@ -0,0 +1,140 @@ | |||
/******************************************************************************************* | |||
* | |||
* rPBR [shader] - Bidirectional reflectance distribution function fragment shader | |||
* | |||
* Copyright (c) 2017 Victor Fisac | |||
* | |||
**********************************************************************************************/ | |||
#version 330 | |||
#define MAX_SAMPLES 1024u | |||
// Input vertex attributes (from vertex shader) | |||
in vec2 fragTexCoord; | |||
// Constant values | |||
const float PI = 3.14159265359; | |||
// Output fragment color | |||
out vec4 finalColor; | |||
float DistributionGGX(vec3 N, vec3 H, float roughness); | |||
float RadicalInverse_VdC(uint bits); | |||
vec2 Hammersley(uint i, uint N); | |||
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness); | |||
float GeometrySchlickGGX(float NdotV, float roughness); | |||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness); | |||
vec2 IntegrateBRDF(float NdotV, float roughness); | |||
float DistributionGGX(vec3 N, vec3 H, float roughness) | |||
{ | |||
float a = roughness*roughness; | |||
float a2 = a*a; | |||
float NdotH = max(dot(N, H), 0.0); | |||
float NdotH2 = NdotH*NdotH; | |||
float nom = a2; | |||
float denom = (NdotH2*(a2 - 1.0) + 1.0); | |||
denom = PI*denom*denom; | |||
return nom/denom; | |||
} | |||
float RadicalInverse_VdC(uint bits) | |||
{ | |||
bits = (bits << 16u) | (bits >> 16u); | |||
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); | |||
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); | |||
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); | |||
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); | |||
return float(bits) * 2.3283064365386963e-10; // / 0x100000000 | |||
} | |||
vec2 Hammersley(uint i, uint N) | |||
{ | |||
return vec2(float(i)/float(N), RadicalInverse_VdC(i)); | |||
} | |||
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness) | |||
{ | |||
float a = roughness*roughness; | |||
float phi = 2.0 * PI * Xi.x; | |||
float cosTheta = sqrt((1.0 - Xi.y)/(1.0 + (a*a - 1.0)*Xi.y)); | |||
float sinTheta = sqrt(1.0 - cosTheta*cosTheta); | |||
// Transform from spherical coordinates to cartesian coordinates (halfway vector) | |||
vec3 H = vec3(cos(phi)*sinTheta, sin(phi)*sinTheta, cosTheta); | |||
// Transform from tangent space H vector to world space sample vector | |||
vec3 up = ((abs(N.z) < 0.999) ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0)); | |||
vec3 tangent = normalize(cross(up, N)); | |||
vec3 bitangent = cross(N, tangent); | |||
vec3 sampleVec = tangent*H.x + bitangent*H.y + N*H.z; | |||
return normalize(sampleVec); | |||
} | |||
float GeometrySchlickGGX(float NdotV, float roughness) | |||
{ | |||
// For IBL k is calculated different | |||
float k = (roughness*roughness)/2.0; | |||
float nom = NdotV; | |||
float denom = NdotV*(1.0 - k) + k; | |||
return nom/denom; | |||
} | |||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) | |||
{ | |||
float NdotV = max(dot(N, V), 0.0); | |||
float NdotL = max(dot(N, L), 0.0); | |||
float ggx2 = GeometrySchlickGGX(NdotV, roughness); | |||
float ggx1 = GeometrySchlickGGX(NdotL, roughness); | |||
return ggx1*ggx2; | |||
} | |||
vec2 IntegrateBRDF(float NdotV, float roughness) | |||
{ | |||
vec3 V = vec3(sqrt(1.0 - NdotV*NdotV), 0.0, NdotV); | |||
float A = 0.0; | |||
float B = 0.0; | |||
vec3 N = vec3(0.0, 0.0, 1.0); | |||
for(uint i = 0u; i < MAX_SAMPLES; i++) | |||
{ | |||
// Generate a sample vector that's biased towards the preferred alignment direction (importance sampling) | |||
vec2 Xi = Hammersley(i, MAX_SAMPLES); | |||
vec3 H = ImportanceSampleGGX(Xi, N, roughness); | |||
vec3 L = normalize(2.0*dot(V, H)*H - V); | |||
float NdotL = max(L.z, 0.0); | |||
float NdotH = max(H.z, 0.0); | |||
float VdotH = max(dot(V, H), 0.0); | |||
if (NdotL > 0.0) | |||
{ | |||
float G = GeometrySmith(N, V, L, roughness); | |||
float G_Vis = (G*VdotH)/(NdotH*NdotV); | |||
float Fc = pow(1.0 - VdotH, 5.0); | |||
A += (1.0 - Fc)*G_Vis; | |||
B += Fc*G_Vis; | |||
} | |||
} | |||
// Calculate brdf average sample | |||
A /= float(MAX_SAMPLES); | |||
B /= float(MAX_SAMPLES); | |||
return vec2(A, B); | |||
} | |||
void main() | |||
{ | |||
// Calculate brdf based on texture coordinates | |||
vec2 brdf = IntegrateBRDF(fragTexCoord.x, fragTexCoord.y); | |||
// Calculate final fragment color | |||
finalColor = vec4(brdf.r, brdf.g, 0.0, 1.0); | |||
} |
@ -0,0 +1,25 @@ | |||
/******************************************************************************************* | |||
* | |||
* rPBR [shader] - Bidirectional reflectance distribution function vertex shader | |||
* | |||
* Copyright (c) 2017 Victor Fisac | |||
* | |||
**********************************************************************************************/ | |||
#version 330 | |||
// Input vertex attributes | |||
in vec3 vertexPosition; | |||
in vec2 vertexTexCoord; | |||
// Output vertex attributes (to fragment shader) | |||
out vec2 fragTexCoord; | |||
void main() | |||
{ | |||
// Calculate fragment position based on model transformations | |||
fragTexCoord = vertexTexCoord; | |||
// Calculate final vertex position | |||
gl_Position = vec4(vertexPosition, 1.0); | |||
} |
@ -0,0 +1,38 @@ | |||
/******************************************************************************************* | |||
* | |||
* rPBR [shader] - Equirectangular to cubemap fragment shader | |||
* | |||
* Copyright (c) 2017 Victor Fisac | |||
* | |||
**********************************************************************************************/ | |||
#version 330 | |||
// Input vertex attributes (from vertex shader) | |||
in vec3 fragPos; | |||
// Input uniform values | |||
uniform sampler2D equirectangularMap; | |||
// Output fragment color | |||
out vec4 finalColor; | |||
vec2 SampleSphericalMap(vec3 v) | |||
{ | |||
vec2 uv = vec2(atan(v.z, v.x), asin(v.y)); | |||
uv *= vec2(0.1591, 0.3183); | |||
uv += 0.5; | |||
return uv; | |||
} | |||
void main() | |||
{ | |||
// Normalize local position | |||
vec2 uv = SampleSphericalMap(normalize(fragPos)); | |||
// Fetch color from texture map | |||
vec3 color = texture(equirectangularMap, uv).rgb; | |||
// Calculate final fragment color | |||
finalColor = vec4(color, 1.0); | |||
} |
@ -0,0 +1,28 @@ | |||
/******************************************************************************************* | |||
* | |||
* rPBR [shader] - Equirectangular to cubemap vertex shader | |||
* | |||
* Copyright (c) 2017 Victor Fisac | |||
* | |||
**********************************************************************************************/ | |||
#version 330 | |||
// Input vertex attributes | |||
in vec3 vertexPosition; | |||
// Input uniform values | |||
uniform mat4 projection; | |||
uniform mat4 view; | |||
// Output vertex attributes (to fragment shader) | |||
out vec3 fragPos; | |||
void main() | |||
{ | |||
// Calculate fragment position based on model transformations | |||
fragPos = vertexPosition; | |||
// Calculate final vertex position | |||
gl_Position = projection*view*vec4(vertexPosition, 1.0); | |||
} |
@ -0,0 +1,58 @@ | |||
/******************************************************************************************* | |||
* | |||
* rPBR [shader] - Irradiance cubemap fragment shader | |||
* | |||
* Copyright (c) 2017 Victor Fisac | |||
* | |||
**********************************************************************************************/ | |||
#version 330 | |||
// Input vertex attributes (from vertex shader) | |||
in vec3 fragPos; | |||
// Input uniform values | |||
uniform samplerCube environmentMap; | |||
// Constant values | |||
const float PI = 3.14159265359f; | |||
// Output fragment color | |||
out vec4 finalColor; | |||
void main() | |||
{ | |||
// The sample direction equals the hemisphere's orientation | |||
vec3 normal = normalize(fragPos); | |||
vec3 irradiance = vec3(0.0); | |||
vec3 up = vec3(0.0, 1.0, 0.0); | |||
vec3 right = cross(up, normal); | |||
up = cross(normal, right); | |||
float sampleDelta = 0.025f; | |||
float nrSamples = 0.0f; | |||
for (float phi = 0.0; phi < 2.0*PI; phi += sampleDelta) | |||
{ | |||
for (float theta = 0.0; theta < 0.5*PI; theta += sampleDelta) | |||
{ | |||
// Spherical to cartesian (in tangent space) | |||
vec3 tangentSample = vec3(sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta)); | |||
// tangent space to world | |||
vec3 sampleVec = tangentSample.x*right + tangentSample.y*up + tangentSample.z*normal; | |||
// Fetch color from environment cubemap | |||
irradiance += texture(environmentMap, sampleVec).rgb*cos(theta)*sin(theta); | |||
nrSamples++; | |||
} | |||
} | |||
// Calculate irradiance average value from samples | |||
irradiance = PI*irradiance*(1.0/float(nrSamples)); | |||
// Calculate final fragment color | |||
finalColor = vec4(irradiance, 1.0); | |||
} |
@ -0,0 +1,297 @@ | |||
/******************************************************************************************* | |||
* | |||
* rPBR [shader] - Physically based rendering fragment shader | |||
* | |||
* Copyright (c) 2017 Victor Fisac | |||
* | |||
**********************************************************************************************/ | |||
#version 330 | |||
#define MAX_LIGHTS 4 | |||
#define MAX_REFLECTION_LOD 4.0 | |||
#define MAX_DEPTH_LAYER 20 | |||
#define MIN_DEPTH_LAYER 10 | |||
#define LIGHT_DIRECTIONAL 0 | |||
#define LIGHT_POINT 1 | |||
struct MaterialProperty { | |||
vec3 color; | |||
int useSampler; | |||
sampler2D sampler; | |||
}; | |||
struct Light { | |||
int enabled; | |||
int type; | |||
vec3 position; | |||
vec3 target; | |||
vec4 color; | |||
}; | |||
// Input vertex attributes (from vertex shader) | |||
in vec3 fragPosition; | |||
in vec2 fragTexCoord; | |||
in vec3 fragNormal; | |||
in vec3 fragTangent; | |||
in vec3 fragBinormal; | |||
// Input material values | |||
uniform MaterialProperty albedo; | |||
uniform MaterialProperty normals; | |||
uniform MaterialProperty metalness; | |||
uniform MaterialProperty roughness; | |||
uniform MaterialProperty occlusion; | |||
uniform MaterialProperty emission; | |||
uniform MaterialProperty height; | |||
// Input uniform values | |||
uniform samplerCube irradianceMap; | |||
uniform samplerCube prefilterMap; | |||
uniform sampler2D brdfLUT; | |||
// Input lighting values | |||
uniform Light lights[MAX_LIGHTS]; | |||
// Other uniform values | |||
uniform int renderMode; | |||
uniform vec3 viewPos; | |||
vec2 texCoord; | |||
// Constant values | |||
const float PI = 3.14159265359; | |||
// Output fragment color | |||
out vec4 finalColor; | |||
vec3 ComputeMaterialProperty(MaterialProperty property); | |||
float DistributionGGX(vec3 N, vec3 H, float roughness); | |||
float GeometrySchlickGGX(float NdotV, float roughness); | |||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness); | |||
vec3 fresnelSchlick(float cosTheta, vec3 F0); | |||
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness); | |||
vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir); | |||
vec3 ComputeMaterialProperty(MaterialProperty property) | |||
{ | |||
vec3 result = vec3(0.0, 0.0, 0.0); | |||
if (property.useSampler == 1) result = texture(property.sampler, texCoord).rgb; | |||
else result = property.color; | |||
return result; | |||
} | |||
float DistributionGGX(vec3 N, vec3 H, float roughness) | |||
{ | |||
float a = roughness*roughness; | |||
float a2 = a*a; | |||
float NdotH = max(dot(N, H), 0.0); | |||
float NdotH2 = NdotH*NdotH; | |||
float nom = a2; | |||
float denom = (NdotH2*(a2 - 1.0) + 1.0); | |||
denom = PI*denom*denom; | |||
return nom/denom; | |||
} | |||
float GeometrySchlickGGX(float NdotV, float roughness) | |||
{ | |||
float r = (roughness + 1.0); | |||
float k = r*r/8.0; | |||
float nom = NdotV; | |||
float denom = NdotV*(1.0 - k) + k; | |||
return nom/denom; | |||
} | |||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) | |||
{ | |||
float NdotV = max(dot(N, V), 0.0); | |||
float NdotL = max(dot(N, L), 0.0); | |||
float ggx2 = GeometrySchlickGGX(NdotV, roughness); | |||
float ggx1 = GeometrySchlickGGX(NdotL, roughness); | |||
return ggx1*ggx2; | |||
} | |||
vec3 fresnelSchlick(float cosTheta, vec3 F0) | |||
{ | |||
return F0 + (1.0 - F0)*pow(1.0 - cosTheta, 5.0); | |||
} | |||
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness) | |||
{ | |||
return F0 + (max(vec3(1.0 - roughness), F0) - F0)*pow(1.0 - cosTheta, 5.0); | |||
} | |||
vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir) | |||
{ | |||
// Calculate the number of depth layers and calculate the size of each layer | |||
float numLayers = mix(MAX_DEPTH_LAYER, MIN_DEPTH_LAYER, abs(dot(vec3(0.0, 0.0, 1.0), viewDir))); | |||
float layerDepth = 1.0/numLayers; | |||
// Calculate depth of current layer | |||
float currentLayerDepth = 0.0; | |||
// Calculate the amount to shift the texture coordinates per layer (from vector P) | |||
// Note: height amount is stored in height material attribute color R channel (sampler use is independent) | |||
vec2 P = viewDir.xy*height.color.r; | |||
vec2 deltaTexCoords = P/numLayers; | |||
// Store initial texture coordinates and depth values | |||
vec2 currentTexCoords = texCoords; | |||
float currentDepthMapValue = texture(height.sampler, currentTexCoords).r; | |||
while (currentLayerDepth < currentDepthMapValue) | |||
{ | |||
// Shift texture coordinates along direction of P | |||
currentTexCoords -= deltaTexCoords; | |||
// Get depth map value at current texture coordinates | |||
currentDepthMapValue = texture(height.sampler, currentTexCoords).r; | |||
// Get depth of next layer | |||
currentLayerDepth += layerDepth; | |||
} | |||
// Get texture coordinates before collision (reverse operations) | |||
vec2 prevTexCoords = currentTexCoords + deltaTexCoords; | |||
// Get depth after and before collision for linear interpolation | |||
float afterDepth = currentDepthMapValue - currentLayerDepth; | |||
float beforeDepth = texture(height.sampler, prevTexCoords).r - currentLayerDepth + layerDepth; | |||
// Interpolation of texture coordinates | |||
float weight = afterDepth/(afterDepth - beforeDepth); | |||
vec2 finalTexCoords = prevTexCoords*weight + currentTexCoords*(1.0 - weight); | |||
return finalTexCoords; | |||
} | |||
void main() | |||
{ | |||
// Calculate TBN and RM matrices | |||
mat3 TBN = transpose(mat3(fragTangent, fragBinormal, fragNormal)); | |||
// Calculate lighting required attributes | |||
vec3 normal = normalize(fragNormal); | |||
vec3 view = normalize(viewPos - fragPosition); | |||
vec3 refl = reflect(-view, normal); | |||
// Check if parallax mapping is enabled and calculate texture coordinates to use based on height map | |||
// NOTE: remember that 'texCoord' variable must be assigned before calling any ComputeMaterialProperty() function | |||
if (height.useSampler == 1) texCoord = ParallaxMapping(fragTexCoord, view); | |||
else texCoord = fragTexCoord; // Use default texture coordinates | |||
// Fetch material values from texture sampler or color attributes | |||
vec3 color = ComputeMaterialProperty(albedo); | |||
vec3 metal = ComputeMaterialProperty(metalness); | |||
vec3 rough = ComputeMaterialProperty(roughness); | |||
vec3 emiss = ComputeMaterialProperty(emission); | |||
vec3 ao = ComputeMaterialProperty(occlusion); | |||
// Check if normal mapping is enabled | |||
if (normals.useSampler == 1) | |||
{ | |||
// Fetch normal map color and transform lighting values to tangent space | |||
normal = ComputeMaterialProperty(normals); | |||
normal = normalize(normal*2.0 - 1.0); | |||
normal = normalize(normal*TBN); | |||
// Convert tangent space normal to world space due to cubemap reflection calculations | |||
refl = normalize(reflect(-view, normal)); | |||
} | |||
// Calculate reflectance at normal incidence | |||
vec3 F0 = vec3(0.04); | |||
F0 = mix(F0, color, metal.r); | |||
// Calculate lighting for all lights | |||
vec3 Lo = vec3(0.0); | |||
vec3 lightDot = vec3(0.0); | |||
for (int i = 0; i < MAX_LIGHTS; i++) | |||
{ | |||
if (lights[i].enabled == 1) | |||
{ | |||
// Calculate per-light radiance | |||
vec3 light = vec3(0.0); | |||
vec3 radiance = lights[i].color.rgb; | |||
if (lights[i].type == LIGHT_DIRECTIONAL) light = -normalize(lights[i].target - lights[i].position); | |||
else if (lights[i].type == LIGHT_POINT) | |||
{ | |||
light = normalize(lights[i].position - fragPosition); | |||
float distance = length(lights[i].position - fragPosition); | |||
float attenuation = 1.0/(distance*distance); | |||
radiance *= attenuation; | |||
} | |||
// Cook-torrance BRDF | |||
vec3 high = normalize(view + light); | |||
float NDF = DistributionGGX(normal, high, rough.r); | |||
float G = GeometrySmith(normal, view, light, rough.r); | |||
vec3 F = fresnelSchlick(max(dot(high, view), 0.0), F0); | |||
vec3 nominator = NDF*G*F; | |||
float denominator = 4*max(dot(normal, view), 0.0)*max(dot(normal, light), 0.0) + 0.001; | |||
vec3 brdf = nominator/denominator; | |||
// Store to kS the fresnel value and calculate energy conservation | |||
vec3 kS = F; | |||
vec3 kD = vec3(1.0) - kS; | |||
// Multiply kD by the inverse metalness such that only non-metals have diffuse lighting | |||
kD *= 1.0 - metal.r; | |||
// Scale light by dot product between normal and light direction | |||
float NdotL = max(dot(normal, light), 0.0); | |||
// Add to outgoing radiance Lo | |||
// Note: BRDF is already multiplied by the Fresnel so it doesn't need to be multiplied again | |||
Lo += (kD*color/PI + brdf)*radiance*NdotL*lights[i].color.a; | |||
lightDot += radiance*NdotL + brdf*lights[i].color.a; | |||
} | |||
} | |||
// Calculate ambient lighting using IBL | |||
vec3 F = fresnelSchlickRoughness(max(dot(normal, view), 0.0), F0, rough.r); | |||
vec3 kS = F; | |||
vec3 kD = 1.0 - kS; | |||
kD *= 1.0 - metal.r; | |||
// Calculate indirect diffuse | |||
vec3 irradiance = texture(irradianceMap, fragNormal).rgb; | |||
vec3 diffuse = color*irradiance; | |||
// Sample both the prefilter map and the BRDF lut and combine them together as per the Split-Sum approximation | |||
vec3 prefilterColor = textureLod(prefilterMap, refl, rough.r*MAX_REFLECTION_LOD).rgb; | |||
vec2 brdf = texture(brdfLUT, vec2(max(dot(normal, view), 0.0), rough.r)).rg; | |||
vec3 reflection = prefilterColor*(F*brdf.x + brdf.y); | |||
// Calculate final lighting | |||
vec3 ambient = (kD*diffuse + reflection)*ao; | |||
// Calculate fragment color based on render mode | |||
vec3 fragmentColor = ambient + Lo + emiss; // Physically Based Rendering | |||
if (renderMode == 1) fragmentColor = color; // Albedo | |||
else if (renderMode == 2) fragmentColor = normal; // Normals | |||
else if (renderMode == 3) fragmentColor = metal; // Metalness | |||
else if (renderMode == 4) fragmentColor = rough; // Roughness | |||
else if (renderMode == 5) fragmentColor = ao; // Ambient Occlusion | |||
else if (renderMode == 6) fragmentColor = emiss; // Emission | |||
else if (renderMode == 7) fragmentColor = lightDot; // Lighting | |||
else if (renderMode == 8) fragmentColor = kS; // Fresnel | |||
else if (renderMode == 9) fragmentColor = irradiance; // Irradiance | |||
else if (renderMode == 10) fragmentColor = reflection; // Reflection | |||
// Apply HDR tonemapping | |||
fragmentColor = fragmentColor/(fragmentColor + vec3(1.0)); | |||
// Apply gamma correction | |||
fragmentColor = pow(fragmentColor, vec3(1.0/2.2)); | |||
// Calculate final fragment color | |||
finalColor = vec4(fragmentColor, 1.0); | |||
} |
@ -0,0 +1,49 @@ | |||
/******************************************************************************************* | |||
* | |||
* rPBR [shader] - Physically based rendering vertex shader | |||
* | |||
* Copyright (c) 2017 Victor Fisac | |||
* | |||
**********************************************************************************************/ | |||
#version 330 | |||
// Input vertex attributes | |||
in vec3 vertexPosition; | |||
in vec2 vertexTexCoord; | |||
in vec3 vertexNormal; | |||
in vec3 vertexTangent; | |||
// Input uniform values | |||
uniform mat4 mvpMatrix; | |||
uniform mat4 mMatrix; | |||
// Output vertex attributes (to fragment shader) | |||
out vec3 fragPosition; | |||
out vec2 fragTexCoord; | |||
out vec3 fragNormal; | |||
out vec3 fragTangent; | |||
out vec3 fragBinormal; | |||
void main() | |||
{ | |||
// Calculate binormal from vertex normal and tangent | |||
vec3 vertexBinormal = cross(vertexNormal, vertexTangent); | |||
// Calculate fragment normal based on normal transformations | |||
mat3 normalMatrix = transpose(inverse(mat3(mMatrix))); | |||
// Calculate fragment position based on model transformations | |||
fragPosition = vec3(mMatrix*vec4(vertexPosition, 1.0f)); | |||
// Send vertex attributes to fragment shader | |||
fragTexCoord = vertexTexCoord; | |||
fragNormal = normalize(normalMatrix*vertexNormal); | |||
fragTangent = normalize(normalMatrix*vertexTangent); | |||
fragTangent = normalize(fragTangent - dot(fragTangent, fragNormal)*fragNormal); | |||
fragBinormal = normalize(normalMatrix*vertexBinormal); | |||
fragBinormal = cross(fragNormal, fragTangent); | |||
// Calculate final vertex position | |||
gl_Position = mvpMatrix*vec4(vertexPosition, 1.0); | |||
} |
@ -0,0 +1,120 @@ | |||
/******************************************************************************************* | |||
* | |||
* rPBR [shader] - Prefiltered environment for reflections fragment shader | |||
* | |||
* Copyright (c) 2017 Victor Fisac | |||
* | |||
**********************************************************************************************/ | |||
#version 330 | |||
#define MAX_SAMPLES 1024u | |||
#define CUBEMAP_RESOLUTION 1024.0 | |||
// Input vertex attributes (from vertex shader) | |||
in vec3 fragPos; | |||
// Input uniform values | |||
uniform samplerCube environmentMap; | |||
uniform float roughness; | |||
// Constant values | |||
const float PI = 3.14159265359f; | |||
// Output fragment color | |||
out vec4 finalColor; | |||
float DistributionGGX(vec3 N, vec3 H, float roughness); | |||
float RadicalInverse_VdC(uint bits); | |||
vec2 Hammersley(uint i, uint N); | |||
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness); | |||
float DistributionGGX(vec3 N, vec3 H, float roughness) | |||
{ | |||
float a = roughness*roughness; | |||
float a2 = a*a; | |||
float NdotH = max(dot(N, H), 0.0); | |||
float NdotH2 = NdotH*NdotH; | |||
float nom = a2; | |||
float denom = (NdotH2*(a2 - 1.0) + 1.0); | |||
denom = PI*denom*denom; | |||
return nom/denom; | |||
} | |||
float RadicalInverse_VdC(uint bits) | |||
{ | |||
bits = (bits << 16u) | (bits >> 16u); | |||
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); | |||
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); | |||
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); | |||
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); | |||
return float(bits) * 2.3283064365386963e-10; // / 0x100000000 | |||
} | |||
vec2 Hammersley(uint i, uint N) | |||
{ | |||
return vec2(float(i)/float(N), RadicalInverse_VdC(i)); | |||
} | |||
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness) | |||
{ | |||
float a = roughness*roughness; | |||
float phi = 2.0 * PI * Xi.x; | |||
float cosTheta = sqrt((1.0 - Xi.y)/(1.0 + (a*a - 1.0)*Xi.y)); | |||
float sinTheta = sqrt(1.0 - cosTheta*cosTheta); | |||
// Transform from spherical coordinates to cartesian coordinates (halfway vector) | |||
vec3 H = vec3(cos(phi)*sinTheta, sin(phi)*sinTheta, cosTheta); | |||
// Transform from tangent space H vector to world space sample vector | |||
vec3 up = ((abs(N.z) < 0.999) ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0)); | |||
vec3 tangent = normalize(cross(up, N)); | |||
vec3 bitangent = cross(N, tangent); | |||
vec3 sampleVec = tangent*H.x + bitangent*H.y + N*H.z; | |||
return normalize(sampleVec); | |||
} | |||
void main() | |||
{ | |||
// Make the simplyfying assumption that V equals R equals the normal | |||
vec3 N = normalize(fragPos); | |||
vec3 R = N; | |||
vec3 V = R; | |||
vec3 prefilteredColor = vec3(0.0); | |||
float totalWeight = 0.0; | |||
for (uint i = 0u; i < MAX_SAMPLES; i++) | |||
{ | |||
// Generate a sample vector that's biased towards the preferred alignment direction (importance sampling) | |||
vec2 Xi = Hammersley(i, MAX_SAMPLES); | |||
vec3 H = ImportanceSampleGGX(Xi, N, roughness); | |||
vec3 L = normalize(2.0*dot(V, H)*H - V); | |||
float NdotL = max(dot(N, L), 0.0); | |||
if(NdotL > 0.0) | |||
{ | |||
// Sample from the environment's mip level based on roughness/pdf | |||
float D = DistributionGGX(N, H, roughness); | |||
float NdotH = max(dot(N, H), 0.0); | |||
float HdotV = max(dot(H, V), 0.0); | |||
float pdf = D*NdotH/(4.0*HdotV) + 0.0001; | |||
float resolution = CUBEMAP_RESOLUTION; | |||
float saTexel = 4.0*PI/(6.0*resolution*resolution); | |||
float saSample = 1.0/(float(MAX_SAMPLES)*pdf + 0.0001); | |||
float mipLevel = ((roughness == 0.0) ? 0.0 : 0.5*log2(saSample/saTexel)); | |||
prefilteredColor += textureLod(environmentMap, L, mipLevel).rgb*NdotL; | |||
totalWeight += NdotL; | |||
} | |||
} | |||
// Calculate prefilter average color | |||
prefilteredColor = prefilteredColor/totalWeight; | |||
// Calculate final fragment color | |||
finalColor = vec4(prefilteredColor, 1.0); | |||
} |
@ -0,0 +1,31 @@ | |||
/******************************************************************************************* | |||
* | |||
* rPBR [shader] - Background skybox fragment shader | |||
* | |||
* Copyright (c) 2017 Victor Fisac | |||
* | |||
**********************************************************************************************/ | |||
#version 330 | |||
// Input vertex attributes (from vertex shader) | |||
in vec3 fragPos; | |||
// Input uniform values | |||
uniform samplerCube environmentMap; | |||
// Output fragment color | |||
out vec4 finalColor; | |||
void main() | |||
{ | |||
// Fetch color from texture map | |||
vec3 color = texture(environmentMap, fragPos).rgb; | |||
// Apply gamma correction | |||
color = color/(color + vec3(1.0)); | |||
color = pow(color, vec3(1.0/2.2)); | |||
// Calculate final fragment color | |||
finalColor = vec4(color, 1.0); | |||
} |
@ -0,0 +1,32 @@ | |||
/******************************************************************************************* | |||
* | |||
* rPBR [shader] - Background skybox vertex shader | |||
* | |||
* Copyright (c) 2017 Victor Fisac | |||
* | |||
**********************************************************************************************/ | |||
#version 330 | |||
// Input vertex attributes | |||
in vec3 vertexPosition; | |||
// Input uniform values | |||
uniform mat4 projection; | |||
uniform mat4 view; | |||
// Output vertex attributes (to fragment shader) | |||
out vec3 fragPos; | |||
void main() | |||
{ | |||
// Calculate fragment position based on model transformations | |||
fragPos = vertexPosition; | |||
// Remove translation from the view matrix | |||
mat4 rotView = mat4(mat3(view)); | |||
vec4 clipPos = projection*rotView*vec4(vertexPosition, 1.0); | |||
// Calculate final vertex position | |||
gl_Position = clipPos.xyww; | |||
} |