|
|
@ -0,0 +1,436 @@ |
|
|
|
# Raylib Vulkan Upgrade Plan |
|
|
|
|
|
|
|
This document outlines the strategy for integrating Vulkan as a compile-time graphics backend option for raylib. The goal is to maintain the existing raylib API and ease of use while providing an alternative, modern graphics API. |
|
|
|
|
|
|
|
## 1. Define Vulkan API Abstraction Layer (`rlvk`) |
|
|
|
|
|
|
|
A new abstraction layer, similar to `rlgl` for OpenGL, will be created for Vulkan. This layer, tentatively named `rlvk`, will reside in `src/rlvk.h` and `src/rlvk.c`. |
|
|
|
|
|
|
|
**Key Responsibilities of `rlvk`:** |
|
|
|
|
|
|
|
* **Initialization & Deinitialization:** |
|
|
|
* `rlvkInit()`: |
|
|
|
* Initialize Vulkan loader. |
|
|
|
* Create Vulkan instance (`vkCreateInstance`). |
|
|
|
* Setup debug messenger (if `RLGL_ENABLE_OPENGL_DEBUG_CONTEXT` or a new Vulkan equivalent is defined). |
|
|
|
* Select a suitable physical device (`vkEnumeratePhysicalDevices`, `vkGetPhysicalDeviceProperties`, `vkGetPhysicalDeviceFeatures`, `vkGetPhysicalDeviceQueueFamilyProperties`). |
|
|
|
* Create a logical device (`vkCreateDevice`) with necessary queues (graphics, present). |
|
|
|
* Create a Vulkan surface using the platform layer (e.g., via GLFW's `glfwCreateWindowSurface`). |
|
|
|
* Create the swapchain (`vkCreateSwapchainKHR`). |
|
|
|
* Create image views for swapchain images (`vkCreateImageView`). |
|
|
|
* Create a default render pass (`vkCreateRenderPass`). |
|
|
|
* Create framebuffers for each swapchain image view, associating them with the render pass (`vkCreateFramebuffer`). |
|
|
|
* Create a command pool (`vkCreateCommandPool`). |
|
|
|
* Allocate primary command buffers (`vkAllocateCommandBuffers`). |
|
|
|
* Create synchronization primitives (semaphores for image available/render finished, fences for command buffer execution) (`vkCreateSemaphore`, `vkCreateFence`). |
|
|
|
* Initialize default resources (e.g., default white texture, default shaders in SPIR-V). |
|
|
|
* Setup default pipeline state objects (PSO) for common rendering tasks (e.g., 2D textured quads, 3D models). |
|
|
|
* `rlvkClose()`: |
|
|
|
* Wait for device to be idle (`vkDeviceWaitIdle`). |
|
|
|
* Destroy all Vulkan resources in reverse order of creation (synchronization primitives, command buffers, command pool, framebuffers, render pass, image views, swapchain, logical device, surface, debug messenger, instance). |
|
|
|
|
|
|
|
* **Core Rendering Loop Functions:** |
|
|
|
* `rlvkBeginDrawing()`: |
|
|
|
* Acquire the next available swapchain image (`vkAcquireNextImageKHR`). |
|
|
|
* Begin the primary command buffer (`vkBeginCommandBuffer`). |
|
|
|
* Begin the default render pass (`vkCmdBeginRenderPass`). |
|
|
|
* Set default viewport and scissor. |
|
|
|
* `rlvkEndDrawing()`: |
|
|
|
* End the render pass (`vkCmdEndRenderPass`). |
|
|
|
* End the command buffer (`vkEndCommandBuffer`). |
|
|
|
* Submit the command buffer to the graphics queue (`vkQueueSubmit`), waiting on the image available semaphore and signaling the render finished semaphore. |
|
|
|
* Present the rendered image to the swapchain (`vkQueuePresentKHR`), waiting on the render finished semaphore. |
|
|
|
|
|
|
|
* **Matrix Operations:** |
|
|
|
* Maintain projection and modelview matrix stacks similar to `rlgl`. |
|
|
|
* `rlvkMatrixMode()`, `rlvkPushMatrix()`, `rlvkPopMatrix()`, `rlvkLoadIdentity()`, `rlvkTranslatef()`, `rlvkRotatef()`, `rlvkScalef()`, `rlvkMultMatrixf()`. |
|
|
|
* These will update internal matrix state, which will then be passed to shaders via UBOs/push constants. |
|
|
|
|
|
|
|
* **Viewport and Clipping:** |
|
|
|
* `rlvkViewport()`: Set dynamic viewport state (`vkCmdSetViewport`). |
|
|
|
* `rlvkSetClipPlanes()`: Potentially manage via shader logic or dynamic rasterizer state if available/performant. Vulkan does not have direct equivalents to `gl_ClipDistance` in the same way as OpenGL for user-defined clip planes easily manipulated by `rlFrustum`. |
|
|
|
|
|
|
|
* **Vertex Buffer Management (Batching System):** |
|
|
|
* Adapt or reimplement raylib's batching system (`rlRenderBatch`) for Vulkan. |
|
|
|
* `rlvkLoadRenderBatch()`: Create Vulkan buffers (vertex, index, staging) for batch data. |
|
|
|
* `rlvkUnloadRenderBatch()`: Destroy Vulkan buffers. |
|
|
|
* `rlvkDrawRenderBatch()`: |
|
|
|
* If batch data has changed, update staging buffers and record commands to copy to device-local buffers (`vkCmdCopyBuffer`). |
|
|
|
* Bind appropriate pipeline (PSO). |
|
|
|
* Bind descriptor sets (for UBOs, textures). |
|
|
|
* Bind vertex and index buffers (`vkCmdBindVertexBuffers`, `vkCmdBindIndexBuffer`). |
|
|
|
* Issue draw calls (`vkCmdDrawIndexed` or `vkCmdDraw`). |
|
|
|
* `rlvkSetTexture()`: Manage texture binding for the current batch, potentially requiring different descriptor sets or dynamic descriptor updates. |
|
|
|
|
|
|
|
* **Immediate Mode Emulation (`rlBegin`, `rlEnd`, `rlVertex3f`, etc.):** |
|
|
|
* These functions will populate the CPU-side vertex buffers of the active `rlRenderBatch`. |
|
|
|
* `rlBegin()` will set the primitive topology for the current batch draw call. |
|
|
|
|
|
|
|
* **Texture Management:** |
|
|
|
* `rlvkLoadTexture()`: |
|
|
|
* Create Vulkan image (`vkCreateImage`) with appropriate format, extent, mip levels, usage flags. |
|
|
|
* Allocate device memory (`vkAllocateMemory`, `vkBindImageMemory`). |
|
|
|
* Create image view (`vkCreateImageView`). |
|
|
|
* Create a default sampler (`vkCreateSampler`). |
|
|
|
* Transition image layout to `VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL`. |
|
|
|
* Upload pixel data using a staging buffer and command buffer operations (`vkCmdCopyBufferToImage`). |
|
|
|
* `rlvkLoadTextureDepth()`: Create depth/stencil attachment. |
|
|
|
* `rlvkLoadTextureCubemap()`: Similar to `rlvkLoadTexture` but for cubemaps. |
|
|
|
* `rlvkUpdateTexture()`: Update a region of an existing texture using staging buffers. |
|
|
|
* `rlvkGenTextureMipmaps()`: Generate mipmaps using `vkCmdBlitImage` if supported, or require pre-generated mipmaps. |
|
|
|
* `rlvkUnloadTexture()`: Destroy image, image view, sampler, and free device memory. |
|
|
|
|
|
|
|
* **Shader Management:** |
|
|
|
* `rlvkLoadShaderCode()`: Will expect SPIR-V bytecode. |
|
|
|
* `rlvkLoadShaderProgram()`: Create `VkShaderModule` from SPIR-V, define pipeline layouts, and potentially create initial `VkPipeline` objects. |
|
|
|
* `rlvkGetLocationUniform()`, `rlvkGetLocationAttrib()`: Manage mapping of uniform/attribute names to SPIR-V binding points/locations. |
|
|
|
* `rlvkSetUniform()`: Update UBOs or push constants. |
|
|
|
* `rlvkSetShader()`: Select the active pipeline and descriptor sets. |
|
|
|
|
|
|
|
* **Framebuffer Management:** |
|
|
|
* `rlvkLoadFramebuffer()`: Create `VkFramebuffer` (distinct from swapchain framebuffers, for render textures). |
|
|
|
* `rlvkFramebufferAttach()`: Attach textures to custom framebuffers. |
|
|
|
* `rlvkFramebufferComplete()`: Check framebuffer completeness. |
|
|
|
|
|
|
|
* **Render State Management:** |
|
|
|
* `rlvkEnableColorBlend()`, `rlvkDisableColorBlend()`, `rlvkSetBlendMode()`, `rlvkSetBlendFactors()`: Configure `VkPipelineColorBlendStateCreateInfo`. |
|
|
|
* `rlvkEnableDepthTest()`, `rlvkDisableDepthTest()`: Configure `VkPipelineDepthStencilStateCreateInfo`. |
|
|
|
* `rlvkEnableDepthMask()`, `rlvkDisableDepthMask()`: Part of `VkPipelineDepthStencilStateCreateInfo`. |
|
|
|
* `rlvkEnableBackfaceCulling()`, `rlvkDisableBackfaceCulling()`, `rlvkSetCullFace()`: Configure `VkPipelineRasterizationStateCreateInfo`. |
|
|
|
* `rlvkEnableScissorTest()`, `rlvkDisableScissorTest()`, `rlvkScissor()`: Set dynamic scissor state (`vkCmdSetScissor`). |
|
|
|
* `rlvkEnableWireMode()`, `rlvkDisableWireMode()`: Set `polygonMode` in `VkPipelineRasterizationStateCreateInfo`. |
|
|
|
|
|
|
|
## 2. Core Library Integration (`rcore.c`) |
|
|
|
|
|
|
|
* **Conditional Compilation:** |
|
|
|
* Use `#if defined(GRAPHICS_API_VULKAN)` to conditionally include `rlvk.h` and call `rlvk` functions. |
|
|
|
* Ensure only one graphics API is active (e.g., `#elif defined(GRAPHICS_API_OPENGL_XX)`). |
|
|
|
* **`InitWindow()` Modifications:** |
|
|
|
* If `GRAPHICS_API_VULKAN` is defined: |
|
|
|
* Call `InitPlatform()` (platform layer, e.g., GLFW, will need Vulkan-specific setup). |
|
|
|
* Call `rlvkInit()` instead of `rlglInit()`. |
|
|
|
* Set `isGpuReady = true` upon successful Vulkan initialization. |
|
|
|
* **`CloseWindow()` Modifications:** |
|
|
|
* If `GRAPHICS_API_VULKAN` is defined: |
|
|
|
* Call `rlvkClose()` before `ClosePlatform()`. |
|
|
|
* **Drawing Function Adaption:** |
|
|
|
* Functions like `ClearBackground()`, `BeginDrawing()`, `EndDrawing()`, `BeginMode2D()`, `EndMode2D()`, `BeginMode3D()`, `EndMode3D()`, `BeginTextureMode()`, `EndTextureMode()`, `BeginShaderMode()`, `EndShaderMode()`, etc., will need to call their `rlvk` counterparts when `GRAPHICS_API_VULKAN` is active. |
|
|
|
|
|
|
|
## 3. Platform Layer Integration (Example: `rcore_desktop_glfw.c`) |
|
|
|
|
|
|
|
* **Window Creation:** |
|
|
|
* When `GRAPHICS_API_VULKAN` is defined: |
|
|
|
* Call `glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);` before `glfwCreateWindow()`. |
|
|
|
* **Surface Creation:** |
|
|
|
* After window creation, if Vulkan is active, call `glfwCreateWindowSurface(vulkanInstance, windowHandle, NULL, &vulkanSurface)` to create the Vulkan rendering surface. This surface handle will be needed by `rlvkInit()`. |
|
|
|
* **Instance Extensions:** |
|
|
|
* Query required Vulkan instance extensions from GLFW using `glfwGetRequiredInstanceExtensions()` and pass them to `vkCreateInstance` in `rlvkInit()`. |
|
|
|
* **Input and Other Callbacks:** |
|
|
|
* Most input handling and window event callbacks should remain largely unchanged. |
|
|
|
|
|
|
|
## 4. Build System Changes (CMake) |
|
|
|
|
|
|
|
* **Add CMake Option:** |
|
|
|
* In the main `CMakeLists.txt` or a dedicated options file (e.g., `cmake/CMakeOptions.txt` or a new `cmake/GraphicsAPI.cmake`), add an option to select Vulkan. This could be a boolean `SUPPORT_VULKAN` or an enum-style option like `GRAPHICS_BACKEND` with values "OpenGL" and "Vulkan". |
|
|
|
* Example: `option(SUPPORT_VULKAN "Enable Vulkan graphics backend" OFF)` |
|
|
|
* **Conditional Compilation Define:** |
|
|
|
* Based on the CMake option, add a compile definition for `GRAPHICS_API_VULKAN` to `src/config.h` or directly to the target compile definitions. |
|
|
|
* Ensure mutual exclusivity with OpenGL defines (e.g., `GRAPHICS_API_OPENGL_33`). |
|
|
|
* Example in `src/config.h` (controlled by CMake): |
|
|
|
```c |
|
|
|
// Select desired graphics API (OpenGL or Vulkan) |
|
|
|
// #define GRAPHICS_API_OPENGL_11 |
|
|
|
// #define GRAPHICS_API_OPENGL_21 |
|
|
|
// #define GRAPHICS_API_OPENGL_33 |
|
|
|
// #define GRAPHICS_API_OPENGL_43 |
|
|
|
// #define GRAPHICS_API_OPENGL_ES2 |
|
|
|
// #define GRAPHICS_API_OPENGL_ES3 |
|
|
|
// #define GRAPHICS_API_VULKAN // This would be enabled by CMake |
|
|
|
``` |
|
|
|
* **Link Vulkan Libraries:** |
|
|
|
* When Vulkan is enabled, use `find_package(Vulkan REQUIRED)` to locate the Vulkan SDK. |
|
|
|
* Link the raylib library against `Vulkan::Vulkan` (for the loader) and potentially `Vulkan::glslang` or `Vulkan::SPIRV-Tools` if shader compilation is handled by CMake. |
|
|
|
* **Source Files:** |
|
|
|
* Conditionally compile `src/rlvk.c` when Vulkan is enabled. |
|
|
|
* **Shader Compilation (SPIR-V):** |
|
|
|
* If GLSL shaders are to be compiled to SPIR-V at build time: |
|
|
|
* Integrate a tool like `glslangValidator` as a custom build step. |
|
|
|
* Define rules to find GLSL shaders (e.g., in `src/shaders/glsl/` or a new `src/shaders/vk/`) and compile them to SPIR-V, placing the output in the build directory for embedding or loading. |
|
|
|
|
|
|
|
## 5. Shader Management for Vulkan |
|
|
|
|
|
|
|
* **SPIR-V Requirement:** Vulkan shaders must be in SPIR-V binary format. |
|
|
|
* **Compilation Strategy:** |
|
|
|
* **Option A (Build-time compilation):** Use `glslangValidator` (or similar) integrated into the CMake build process to compile GLSL shaders to SPIR-V. These SPIR-V files can then be embedded into the executable or loaded at runtime. |
|
|
|
* **Option B (Pre-compiled SPIR-V):** Require users or developers to provide pre-compiled SPIR-V shaders. |
|
|
|
* Raylib's default shaders will need to be converted to GLSL suitable for Vulkan (e.g., using explicit binding locations) and then compiled to SPIR-V. |
|
|
|
* **`rlvkLoadShaderCode()`:** This function in `rlvk.c` will expect paths to SPIR-V files or raw SPIR-V bytecode if embedded. |
|
|
|
* **Descriptor Sets and Pipeline Layouts:** |
|
|
|
* `rlvk` will need to manage `VkDescriptorSetLayout`, `VkPipelineLayout`, `VkDescriptorPool`, and `VkDescriptorSet` for binding UBOs and textures to shaders. This is significantly different from OpenGL's `glGetUniformLocation`. |
|
|
|
|
|
|
|
## 6. Potential Challenges and Considerations |
|
|
|
|
|
|
|
* **API Mapping:** Translating raylib's simple, immediate-mode style OpenGL calls to Vulkan's more complex, explicit API requires careful design of the `rlvk` layer to hide Vulkan's verbosity. |
|
|
|
* **Performance:** While Vulkan offers potential performance benefits, a naive translation might not achieve them. Efficient batching, command buffer usage, and resource management will be crucial. |
|
|
|
* **Error Handling:** Vulkan's error reporting is robust but requires more explicit checking. |
|
|
|
* **Driver Differences:** Vulkan driver quality and feature support can vary. |
|
|
|
* **Development Complexity:** Implementing a Vulkan backend is a substantial undertaking. |
|
|
|
* **Shader Management:** Handling SPIR-V and descriptor sets is more involved than GLSL uniform locations. |
|
|
|
* **Maintaining Simplicity:** A core tenet of raylib is its ease of use. The Vulkan backend should ideally not expose Vulkan's complexity to the end-user. |
|
|
|
|
|
|
|
This plan provides a high-level roadmap. Each step, especially the design and implementation of `rlvk`, involves many detailed sub-tasks. |
|
|
|
|
|
|
|
## Vulkan Upgrade Plan for raylib |
|
|
|
|
|
|
|
This document outlines the necessary modifications to integrate Vulkan support into the raylib library, managed by a compile-time flag `GRAPHICS_API_VULKAN`. |
|
|
|
|
|
|
|
### 1. Build System (CMake) |
|
|
|
|
|
|
|
**File: `CMakeLists.txt` (Root)** |
|
|
|
* **Add CMake Option:** |
|
|
|
* Introduce an option `SUPPORT_VULKAN` (default OFF) to enable Vulkan backend. |
|
|
|
```cmake |
|
|
|
option(SUPPORT_VULKAN "Enable Vulkan graphics backend" OFF) |
|
|
|
``` |
|
|
|
* **Find Vulkan SDK:** |
|
|
|
* If `SUPPORT_VULKAN` is ON, use `find_package` to locate the Vulkan SDK. |
|
|
|
```cmake |
|
|
|
if (SUPPORT_VULKAN) |
|
|
|
find_package(Vulkan REQUIRED) |
|
|
|
if (NOT Vulkan_FOUND) |
|
|
|
message(FATAL_ERROR "Vulkan SDK not found, required for SUPPORT_VULKAN option.") |
|
|
|
else() |
|
|
|
message(STATUS "Vulkan SDK found: Headers at ${Vulkan_INCLUDE_DIRS}, Libraries at ${Vulkan_LIBRARIES}") |
|
|
|
endif() |
|
|
|
endif() |
|
|
|
``` |
|
|
|
|
|
|
|
**File: `src/CMakeLists.txt`** |
|
|
|
* **Set Preprocessor Define:** |
|
|
|
* In `CompileDefinitions.cmake` (or directly in `src/CMakeLists.txt` if more appropriate), add `GRAPHICS_API_VULKAN` if `SUPPORT_VULKAN` is ON and Vulkan is found. |
|
|
|
```cmake |
|
|
|
# Inside CompileDefinitions.cmake or src/CMakeLists.txt |
|
|
|
if (SUPPORT_VULKAN AND Vulkan_FOUND) |
|
|
|
target_compile_definitions(raylib PUBLIC GRAPHICS_API_VULKAN) |
|
|
|
# Potentially link Vulkan libraries |
|
|
|
# target_link_libraries(raylib PUBLIC Vulkan::Vulkan) # Modern CMake |
|
|
|
# or target_link_libraries(raylib PUBLIC ${Vulkan_LIBRARIES}) # Older CMake |
|
|
|
endif() |
|
|
|
``` |
|
|
|
* The exact linking method (`Vulkan::Vulkan` vs `Vulkan_LIBRARIES`) depends on how `FindVulkan.cmake` exports its targets. `Vulkan::Vulkan` is preferred if available. |
|
|
|
* **Conditionally Compile Vulkan Source Files:** |
|
|
|
* Add new source files for the Vulkan backend (e.g., `rlgl_vulkan.c`, `rcore_vulkan_glfw.c`) to the `raylib_sources` list conditionally. |
|
|
|
```cmake |
|
|
|
if (SUPPORT_VULKAN AND Vulkan_FOUND) |
|
|
|
list(APPEND raylib_sources |
|
|
|
platforms/rcore_vulkan_glfw.c # Or other platform specific Vulkan file |
|
|
|
rlgl_vulkan.c # Or however rlgl's Vulkan part is named |
|
|
|
) |
|
|
|
# Also ensure Vulkan headers are available |
|
|
|
target_include_directories(raylib PUBLIC $<BUILD_INTERFACE:${Vulkan_INCLUDE_DIRS}>) |
|
|
|
endif() |
|
|
|
``` |
|
|
|
* **Link Vulkan Libraries:** |
|
|
|
* Ensure Vulkan libraries are linked. This might be handled by `LibraryConfigurations.cmake` or directly here. The `target_link_libraries` call mentioned above for preprocessor definitions might already cover this if `Vulkan::Vulkan` is an INTERFACE library that carries its link dependencies. Otherwise, add explicitly: |
|
|
|
```cmake |
|
|
|
if (SUPPORT_VULKAN AND Vulkan_FOUND) |
|
|
|
# If not handled by an INTERFACE library target like Vulkan::Vulkan |
|
|
|
target_link_libraries(raylib PUBLIC ${Vulkan_LIBRARIES}) |
|
|
|
endif() |
|
|
|
``` |
|
|
|
|
|
|
|
**File: `cmake/LibraryConfigurations.cmake`** |
|
|
|
* This file likely contains logic for selecting graphics APIs (OpenGL versions). It will need to be extended: |
|
|
|
* Add checks for `GRAPHICS_API_VULKAN`. |
|
|
|
* If defined, ensure it sets up any necessary Vulkan-specific library paths or flags, and potentially skips/overrides some OpenGL configurations. |
|
|
|
|
|
|
|
### 2. Configuration Header |
|
|
|
|
|
|
|
**File: `src/config.h`** |
|
|
|
* This file might not need explicit changes if `GRAPHICS_API_VULKAN` is purely controlled by CMake. |
|
|
|
* However, for consistency or manual override capabilities, a section could be added: |
|
|
|
```c |
|
|
|
// Module: rlgl - Configuration Flags |
|
|
|
// ... existing flags ... |
|
|
|
// #define GRAPHICS_API_VULKAN 1 |
|
|
|
``` |
|
|
|
* Code within raylib would then check `#if defined(GRAPHICS_API_VULKAN)` |
|
|
|
|
|
|
|
### 3. Graphics Abstraction Layer (`rlgl`) |
|
|
|
|
|
|
|
**File: `src/rlgl.h`** |
|
|
|
* **Include Vulkan Headers:** |
|
|
|
```c |
|
|
|
#if defined(GRAPHICS_API_VULKAN) |
|
|
|
#include <vulkan/vulkan.h> |
|
|
|
// May need platform-specific Vulkan extensions for surfaces (e.g., vulkan_win32.h) |
|
|
|
// These would typically be included in the platform-specific rcore_vulkan_*.c file |
|
|
|
#endif |
|
|
|
``` |
|
|
|
* **Conditional Function Declarations / Implementations:** |
|
|
|
* The existing `rlgl` functions (`rlLoadTexture`, `rlLoadShaderCode`, `rlBegin`, `rlEnd`, `rlDrawRenderBatch`, etc.) will need to either: |
|
|
|
1. Have internal conditional logic: |
|
|
|
```c |
|
|
|
RLAPI void rlBegin(int mode) { |
|
|
|
#if defined(GRAPHICS_API_VULKAN) |
|
|
|
// Vulkan implementation for rlBegin |
|
|
|
#elif defined(GRAPHICS_API_OPENGL_33) |
|
|
|
// OpenGL 3.3 implementation |
|
|
|
#else // GRAPHICS_API_OPENGL_11 |
|
|
|
// OpenGL 1.1 implementation |
|
|
|
#endif |
|
|
|
} |
|
|
|
``` |
|
|
|
2. Or, more cleanly, `rlgl.h` could define function pointers that are assigned during `rlglInit` to point to either OpenGL or Vulkan implementations. This is a more significant refactor but more extensible. |
|
|
|
```c |
|
|
|
// In rlgl.h |
|
|
|
// extern void (*rlBeginImpl)(int mode); |
|
|
|
// #define rlBegin rlBeginImpl |
|
|
|
|
|
|
|
// In rlglInit() or a new rlglInitVulkan() |
|
|
|
// #if defined(GRAPHICS_API_VULKAN) |
|
|
|
// rlBeginImpl = rlBegin_Vulkan; |
|
|
|
// #else |
|
|
|
// rlBeginImpl = rlBegin_OpenGL; |
|
|
|
// #endif |
|
|
|
``` |
|
|
|
* Given raylib's style, the first approach (internal conditional logic with `#if defined()`) is more likely. |
|
|
|
|
|
|
|
**New File: `src/rlgl_vulkan.c` (or integrated into `rlgl.h`)** |
|
|
|
* This file will contain the Vulkan implementations of `rlgl` functions. |
|
|
|
* **`rlglInit_Vulkan(VkInstance instance, VkSurfaceKHR surface)` (or similar signature):** |
|
|
|
* **Physical Device Selection:** Enumerate physical devices, select a suitable one (e.g., discrete GPU with necessary queue families). |
|
|
|
* **Logical Device Creation:** Create `VkDevice` with required queues (graphics, present). |
|
|
|
* **Swapchain Setup:** |
|
|
|
* Query surface capabilities, formats, and present modes. |
|
|
|
* Choose swapchain format, extent, and present mode. |
|
|
|
* Create `VkSwapchainKHR`. |
|
|
|
* Get swapchain images and create `VkImageViews`. |
|
|
|
* **Command Pools & Buffers:** Create command pools and pre-allocate command buffers. |
|
|
|
* **Render Passes:** Create a default `VkRenderPass` compatible with the swapchain image format (for clearing and basic drawing). |
|
|
|
* **Framebuffers:** Create framebuffers for each swapchain image view, associating them with the render pass. |
|
|
|
* **Pipelines:** |
|
|
|
* Create a default graphics pipeline (vertex input, shaders, viewport, rasterizer, MSAA, depth/stencil, color blending). This will require a default SPIR-V vertex and fragment shader. |
|
|
|
* Pipeline layout. |
|
|
|
* **Synchronization Primitives:** Create semaphores and fences for frame rendering synchronization. |
|
|
|
* **Default Resources:** |
|
|
|
* Create a default 1x1 white texture (`VkImage`, `VkDeviceMemory`, `VkImageView`, `VkSampler`). |
|
|
|
* Load/compile default SPIR-V shaders for basic textured/colored drawing. Store their `VkShaderModule` handles. |
|
|
|
* Initialize Vulkan-specific parts of `RLGL.State` or a new `RLGL_VK_State` struct. |
|
|
|
* **`rlglClose_Vulkan()`:** |
|
|
|
* Call `vkDeviceWaitIdle()`. |
|
|
|
* Destroy all Vulkan resources in reverse order of creation (pipelines, framebuffers, render passes, swapchain, device, command pools, default textures/shaders, instance, etc.). |
|
|
|
* **Drawing Functions (`rlBegin`, `rlEnd`, `rlVertex3f`, `rlSetTexture`, etc.):** |
|
|
|
* These will need to manage a Vulkan-specific render batch system. |
|
|
|
* `rlBegin` might start a command buffer recording or select a pipeline. |
|
|
|
* `rlVertex3f` and related functions will populate CPU-side vertex/index buffers. |
|
|
|
* `rlEnd` or `rlDrawRenderBatch` will: |
|
|
|
* Copy CPU vertex/index data to Vulkan staging buffers, then to `VkBuffer` (vertex/index buffers). |
|
|
|
* Acquire next swapchain image. |
|
|
|
* Begin command buffer recording. |
|
|
|
* Begin render pass. |
|
|
|
* Bind pipeline, descriptor sets (for textures, uniforms). |
|
|
|
* Bind vertex/index buffers. |
|
|
|
* Set viewport/scissor. |
|
|
|
* Issue `vkCmdDraw` or `vkCmdDrawIndexed`. |
|
|
|
* End render pass. |
|
|
|
* End command buffer. |
|
|
|
* Submit command buffer to graphics queue. |
|
|
|
* Present swapchain image. |
|
|
|
* **Texture Functions (`rlLoadTexture`, `rlUpdateTexture`, `rlUnloadTexture`):** |
|
|
|
* `rlLoadTexture`: Create `VkImage`, allocate `VkDeviceMemory`, create `VkImageView`, `VkSampler`. Handle data upload via staging buffer. |
|
|
|
* `rlUpdateTexture`: Update `VkImage` data, potentially via staging buffer. |
|
|
|
* `rlUnloadTexture`: Destroy Vulkan image resources. |
|
|
|
* **Shader Functions (`rlLoadShaderFromMemory`, `rlLoadShader`):** |
|
|
|
* Modify to accept SPIR-V bytecode. |
|
|
|
* Create `VkShaderModule` from SPIR-V. |
|
|
|
* Store `VkShaderModule` handles. Pipeline creation will use these. |
|
|
|
* The existing `Shader` struct in raylib might need to be extended or have a Vulkan-specific counterpart to store `VkPipelineLayout`, `VkPipeline`, and descriptor set layouts/pools if shaders manage their own pipelines. |
|
|
|
|
|
|
|
### 4. Core Layer (`rcore`) |
|
|
|
|
|
|
|
**File: `src/rcore.c`** |
|
|
|
* **`InitWindow()`:** |
|
|
|
* Modify to conditionally call `InitPlatformVulkan()` if `GRAPHICS_API_VULKAN` is defined. |
|
|
|
```c |
|
|
|
#if defined(GRAPHICS_API_VULKAN) |
|
|
|
result = InitPlatformVulkan(); // New function in platform layer |
|
|
|
#else |
|
|
|
result = InitPlatform(); // Existing function |
|
|
|
#endif |
|
|
|
``` |
|
|
|
* After platform initialization (which creates Vulkan instance & surface), call `rlglInit_Vulkan(instance, surface)` instead of `rlglInit()`. |
|
|
|
* **`CloseWindow()`:** |
|
|
|
* Modify to conditionally call `ClosePlatformVulkan()`. |
|
|
|
```c |
|
|
|
#if defined(GRAPHICS_API_VULKAN) |
|
|
|
ClosePlatformVulkan(); |
|
|
|
#else |
|
|
|
ClosePlatform(); |
|
|
|
#endif |
|
|
|
``` |
|
|
|
* Call `rlglClose_Vulkan()` instead of `rlglClose()`. |
|
|
|
|
|
|
|
### 5. Platform Layer (`src/platforms/`) |
|
|
|
|
|
|
|
**New File: `src/platforms/rcore_vulkan_glfw.c` (example for GLFW)** |
|
|
|
* This file will handle Vulkan-specific initialization for the GLFW platform. |
|
|
|
* **`InitPlatformVulkan()`:** |
|
|
|
* Call `glfwInit()`. |
|
|
|
* Check for Vulkan support: `glfwVulkanSupported()`. |
|
|
|
* Get required instance extensions: `glfwGetRequiredInstanceExtensions()`. |
|
|
|
* Create `VkInstance` using these extensions and potentially validation layers. |
|
|
|
* Window hints for Vulkan: `glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API)`. |
|
|
|
* Create GLFW window: `glfwCreateWindow()`. Store window handle in `platform.handle`. |
|
|
|
* Create Vulkan surface: `glfwCreateWindowSurface(vkInstance, platform.handle, NULL, &vkSurface)`. |
|
|
|
* Store `vkInstance` and `vkSurface` (perhaps in `PlatformData` struct or pass to `rlglInit_Vulkan`). |
|
|
|
* Call `rlglInit_Vulkan(vkInstance, vkSurface)`. |
|
|
|
* Setup GLFW input callbacks (can be reused from `rcore_desktop_glfw.c`). |
|
|
|
* **`ClosePlatformVulkan()`:** |
|
|
|
* Call `rlglClose_Vulkan()`. |
|
|
|
* Destroy `VkSurfaceKHR` (`vkDestroySurfaceKHR(vkInstance, vkSurface, NULL)`). |
|
|
|
* Destroy `VkInstance` (`vkDestroyInstance(vkInstance, NULL)`). |
|
|
|
* Call `glfwDestroyWindow(platform.handle)`. |
|
|
|
* Call `glfwTerminate()`. |
|
|
|
* **PlatformData Struct:** |
|
|
|
* The existing `PlatformData` struct (if any, or a new one) might need to store `VkInstance` and `VkSurfaceKHR`. |
|
|
|
```c |
|
|
|
// In rcore_vulkan_glfw.c |
|
|
|
typedef struct PlatformDataVulkan { |
|
|
|
GLFWwindow *handle; |
|
|
|
VkInstance instance; |
|
|
|
VkSurfaceKHR surface; |
|
|
|
// Other Vulkan specific platform data if needed |
|
|
|
} PlatformDataVulkan; |
|
|
|
``` |
|
|
|
|
|
|
|
### 6. Shader System and Examples |
|
|
|
|
|
|
|
* **SPIR-V Compilation:** |
|
|
|
* A build step needs to be added to compile GLSL shaders (from `examples/shaders/resources/shaders/glslXXX/`) to SPIR-V. |
|
|
|
* Tools like `glslangValidator` (from Vulkan SDK) can be used for this. |
|
|
|
* Example CMake integration: |
|
|
|
```cmake |
|
|
|
# In examples/CMakeLists.txt or similar |
|
|
|
if (SUPPORT_VULKAN AND Vulkan_FOUND AND GLSLANG_VALIDATOR_EXECUTABLE) |
|
|
|
# Loop through example shaders and compile them |
|
|
|
# add_custom_command(...) |
|
|
|
endif() |
|
|
|
``` |
|
|
|
* **Shader Loading in Examples:** |
|
|
|
* Examples that load shaders will need to be updated to load the compiled SPIR-V versions when the Vulkan backend is active. |
|
|
|
* This might involve path changes or conditional loading based on `GRAPHICS_API_VULKAN`. |
|
|
|
* **Default Shaders in `rlgl`:** |
|
|
|
* The default shaders used internally by `rlgl` (e.g., for `DrawRectangle`, `DrawTexture`) must also be provided in SPIR-V format and loaded by `rlglInit_Vulkan`. |
|
|
|
|
|
|
|
### 7. Memory Management |
|
|
|
|
|
|
|
* Vulkan requires explicit memory management. `rlgl_vulkan.c` will need to handle `VkDeviceMemory` allocations and deallocations for buffers and images. |
|
|
|
* Consider using a Vulkan Memory Allocator library (e.g., VMA from AMD) for more robust and efficient memory management, though for a first pass, direct Vulkan calls can be used. |
|
|
|
|
|
|
|
### 8. Error Handling |
|
|
|
|
|
|
|
* Vulkan API calls return `VkResult`. These should be checked consistently, and errors should be logged using raylib's `TRACELOG`. |
|
|
|
|
|
|
|
This plan provides a high-level overview. Each point, especially within `rlgl_vulkan.c`, involves significant implementation detail. |
|
|
|
The core principle is to abstract Vulkan complexities within `rlgl` and the platform layer, keeping the raylib API consistent for the end-user. |