndOfPacketOrPage = bytesRemainingInSeg; + for (uint8_t iSeg = iFirstSeg; iSeg < oggbs->currentPageHeader.segmentCount; ++iSeg) { + uint8_t segmentSize = oggbs->currentPageHeader.segmentTable[iSeg]; + if (segmentSize < 255) { + if (iSeg == oggbs->currentPageHeader.segmentCount-1) { + atEndOfPage = DR_TRUE; + } + + break; + } + + bytesToEndOfPacketOrPage += segmentSize; + } + + // At this point we will have found either the packet or the end of the page. If were at the end of the page we'll + // want to load the next page and keep searching for the end of the frame. + drflac_oggbs__seek_physical(oggbs, bytesToEndOfPacketOrPage, drflac_seek_origin_current); + oggbs->bytesRemainingInPage -= bytesToEndOfPacketOrPage; + + if (atEndOfPage) + { + // We're potentially at the next packet, but we need to check the next page first to be sure because the packet may + // straddle pages. + if (!drflac_oggbs__goto_next_page(oggbs)) { + return DR_FALSE; + } + + // If it's a fresh packet it most likely means we're at the next packet. + if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { + return DR_TRUE; + } + } + else + { + // We're at the next frame. + return DR_TRUE; + } + } +} + +static drBool32 drflac_oggbs__seek_to_next_frame(drflac_oggbs* oggbs) +{ + // The bitstream should be sitting on the first byte just after the header of the frame. + + // What we're actually doing here is seeking to the start of the next packet. + return drflac_oggbs__seek_to_next_packet(oggbs); +} +#endif + +static size_t drflac__on_read_ogg(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pUserData; + assert(oggbs != NULL); + + uint8_t* pRunningBufferOut = (uint8_t*)bufferOut; + + // Reading is done page-by-page. If we've run out of bytes in the page we need to move to the next one. + size_t bytesRead = 0; + while (bytesRead < bytesToRead) + { + size_t bytesRemainingToRead = bytesToRead - bytesRead; + + if (oggbs->bytesRemainingInPage >= bytesRemainingToRead) { + bytesRead += oggbs->onRead(oggbs->pUserData, pRunningBufferOut, bytesRemainingToRead); + oggbs->bytesRemainingInPage -= (uint32_t)bytesRemainingToRead; + break; + } + + // If we get here it means some of the requested data is contained in the next pages. + if (oggbs->bytesRemainingInPage > 0) { + size_t bytesJustRead = oggbs->onRead(oggbs->pUserData, pRunningBufferOut, oggbs->bytesRemainingInPage); + bytesRead += bytesJustRead; + pRunningBufferOut += bytesJustRead; + + if (bytesJustRead != oggbs->bytesRemainingInPage) { + break; // Ran out of data. + } + } + + assert(bytesRemainingToRead > 0); + if (!drflac_oggbs__goto_next_page(oggbs)) { + break; // Failed to go to the next chunk. Might have simply hit the end of the stream. + } + } + + oggbs->currentBytePos += bytesRead; + return bytesRead; +} + +static drBool32 drflac__on_seek_ogg(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pUserData; + assert(oggbs != NULL); + assert(offset > 0 || (offset == 0 && origin == drflac_seek_origin_start)); + + // Seeking is always forward which makes things a lot simpler. + if (origin == drflac_seek_origin_start) { + int startBytePos = (int)oggbs->firstBytePos + (79-42); // 79 = size of bos page; 42 = size of FLAC header data. Seek up to the first byte of the native FLAC data. + if (!drflac_oggbs__seek_physical(oggbs, startBytePos, drflac_seek_origin_start)) { + return DR_FALSE; + } + + oggbs->currentPageHeader = oggbs->bosPageHeader; + oggbs->bytesRemainingInPage = 42; // 42 = size of the native FLAC header data. That's our start point for seeking. + + return drflac__on_seek_ogg(pUserData, offset, drflac_seek_origin_current); + } + + + assert(origin == drflac_seek_origin_current); + + int bytesSeeked = 0; + while (bytesSeeked < offset) + { + int bytesRemainingToSeek = offset - bytesSeeked; + assert(bytesRemainingToSeek >= 0); + + if (oggbs->bytesRemainingInPage >= (size_t)bytesRemainingToSeek) { + if (!drflac_oggbs__seek_physical(oggbs, bytesRemainingToSeek, drflac_seek_origin_current)) { + return DR_FALSE; + } + + bytesSeeked += bytesRemainingToSeek; + oggbs->bytesRemainingInPage -= bytesRemainingToSeek; + break; + } + + // If we get here it means some of the requested data is contained in the next pages. + if (oggbs->bytesRemainingInPage > 0) { + if (!drflac_oggbs__seek_physical(oggbs, oggbs->bytesRemainingInPage, drflac_seek_origin_current)) { + return DR_FALSE; + } + + bytesSeeked += (int)oggbs->bytesRemainingInPage; + } + + assert(bytesRemainingToSeek > 0); + if (!drflac_oggbs__goto_next_page(oggbs)) { + break; // Failed to go to the next chunk. Might have simply hit the end of the stream. + } + } + + return DR_TRUE; +} + +drBool32 drflac_ogg__seek_to_sample(drflac* pFlac, uint64_t sample) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)(((int32_t*)pFlac->pExtraData) + pFlac->maxBlockSize*pFlac->channels); + + uint64_t originalBytePos = oggbs->currentBytePos; // For recovery. + + // First seek to the first frame. + if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFramePos)) { + return DR_FALSE; + } + oggbs->bytesRemainingInPage = 0; + + uint64_t runningGranulePosition = 0; + uint64_t runningFrameBytePos = oggbs->currentBytePos; // <-- Points to the OggS identifier. + for (;;) + { + if (!drflac_oggbs__goto_next_page(oggbs)) { + drflac_oggbs__seek_physical(oggbs, originalBytePos, drflac_seek_origin_start); + return DR_FALSE; // Never did find that sample... + } + + runningFrameBytePos = oggbs->currentBytePos - drflac_ogg__get_page_header_size(&oggbs->currentPageHeader); + if (oggbs->currentPageHeader.granulePosition*pFlac->channels >= sample) { + break; // The sample is somewhere in the previous page. + } + + + // At this point we know the sample is not in the previous page. It could possibly be in this page. For simplicity we + // disregard any pages that do not begin a fresh packet. + if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { // <-- Is it a fresh page? + if (oggbs->currentPageHeader.segmentTable[0] >= 2) { + uint8_t firstBytesInPage[2]; + if (drflac_oggbs__read_physical(oggbs, firstBytesInPage, 2) != 2) { + drflac_oggbs__seek_physical(oggbs, originalBytePos, drflac_seek_origin_start); + return DR_FALSE; + } + if ((firstBytesInPage[0] == 0xFF) && (firstBytesInPage[1] & 0xFC) == 0xF8) { // <-- Does the page begin with a frame's sync code? + runningGranulePosition = oggbs->currentPageHeader.granulePosition*pFlac->channels; + } + + if (!drflac_oggbs__seek_physical(oggbs, (int)oggbs->bytesRemainingInPage-2, drflac_seek_origin_current)) { + drflac_oggbs__seek_physical(oggbs, originalBytePos, drflac_seek_origin_start); + return DR_FALSE; + } + + continue; + } + } + + if (!drflac_oggbs__seek_physical(oggbs, (int)oggbs->bytesRemainingInPage, drflac_seek_origin_current)) { + drflac_oggbs__seek_physical(oggbs, originalBytePos, drflac_seek_origin_start); + return DR_FALSE; + } + } + + + // We found the page that that is closest to the sample, so now we need to find it. The first thing to do is seek to the + // start of that page. In the loop above we checked that it was a fresh page which means this page is also the start of + // a new frame. This property means that after we've seeked to the page we can immediately start looping over frames until + // we find the one containing the target sample. + if (!drflac_oggbs__seek_physical(oggbs, runningFrameBytePos, drflac_seek_origin_start)) { + return DR_FALSE; + } + if (!drflac_oggbs__goto_next_page(oggbs)) { + return DR_FALSE; + } + + + // At this point we'll be sitting on the first byte of the frame header of the first frame in the page. We just keep + // looping over these frames until we find the one containing the sample we're after. + uint64_t firstSampleInFrame = runningGranulePosition; + for (;;) + { + // NOTE for later: When using Ogg's page/segment based seeking later on we can't use this function (or any drflac__* + // reading functions) because otherwise it will pull extra data for use in it's own internal caches which will then + // break the positioning of the read pointer for the Ogg bitstream. + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DR_FALSE; + } + + int channels = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + uint64_t lastSampleInFrame = firstSampleInFrame + (pFlac->currentFrame.header.blockSize*channels); + lastSampleInFrame -= 1; // <-- Zero based. + + if (sample >= firstSampleInFrame && sample <= lastSampleInFrame) { + break; // The sample is in this frame. + } + + + // If we get here it means the sample is not in this frame so we need to move to the next one. Now the cool thing + // with Ogg is that we can efficiently seek past the frame by looking at the lacing values of each segment in + // the page. + firstSampleInFrame = lastSampleInFrame+1; + +#if 1 + // Slow way. This uses the native FLAC decoder to seek past the frame. This is slow because it needs to do a partial + // decode of the frame. Although this is how the native version works, we can use Ogg's framing system to make it + // more efficient. Leaving this here for reference and to use as a basis for debugging purposes. + if (!drflac__seek_to_next_frame(pFlac)) { + return DR_FALSE; + } +#else + // TODO: This is not yet complete. See note at the top of this loop body. + + // Fast(er) way. This uses Ogg's framing system to seek past the frame. This should be much more efficient than the + // native FLAC seeking. + if (!drflac_oggbs__seek_to_next_frame(oggbs)) { + return DR_FALSE; + } +#endif + } + + assert(firstSampleInFrame <= sample); + + if (!drflac__decode_frame(pFlac)) { + return DR_FALSE; + } + + size_t samplesToDecode = (size_t)(sample - firstSampleInFrame); // <-- Safe cast because the maximum number of samples in a frame is 65535. + return drflac_read_s32(pFlac, samplesToDecode, NULL) == samplesToDecode; +} + + +drBool32 drflac__init_private__ogg(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD) +{ + // Pre: The bit stream should be sitting just past the 4-byte OggS capture pattern. + + pInit->container = drflac_container_ogg; + pInit->oggFirstBytePos = 0; + + // We'll get here if the first 4 bytes of the stream were the OggS capture pattern, however it doesn't necessarily mean the + // stream includes FLAC encoded audio. To check for this we need to scan the beginning-of-stream page markers and check if + // any match the FLAC specification. Important to keep in mind that the stream may be multiplexed. + drflac_ogg_page_header header; + + uint32_t headerSize; + if (!drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, &header, &headerSize)) { + return DR_FALSE; + } + pInit->runningFilePos = headerSize; + + for (;;) + { + // Break if we're past the beginning of stream page. + if ((header.headerType & 0x02) == 0) { + return DR_FALSE; + } + + + // Check if it's a FLAC header. + int pageBodySize = drflac_ogg__get_page_body_size(&header); + if (pageBodySize == 51) // 51 = the lacing value of the FLAC header packet. + { + // It could be a FLAC page... + uint32_t bytesRemainingInPage = pageBodySize; + + uint8_t packetType; + if (onRead(pUserData, &packetType, 1) != 1) { + return DR_FALSE; + } + + bytesRemainingInPage -= 1; + if (packetType == 0x7F) + { + // Increasingly more likely to be a FLAC page... + uint8_t sig[4]; + if (onRead(pUserData, sig, 4) != 4) { + return DR_FALSE; + } + + bytesRemainingInPage -= 4; + if (sig[0] == 'F' && sig[1] == 'L' && sig[2] == 'A' && sig[3] == 'C') + { + // Almost certainly a FLAC page... + uint8_t mappingVersion[2]; + if (onRead(pUserData, mappingVersion, 2) != 2) { + return DR_FALSE; + } + + if (mappingVersion[0] != 1) { + return DR_FALSE; // Only supporting version 1.x of the Ogg mapping. + } + + // The next 2 bytes are the non-audio packets, not including this one. We don't care about this because we're going to + // be handling it in a generic way based on the serial number and packet types. + if (!onSeek(pUserData, 2, drflac_seek_origin_current)) { + return DR_FALSE; + } + + // Expecting the native FLAC signature "fLaC". + if (onRead(pUserData, sig, 4) != 4) { + return DR_FALSE; + } + + if (sig[0] == 'f' && sig[1] == 'L' && sig[2] == 'a' && sig[3] == 'C') + { + // The remaining data in the page should be the STREAMINFO block. + uint8_t isLastBlock; + uint8_t blockType; + uint32_t blockSize; + if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { + return DR_FALSE; + } + + if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) { + return DR_FALSE; // Invalid block type. First block must be the STREAMINFO block. + } + + drflac_streaminfo streaminfo; + if (drflac__read_streaminfo(onRead, pUserData, &streaminfo)) + { + // Success! + pInit->sampleRate = streaminfo.sampleRate; + pInit->channels = streaminfo.channels; + pInit->bitsPerSample = streaminfo.bitsPerSample; + pInit->totalSampleCount = streaminfo.totalSampleCount; + pInit->maxBlockSize = streaminfo.maxBlockSize; + + if (onMeta) { + drflac_metadata metadata; + metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + metadata.data.streaminfo = streaminfo; + onMeta(pUserDataMD, &metadata); + } + + pInit->runningFilePos += pageBodySize; + pInit->oggFirstBytePos = pInit->runningFilePos - 79; // Subtracting 79 will place us right on top of the "OggS" identifier of the FLAC bos page. + pInit->oggSerial = header.serialNumber; + pInit->oggBosHeader = header; + break; + } + else + { + // Failed to read STREAMINFO block. Aww, so close... + return DR_FALSE; + } + } + else + { + // Invalid file. + return DR_FALSE; + } + } + else + { + // Not a FLAC header. Skip it. + if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) { + return DR_FALSE; + } + } + } + else + { + // Not a FLAC header. Seek past the entire page and move on to the next. + if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) { + return DR_FALSE; + } + } + } + else + { + if (!onSeek(pUserData, pageBodySize, drflac_seek_origin_current)) { + return DR_FALSE; + } + } + + pInit->runningFilePos += pageBodySize; + + + // Read the header of the next page. + if (!drflac_ogg__read_page_header(onRead, pUserData, &header, &headerSize)) { + return DR_FALSE; + } + pInit->runningFilePos += headerSize; + } + + + // If we get here it means we found a FLAC audio stream. We should be sitting on the first byte of the header of the next page. The next + // packets in the FLAC logical stream contain the metadata. The only thing left to do in the initialiation phase for Ogg is to create the + // Ogg bistream object. + pInit->hasMetadataBlocks = DR_TRUE; // <-- Always have at least VORBIS_COMMENT metadata block. + return DR_TRUE; +} +#endif + +drBool32 drflac__init_private(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD) +{ + if (pInit == NULL || onRead == NULL || onSeek == NULL) { + return DR_FALSE; + } + + pInit->onRead = onRead; + pInit->onSeek = onSeek; + pInit->onMeta = onMeta; + pInit->pUserData = pUserData; + pInit->pUserDataMD = pUserDataMD; + + uint8_t id[4]; + if (onRead(pUserData, id, 4) != 4) { + return DR_FALSE; + } + + if (id[0] == 'f' && id[1] == 'L' && id[2] == 'a' && id[3] == 'C') { + return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD); + } + +#ifndef DR_FLAC_NO_OGG + if (id[0] == 'O' && id[1] == 'g' && id[2] == 'g' && id[3] == 'S') { + return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD); + } +#endif + + // Unsupported container. + return DR_FALSE; +} + +void drflac__init_from_info(drflac* pFlac, drflac_init_info* pInit) +{ + assert(pFlac != NULL); + assert(pInit != NULL); + + memset(pFlac, 0, sizeof(*pFlac)); + pFlac->bs.onRead = pInit->onRead; + pFlac->bs.onSeek = pInit->onSeek; + pFlac->bs.pUserData = pInit->pUserData; + pFlac->bs.nextL2Line = sizeof(pFlac->bs.cacheL2) / sizeof(pFlac->bs.cacheL2[0]); // <-- Initialize to this to force a client-side data retrieval right from the start. + pFlac->bs.consumedBits = sizeof(pFlac->bs.cache)*8; + + pFlac->onMeta = pInit->onMeta; + pFlac->pUserDataMD = pInit->pUserDataMD; + pFlac->maxBlockSize = pInit->maxBlockSize; + pFlac->sampleRate = pInit->sampleRate; + pFlac->channels = (uint8_t)pInit->channels; + pFlac->bitsPerSample = (uint8_t)pInit->bitsPerSample; + pFlac->totalSampleCount = pInit->totalSampleCount; + pFlac->container = pInit->container; +} + +drflac* drflac_open_with_metadata_private(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD) +{ + drflac_init_info init; + if (!drflac__init_private(&init, onRead, onSeek, onMeta, pUserData, pUserDataMD)) { + return NULL; + } + + size_t allocationSize = sizeof(drflac); + allocationSize += init.maxBlockSize * init.channels * sizeof(int32_t); + //allocationSize += init.seektableSize; + + +#ifndef DR_FLAC_NO_OGG + // There's additional data required for Ogg streams. + if (init.container == drflac_container_ogg) { + allocationSize += sizeof(drflac_oggbs); + } +#endif + + drflac* pFlac = (drflac*)malloc(allocationSize); + drflac__init_from_info(pFlac, &init); + pFlac->pDecodedSamples = (int32_t*)pFlac->pExtraData; + +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) { + drflac_oggbs* oggbs = (drflac_oggbs*)(((int32_t*)pFlac->pExtraData) + init.maxBlockSize*init.channels); + oggbs->onRead = onRead; + oggbs->onSeek = onSeek; + oggbs->pUserData = pUserData; + oggbs->currentBytePos = init.oggFirstBytePos; + oggbs->firstBytePos = init.oggFirstBytePos; + oggbs->serialNumber = init.oggSerial; + oggbs->bosPageHeader = init.oggBosHeader; + oggbs->bytesRemainingInPage = 0; + + // The Ogg bistream needs to be layered on top of the original bitstream. + pFlac->bs.onRead = drflac__on_read_ogg; + pFlac->bs.onSeek = drflac__on_seek_ogg; + pFlac->bs.pUserData = (void*)oggbs; + } +#endif + + // Decode metadata before returning. + if (init.hasMetadataBlocks) { + if (!drflac__read_and_decode_metadata(pFlac)) { + free(pFlac); + return NULL; + } + } + + return pFlac; +} + + + +#ifndef DR_FLAC_NO_STDIO +typedef void* drflac_file; + +#if defined(DR_FLAC_NO_WIN32_IO) || !defined(_WIN32) +#include + +static size_t drflac__on_read_stdio(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + return fread(bufferOut, 1, bytesToRead, (FILE*)pUserData); +} + +static drBool32 drflac__on_seek_stdio(void* pUserData, int offset, drflac_seek_origin origin) +{ + assert(offset > 0 || (offset == 0 && origin == drflac_seek_origin_start)); + + return fseek((FILE*)pUserData, offset, (origin == drflac_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0; +} + +static drflac_file drflac__open_file_handle(const char* filename) +{ + FILE* pFile; +#ifdef _MSC_VER + if (fopen_s(&pFile, filename, "rb") != 0) { + return NULL; + } +#else + pFile = fopen(filename, "rb"); + if (pFile == NULL) { + return NULL; + } +#endif + + return (drflac_file)pFile; +} + +static void drflac__close_file_handle(drflac_file file) +{ + fclose((FILE*)file); +} +#else +#include + +static size_t drflac__on_read_stdio(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + assert(bytesToRead < 0xFFFFFFFF); // dr_flac will never request huge amounts of data at a time. This is a safe assertion. + + DWORD bytesRead; + ReadFile((HANDLE)pUserData, bufferOut, (DWORD)bytesToRead, &bytesRead, NULL); + + return (size_t)bytesRead; +} + +static drBool32 drflac__on_seek_stdio(void* pUserData, int offset, drflac_seek_origin origin) +{ + assert(offset > 0 || (offset == 0 && origin == drflac_seek_origin_start)); + + return SetFilePointer((HANDLE)pUserData, offset, NULL, (origin == drflac_seek_origin_current) ? FILE_CURRENT : FILE_BEGIN) != INVALID_SET_FILE_POINTER; +} + +static drflac_file drflac__open_file_handle(const char* filename) +{ + HANDLE hFile = CreateFileA(filename, FILE_GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); + if (hFile == INVALID_HANDLE_VALUE) { + return NULL; + } + + return (drflac_file)hFile; +} + +static void drflac__close_file_handle(drflac_file file) +{ + CloseHandle((HANDLE)file); +} +#endif + + +drflac* drflac_open_file(const char* filename) +{ + drflac_file file = drflac__open_file_handle(filename); + if (file == NULL) { + return NULL; + } + + drflac* pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)file); + if (pFlac == NULL) { + drflac__close_file_handle(file); + return NULL; + } + + return pFlac; +} + +drflac* drflac_open_file_with_metadata(const char* filename, drflac_meta_proc onMeta, void* pUserData) +{ + drflac_file file = drflac__open_file_handle(filename); + if (file == NULL) { + return NULL; + } + + drflac* pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, (void*)file, pUserData); + if (pFlac == NULL) { + drflac__close_file_handle(file); + return pFlac; + } + + return pFlac; +} +#endif //DR_FLAC_NO_STDIO + +static size_t drflac__on_read_memory(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData; + assert(memoryStream != NULL); + assert(memoryStream->dataSize >= memoryStream->currentReadPos); + + size_t bytesRemaining = memoryStream->dataSize - memoryStream->currentReadPos; + if (bytesToRead > bytesRemaining) { + bytesToRead = bytesRemaining; + } + + if (bytesToRead > 0) { + memcpy(bufferOut, memoryStream->data + memoryStream->currentReadPos, bytesToRead); + memoryStream->currentReadPos += bytesToRead; + } + + return bytesToRead; +} + +static drBool32 drflac__on_seek_memory(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData; + assert(memoryStream != NULL); + assert(offset > 0 || (offset == 0 && origin == drflac_seek_origin_start)); + + if (origin == drflac_seek_origin_current) { + if (memoryStream->currentReadPos + offset <= memoryStream->dataSize) { + memoryStream->currentReadPos += offset; + } else { + memoryStream->currentReadPos = memoryStream->dataSize; // Trying to seek too far forward. + } + } else { + if ((uint32_t)offset <= memoryStream->dataSize) { + memoryStream->currentReadPos = offset; + } else { + memoryStream->currentReadPos = memoryStream->dataSize; // Trying to seek too far forward. + } + } + + return DR_TRUE; +} + +drflac* drflac_open_memory(const void* data, size_t dataSize) +{ + drflac__memory_stream memoryStream; + memoryStream.data = (const unsigned char*)data; + memoryStream.dataSize = dataSize; + memoryStream.currentReadPos = 0; + drflac* pFlac = drflac_open(drflac__on_read_memory, drflac__on_seek_memory, &memoryStream); + if (pFlac == NULL) { + return NULL; + } + + pFlac->memoryStream = memoryStream; + + // This is an awful hack... +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + drflac_oggbs* oggbs = (drflac_oggbs*)(((int32_t*)pFlac->pExtraData) + pFlac->maxBlockSize*pFlac->channels); + oggbs->pUserData = &pFlac->memoryStream; + } + else +#endif + { + pFlac->bs.pUserData = &pFlac->memoryStream; + } + + return pFlac; +} + +drflac* drflac_open_memory_with_metadata(const void* data, size_t dataSize, drflac_meta_proc onMeta, void* pUserData) +{ + drflac__memory_stream memoryStream; + memoryStream.data = (const unsigned char*)data; + memoryStream.dataSize = dataSize; + memoryStream.currentReadPos = 0; + drflac* pFlac = drflac_open_with_metadata_private(drflac__on_read_memory, drflac__on_seek_memory, onMeta, &memoryStream, pUserData); + if (pFlac == NULL) { + return NULL; + } + + pFlac->memoryStream = memoryStream; + + // This is an awful hack... +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + drflac_oggbs* oggbs = (drflac_oggbs*)(((int32_t*)pFlac->pExtraData) + pFlac->maxBlockSize*pFlac->channels); + oggbs->pUserData = &pFlac->memoryStream; + } + else +#endif + { + pFlac->bs.pUserData = &pFlac->memoryStream; + } + + return pFlac; +} + + + +drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData) +{ + return drflac_open_with_metadata_private(onRead, onSeek, NULL, pUserData, pUserData); +} + +drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData) +{ + return drflac_open_with_metadata_private(onRead, onSeek, onMeta, pUserData, pUserData); +} + +void drflac_close(drflac* pFlac) +{ + if (pFlac == NULL) { + return; + } + +#ifndef DR_FLAC_NO_STDIO + // If we opened the file with drflac_open_file() we will want to close the file handle. We can know whether or not drflac_open_file() + // was used by looking at the callbacks. + if (pFlac->bs.onRead == drflac__on_read_stdio) { + drflac__close_file_handle((drflac_file)pFlac->bs.pUserData); + } + +#ifndef DR_FLAC_NO_OGG + // Need to clean up Ogg streams a bit differently due to the way the bit streaming is chained. + if (pFlac->container == drflac_container_ogg) { + assert(pFlac->bs.onRead == drflac__on_read_ogg); + drflac_oggbs* oggbs = (drflac_oggbs*)((int32_t*)pFlac->pExtraData + pFlac->maxBlockSize*pFlac->channels); + if (oggbs->onRead == drflac__on_read_stdio) { + drflac__close_file_handle((drflac_file)oggbs->pUserData); + } + } +#endif +#endif + + free(pFlac); +} + +uint64_t drflac__read_s32__misaligned(drflac* pFlac, uint64_t samplesToRead, int32_t* bufferOut) +{ + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + + // We should never be calling this when the number of samples to read is >= the sample count. + assert(samplesToRead < channelCount); + assert(pFlac->currentFrame.samplesRemaining > 0 && samplesToRead <= pFlac->currentFrame.samplesRemaining); + + + uint64_t samplesRead = 0; + while (samplesToRead > 0) + { + uint64_t totalSamplesInFrame = pFlac->currentFrame.header.blockSize * channelCount; + uint64_t samplesReadFromFrameSoFar = totalSamplesInFrame - pFlac->currentFrame.samplesRemaining; + unsigned int channelIndex = samplesReadFromFrameSoFar % channelCount; + + uint64_t nextSampleInFrame = samplesReadFromFrameSoFar / channelCount; + + int decodedSample = 0; + switch (pFlac->currentFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + if (channelIndex == 0) { + decodedSample = pFlac->currentFrame.subframes[channelIndex].pDecodedSamples[nextSampleInFrame]; + } else { + int side = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame]; + int left = pFlac->currentFrame.subframes[channelIndex - 1].pDecodedSamples[nextSampleInFrame]; + decodedSample = left - side; + } + + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + if (channelIndex == 0) { + int side = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame]; + int right = pFlac->currentFrame.subframes[channelIndex + 1].pDecodedSamples[nextSampleInFrame]; + decodedSample = side + right; + } else { + decodedSample = pFlac->currentFrame.subframes[channelIndex].pDecodedSamples[nextSampleInFrame]; + } + + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + int mid; + int side; + if (channelIndex == 0) { + mid = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame]; + side = pFlac->currentFrame.subframes[channelIndex + 1].pDecodedSamples[nextSampleInFrame]; + + mid = (((unsigned int)mid) << 1) | (side & 0x01); + decodedSample = (mid + side) >> 1; + } else { + mid = pFlac->currentFrame.subframes[channelIndex - 1].pDecodedSamples[nextSampleInFrame]; + side = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame]; + + mid = (((unsigned int)mid) << 1) | (side & 0x01); + decodedSample = (mid - side) >> 1; + } + + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + decodedSample = pFlac->currentFrame.subframes[channelIndex].pDecodedSamples[nextSampleInFrame]; + } break; + } + + + decodedSample <<= ((32 - pFlac->bitsPerSample) + pFlac->currentFrame.subframes[channelIndex].wastedBitsPerSample); + + if (bufferOut) { + *bufferOut++ = decodedSample; + } + + samplesRead += 1; + pFlac->currentFrame.samplesRemaining -= 1; + samplesToRead -= 1; + } + + return samplesRead; +} + +uint64_t drflac__seek_forward_by_samples(drflac* pFlac, uint64_t samplesToRead) +{ + uint64_t samplesRead = 0; + while (samplesToRead > 0) + { + if (pFlac->currentFrame.samplesRemaining == 0) + { + if (!drflac__read_and_decode_next_frame(pFlac)) { + break; // Couldn't read the next frame, so just break from the loop and return. + } + } + else + { + samplesRead += 1; + pFlac->currentFrame.samplesRemaining -= 1; + samplesToRead -= 1; + } + } + + return samplesRead; +} + +uint64_t drflac_read_s32(drflac* pFlac, uint64_t samplesToRead, int32_t* bufferOut) +{ + // Note that is allowed to be null, in which case this will be treated as something like a seek. + if (pFlac == NULL || samplesToRead == 0) { + return 0; + } + + if (bufferOut == NULL) { + return drflac__seek_forward_by_samples(pFlac, samplesToRead); + } + + + uint64_t samplesRead = 0; + while (samplesToRead > 0) + { + // If we've run out of samples in this frame, go to the next. + if (pFlac->currentFrame.samplesRemaining == 0) + { + if (!drflac__read_and_decode_next_frame(pFlac)) { + break; // Couldn't read the next frame, so just break from the loop and return. + } + } + else + { + // Here is where we grab the samples and interleave them. + + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + uint64_t totalSamplesInFrame = pFlac->currentFrame.header.blockSize * channelCount; + uint64_t samplesReadFromFrameSoFar = totalSamplesInFrame - pFlac->currentFrame.samplesRemaining; + + int misalignedSampleCount = samplesReadFromFrameSoFar % channelCount; + if (misalignedSampleCount > 0) { + uint64_t misalignedSamplesRead = drflac__read_s32__misaligned(pFlac, misalignedSampleCount, bufferOut); + samplesRead += misalignedSamplesRead; + samplesReadFromFrameSoFar += misalignedSamplesRead; + bufferOut += misalignedSamplesRead; + samplesToRead -= misalignedSamplesRead; + } + + + uint64_t alignedSampleCountPerChannel = samplesToRead / channelCount; + if (alignedSampleCountPerChannel > pFlac->currentFrame.samplesRemaining / channelCount) { + alignedSampleCountPerChannel = pFlac->currentFrame.samplesRemaining / channelCount; + } + + uint64_t firstAlignedSampleInFrame = samplesReadFromFrameSoFar / channelCount; + unsigned int unusedBitsPerSample = 32 - pFlac->bitsPerSample; + + switch (pFlac->currentFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + const int* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const int* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (uint64_t i = 0; i < alignedSampleCountPerChannel; ++i) { + int left = pDecodedSamples0[i]; + int side = pDecodedSamples1[i]; + int right = left - side; + + bufferOut[i*2+0] = left << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample); + bufferOut[i*2+1] = right << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample); + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + const int* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const int* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (uint64_t i = 0; i < alignedSampleCountPerChannel; ++i) { + int side = pDecodedSamples0[i]; + int right = pDecodedSamples1[i]; + int left = right + side; + + bufferOut[i*2+0] = left << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample); + bufferOut[i*2+1] = right << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample); + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + const int* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const int* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (uint64_t i = 0; i < alignedSampleCountPerChannel; ++i) { + int side = pDecodedSamples1[i]; + int mid = (((uint32_t)pDecodedSamples0[i]) << 1) | (side & 0x01); + + bufferOut[i*2+0] = ((mid + side) >> 1) << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample); + bufferOut[i*2+1] = ((mid - side) >> 1) << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample); + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + if (pFlac->currentFrame.header.channelAssignment == 1) // 1 = Stereo + { + // Stereo optimized inner loop unroll. + const int* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const int* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (uint64_t i = 0; i < alignedSampleCountPerChannel; ++i) { + bufferOut[i*2+0] = pDecodedSamples0[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample); + bufferOut[i*2+1] = pDecodedSamples1[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample); + } + } + else + { + // Generic interleaving. + for (uint64_t i = 0; i < alignedSampleCountPerChannel; ++i) { + for (unsigned int j = 0; j < channelCount; ++j) { + bufferOut[(i*channelCount)+j] = (pFlac->currentFrame.subframes[j].pDecodedSamples[firstAlignedSampleInFrame + i]) << (unusedBitsPerSample + pFlac->currentFrame.subframes[j].wastedBitsPerSample); + } + } + } + } break; + } + + uint64_t alignedSamplesRead = alignedSampleCountPerChannel * channelCount; + samplesRead += alignedSamplesRead; + samplesReadFromFrameSoFar += alignedSamplesRead; + bufferOut += alignedSamplesRead; + samplesToRead -= alignedSamplesRead; + pFlac->currentFrame.samplesRemaining -= (unsigned int)alignedSamplesRead; + + + + // At this point we may still have some excess samples left to read. + if (samplesToRead > 0 && pFlac->currentFrame.samplesRemaining > 0) + { + uint64_t excessSamplesRead = 0; + if (samplesToRead < pFlac->currentFrame.samplesRemaining) { + excessSamplesRead = drflac__read_s32__misaligned(pFlac, samplesToRead, bufferOut); + } else { + excessSamplesRead = drflac__read_s32__misaligned(pFlac, pFlac->currentFrame.samplesRemaining, bufferOut); + } + + samplesRead += excessSamplesRead; + samplesReadFromFrameSoFar += excessSamplesRead; + bufferOut += excessSamplesRead; + samplesToRead -= excessSamplesRead; + } + } + } + + return samplesRead; +} + +drBool32 drflac_seek_to_sample(drflac* pFlac, uint64_t sampleIndex) +{ + if (pFlac == NULL) { + return DR_FALSE; + } + + if (sampleIndex == 0) { + return drflac__seek_to_first_frame(pFlac); + } + + // Clamp the sample to the end. + if (sampleIndex >= pFlac->totalSampleCount) { + sampleIndex = pFlac->totalSampleCount - 1; + } + + + // Different techniques depending on encapsulation. Using the native FLAC seektable with Ogg encapsulation is a bit awkward so + // we'll instead use Ogg's natural seeking facility. +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + return drflac_ogg__seek_to_sample(pFlac, sampleIndex); + } + else +#endif + { + // First try seeking via the seek table. If this fails, fall back to a brute force seek which is much slower. + if (!drflac__seek_to_sample__seek_table(pFlac, sampleIndex)) { + return drflac__seek_to_sample__brute_force(pFlac, sampleIndex); + } + } + + + return DR_TRUE; +} + + + +//// High Level APIs //// + +int32_t* drflac__full_decode_and_close(drflac* pFlac, unsigned int* channelsOut, unsigned int* sampleRateOut, uint64_t* totalSampleCountOut) +{ + assert(pFlac != NULL); + + int32_t* pSampleData = NULL; + uint64_t totalSampleCount = pFlac->totalSampleCount; + + if (totalSampleCount == 0) + { + int32_t buffer[4096]; + + size_t sampleDataBufferSize = sizeof(buffer); + pSampleData = (int32_t*)malloc(sampleDataBufferSize); + if (pSampleData == NULL) { + goto on_error; + } + + uint64_t samplesRead; + while ((samplesRead = (uint64_t)drflac_read_s32(pFlac, sizeof(buffer)/sizeof(buffer[0]), buffer)) > 0) + { + if (((totalSampleCount + samplesRead) * sizeof(int32_t)) > sampleDataBufferSize) { + sampleDataBufferSize *= 2; + int32_t* pNewSampleData = (int32_t*)realloc(pSampleData, sampleDataBufferSize); + if (pNewSampleData == NULL) { + free(pSampleData); + goto on_error; + } + + pSampleData = pNewSampleData; + } + + memcpy(pSampleData + totalSampleCount, buffer, (size_t)(samplesRead*sizeof(int32_t))); + totalSampleCount += samplesRead; + } + + // At this point everything should be decoded, but we just want to fill the unused part buffer with silence - need to + // protect those ears from random noise! + memset(pSampleData + totalSampleCount, 0, (size_t)(sampleDataBufferSize - totalSampleCount*sizeof(int32_t))); + } + else + { + uint64_t dataSize = totalSampleCount * sizeof(int32_t); + if (dataSize > SIZE_MAX) { + goto on_error; // The decoded data is too big. + } + + pSampleData = (int32_t*)malloc((size_t)dataSize); // <-- Safe cast as per the check above. + if (pSampleData == NULL) { + goto on_error; + } + + uint64_t samplesDecoded = drflac_read_s32(pFlac, pFlac->totalSampleCount, pSampleData); + if (samplesDecoded != pFlac->totalSampleCount) { + free(pSampleData); + goto on_error; // Something went wrong when decoding the FLAC stream. + } + } + + + if (sampleRateOut) *sampleRateOut = pFlac->sampleRate; + if (channelsOut) *channelsOut = pFlac->channels; + if (totalSampleCountOut) *totalSampleCountOut = totalSampleCount; + + drflac_close(pFlac); + return pSampleData; + +on_error: + drflac_close(pFlac); + return NULL; +} + +int32_t* drflac_open_and_decode_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, uint64_t* totalSampleCount) +{ + // Safety. + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open(onRead, onSeek, pUserData); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close(pFlac, channels, sampleRate, totalSampleCount); +} + +#ifndef DR_FLAC_NO_STDIO +int32_t* drflac_open_and_decode_file_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, uint64_t* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open_file(filename); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close(pFlac, channels, sampleRate, totalSampleCount); +} +#endif + +int32_t* drflac_open_and_decode_memory_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, uint64_t* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open_memory(data, dataSize); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close(pFlac, channels, sampleRate, totalSampleCount); +} + +void drflac_free(void* pSampleDataReturnedByOpenAndDecode) +{ + free(pSampleDataReturnedByOpenAndDecode); +} + + + + +void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, uint32_t commentCount, const char* pComments) +{ + if (pIter == NULL) { + return; + } + + pIter->countRemaining = commentCount; + pIter->pRunningData = pComments; +} + +const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, uint32_t* pCommentLengthOut) +{ + // Safety. + if (pCommentLengthOut) *pCommentLengthOut = 0; + + if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) { + return NULL; + } + + uint32_t length = drflac__le2host_32(*(uint32_t*)pIter->pRunningData); + pIter->pRunningData += 4; + + const char* pComment = pIter->pRunningData; + pIter->pRunningData += length; + pIter->countRemaining -= 1; + + if (pCommentLengthOut) *pCommentLengthOut = length; + return pComment; +} +#endif //DR_FLAC_IMPLEMENTATION + + +// REVISION HISTORY +// +// v0.4 - 2016-09-29 +// - API/ABI CHANGE: Use fixed size 32-bit booleans instead of the built-in bool type. +// - API CHANGE: Rename drflac_open_and_decode*() to drflac_open_and_decode*_s32() +// - API CHANGE: Swap the order of "channels" and "sampleRate" parameters in drflac_open_and_decode*(). Rationale for this is to +// keep it consistent with dr_audio. +// +// v0.3f - 2016-09-21 +// - Fix a warning with GCC. +// +// v0.3e - 2016-09-18 +// - Fixed a bug where GCC 4.3+ was not getting properly identified. +// - Fixed a few typos. +// - Changed date formats to ISO 8601 (YYYY-MM-DD). +// +// v0.3d - 2016-06-11 +// - Minor clean up. +// +// v0.3c - 2016-05-28 +// - Fixed compilation error. +// +// v0.3b - 2016-05-16 +// - Fixed Linux/GCC build. +// - Updated documentation. +// +// v0.3a - 2016-05-15 +// - Minor fixes to documentation. +// +// v0.3 - 2016-05-11 +// - Optimizations. Now at about parity with the reference implementation on 32-bit builds. +// - Lots of clean up. +// +// v0.2b - 2016-05-10 +// - Bug fixes. +// +// v0.2a - 2016-05-10 +// - Made drflac_open_and_decode() more robust. +// - Removed an unused debugging variable +// +// v0.2 - 2016-05-09 +// - Added support for Ogg encapsulation. +// - API CHANGE. Have the onSeek callback take a third argument which specifies whether or not the seek +// should be relative to the start or the current position. Also changes the seeking rules such that +// seeking offsets will never be negative. +// - Have drflac_open_and_decode() fail gracefully if the stream has an unknown total sample count. +// +// v0.1b - 2016-05-07 +// - Properly close the file handle in drflac_open_file() and family when the decoder fails to initialize. +// - Removed a stale comment. +// +// v0.1a - 2016-05-05 +// - Minor formatting changes. +// - Fixed a warning on the GCC build. +// +// v0.1 - 2016-05-03 +// - Initial versioned release. + + +// TODO +// - Add support for initializing the decoder without a header STREAMINFO block. +// - Test CUESHEET metadata blocks. + + +/* +This is free and unencumbered software released into the public domain. + +Anyone is free to copy, modify, publish, use, compile, sell, or +distribute this software, either in source code form or as a compiled +binary, for any purpose, commercial or non-commercial, and by any +means. + +In jurisdictions that recognize copyright laws, the author or authors +of this software dedicate any and all copyright interest in the +software to the public domain. We make this dedication for the benefit +of the public at large and to the detriment of our heirs and +successors. We intend this dedication to be an overt act of +relinquishment in perpetuity of all present and future rights to this +software under copyright law. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR +OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR +OTHER DEALINGS IN THE SOFTWARE. + +For more information, please refer to +*/