Selaa lähdekoodia

Convert physac module from static steps to fixed time steps

Old physics update system used a static number of steps to calculate
physics (450 for desktop and 64 for android). It was too much and it was
limited by target frame time...

Now physics update runs in a secondary thread using a fixed delta time
value to update steps. Collisions are perfectly detected and resolved
and performance has been improved so much.
pull/129/head
victorfisac 8 vuotta sitten
vanhempi
commit
c10c49e44f
1 muutettua tiedostoa jossa 296 lisäystä ja 305 poistoa
  1. +296
    -305
      src/physac.h

+ 296
- 305
src/physac.h Näytä tiedosto

@ -146,7 +146,7 @@ typedef struct PhysicBodyData {
// Module Functions Declaration
//----------------------------------------------------------------------------------
PHYSACDEF void InitPhysics(Vector2 gravity); // Initializes pointers array (just pointers, fixed size)
PHYSACDEF void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
PHYSACDEF void UpdatePhysics(kt">double deltaTime); // Update physic objects, calculating physic behaviours and collisions detection
PHYSACDEF void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
PHYSACDEF PhysicBody CreatePhysicBody(Vector2 position, float rotation, Vector2 scale); // Create a new physic body dinamically, initialize it and add to pool
@ -182,7 +182,7 @@ PHYSACDEF Rectangle TransformToRectangle(Transform transform);
// Defines and Macros
//----------------------------------------------------------------------------------
#define MAX_PHYSIC_BODIES 256 // Maximum available physic bodies slots in bodies pool
#define PHYSICS_STEPS 64 // Physics update steps per frame for improved collision-detection
#define PHYSICS_TIMESTEP 0.016666 // Physics fixed time step (1/fps)
#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
@ -218,376 +218,367 @@ PHYSACDEF void InitPhysics(Vector2 gravity)
}
// Update physic objects, calculating physic behaviours and collisions detection
PHYSACDEF void UpdatePhysics()
PHYSACDEF void UpdatePhysics(kt">double deltaTime)
{
// Reset all physic objects is grounded state
for (int i = 0; i < physicBodiesCount; i++) physicBodies[i]->rigidbody.isGrounded = false;
for (int steps = 0; steps < PHYSICS_STEPS; steps++)
for (int i = 0; i < physicBodiesCount; i++)
{
for (int i = 0; i < physicBodiesCount; i++)
if (physicBodies[i]->enabled)
{
if (physicBodies[i]->enabled)
// Update physic behaviour
if (physicBodies[i]->rigidbody.enabled)
{
// Update physic behaviour
if (physicBodies[i]->rigidbody.enabled)
// Apply friction to acceleration in X axis
if (physicBodies[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x -= physicBodies[i]->rigidbody.friction*deltaTime;
else if (physicBodies[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x += physicBodies[i]->rigidbody.friction*deltaTime;
else physicBodies[i]->rigidbody.acceleration.x = 0.0f;
// Apply friction to acceleration in Y axis
if (physicBodies[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y -= physicBodies[i]->rigidbody.friction*deltaTime;
else if (physicBodies[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y += physicBodies[i]->rigidbody.friction*deltaTime;
else physicBodies[i]->rigidbody.acceleration.y = 0.0f;
// Apply friction to velocity in X axis
if (physicBodies[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x -= physicBodies[i]->rigidbody.friction*deltaTime;
else if (physicBodies[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.friction*deltaTime;
else physicBodies[i]->rigidbody.velocity.x = 0.0f;
// Apply friction to velocity in Y axis
if (physicBodies[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y -= physicBodies[i]->rigidbody.friction*deltaTime;
else if (physicBodies[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.friction*deltaTime;
else physicBodies[i]->rigidbody.velocity.y = 0.0f;
// Apply gravity to velocity
if (physicBodies[i]->rigidbody.applyGravity)
{
// Apply friction to acceleration in X axis
if (physicBodies[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicBodies[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else physicBodies[i]->rigidbody.acceleration.x = 0.0f;
// Apply friction to acceleration in Y axis
if (physicBodies[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicBodies[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else physicBodies[i]->rigidbody.acceleration.y = 0.0f;
// Apply friction to velocity in X axis
if (physicBodies[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicBodies[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else physicBodies[i]->rigidbody.velocity.x = 0.0f;
// Apply friction to velocity in Y axis
if (physicBodies[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicBodies[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else physicBodies[i]->rigidbody.velocity.y = 0.0f;
// Apply gravity to velocity
if (physicBodies[i]->rigidbody.applyGravity)
{
physicBodies[i]->rigidbody.velocity.x += gravityForce.x/PHYSICS_STEPS;
physicBodies[i]->rigidbody.velocity.y += gravityForce.y/PHYSICS_STEPS;
}
// Apply acceleration to velocity
physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.acceleration.y/PHYSICS_STEPS;
// Apply velocity to position
physicBodies[i]->transform.position.x += physicBodies[i]->rigidbody.velocity.x/PHYSICS_STEPS;
physicBodies[i]->transform.position.y -= physicBodies[i]->rigidbody.velocity.y/PHYSICS_STEPS;
physicBodies[i]->rigidbody.velocity.x += gravityForce.x*deltaTime;
physicBodies[i]->rigidbody.velocity.y += gravityForce.y*deltaTime;
}
// Update collision detection
if (physicBodies[i]->collider.enabled)
// Apply acceleration to velocity
physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.acceleration.x*deltaTime;
physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.acceleration.y*deltaTime;
// Apply velocity to position
physicBodies[i]->transform.position.x += physicBodies[i]->rigidbody.velocity.x*deltaTime;
physicBodies[i]->transform.position.y -= physicBodies[i]->rigidbody.velocity.y*deltaTime;
}
// Update collision detection
if (physicBodies[i]->collider.enabled)
{
// Update collider bounds
physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
// Check collision with other colliders
for (int k = 0; k < physicBodiesCount; k++)
{
// Update collider bounds
physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
// Check collision with other colliders
for (int k = 0; k < physicBodiesCount; k++)
if (physicBodies[k]->collider.enabled && i != k)
{
if (physicBodies[k]->collider.enabled && i != k)
// Resolve physic collision
// NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
// and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
// 1. Calculate collision normal
// -------------------------------------------------------------------------------------------------------------------------------------
// Define collision contact normal, direction and penetration depth
Vector2 contactNormal = { 0.0f, 0.0f };
Vector2 direction = { 0.0f, 0.0f };
float penetrationDepth = 0.0f;
switch (physicBodies[i]->collider.type)
{
// Resolve physic collision
// NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
// and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
// 1. Calculate collision normal
// -------------------------------------------------------------------------------------------------------------------------------------
// Define collision contact normal, direction and penetration depth
Vector2 contactNormal = { 0.0f, 0.0f };
Vector2 direction = { 0.0f, 0.0f };
float penetrationDepth = 0.0f;
switch (physicBodies[i]->collider.type)
case COLLIDER_RECTANGLE:
{
case COLLIDER_RECTANGLE:
switch (physicBodies[k]->collider.type)
{
switch (physicBodies[k]->collider.type)
case COLLIDER_RECTANGLE:
{
case COLLIDER_RECTANGLE:
// Check if colliders are overlapped
if (CheckCollisionRecs(physicBodies[i]->collider.bounds, physicBodies[k]->collider.bounds))
{
// Check if colliders are overlapped
if (CheckCollisionRecs(physicBodies[i]->collider.bounds, physicBodies[k]->collider.bounds))
// Calculate direction vector from i to k
direction.x = (physicBodies[k]->transform.position.x + physicBodies[k]->transform.scale.x/2) - (physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2);
direction.y = (physicBodies[k]->transform.position.y + physicBodies[k]->transform.scale.y/2) - (physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2);
// Define overlapping and penetration attributes
Vector2 overlap;
// Calculate overlap on X axis
overlap.x = (physicBodies[i]->transform.scale.x + physicBodies[k]->transform.scale.x)/2 - abs(direction.x);
// SAT test on X axis
if (overlap.x > 0.0f)
{
// Calculate direction vector from i to k
direction.x = (physicBodies[k]->transform.position.x + physicBodies[k]->transform.scale.x/2) - (physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2);
direction.y = (physicBodies[k]->transform.position.y + physicBodies[k]->transform.scale.y/2) - (physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2);
// Define overlapping and penetration attributes
Vector2 overlap;
// Calculate overlap on X axis
overlap.x = (physicBodies[i]->transform.scale.x + physicBodies[k]->transform.scale.x)/2 - abs(direction.x);
// Calculate overlap on Y axis
overlap.y = (physicBodies[i]->transform.scale.y + physicBodies[k]->transform.scale.y)/2 - abs(direction.y);
// SAT test on X axis
if (overlap.x > 0.0f)
// SAT test on Y axis
if (overlap.y > 0.0f)
{
// Calculate overlap on Y axis
overlap.y = (physicBodies[i]->transform.scale.y + physicBodies[k]->transform.scale.y)/2 - abs(direction.y);
// SAT test on Y axis
if (overlap.y > 0.0f)
// Find out which axis is axis of least penetration
if (overlap.y > overlap.x)
{
// Point towards k knowing that direction points from i to k
if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
else contactNormal = (Vector2){ 1.0f, 0.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.x;
}
else
{
// Find out which axis is axis of least penetration
if (overlap.y > overlap.x)
{
// Point towards k knowing that direction points from i to k
if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
else contactNormal = (Vector2){ 1.0f, 0.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.x;
}
else
{
// Point towards k knowing that direction points from i to k
if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
else contactNormal = (Vector2){ 0.0f, -1.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.y;
}
// Point towards k knowing that direction points from i to k
if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
else contactNormal = (Vector2){ 0.0f, -1.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.y;
}
}
}
} break;
case COLLIDER_CIRCLE:
}
} break;
case COLLIDER_CIRCLE:
{
if (CheckCollisionCircleRec(physicBodies[k]->transform.position, physicBodies[k]->collider.radius, physicBodies[i]->collider.bounds))
{
if (CheckCollisionCircleRec(physicBodies[k]->transform.position, physicBodies[k]->collider.radius, physicBodies[i]->collider.bounds))
// Calculate direction vector between circles
direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2;
direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2;
// Calculate closest point on rectangle to circle
Vector2 closestPoint = { 0.0f, 0.0f };
if (direction.x > 0.0f) closestPoint.x = physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width;
else closestPoint.x = physicBodies[i]->collider.bounds.x;
if (direction.y > 0.0f) closestPoint.y = physicBodies[i]->collider.bounds.y + physicBodies[i]->collider.bounds.height;
else closestPoint.y = physicBodies[i]->collider.bounds.y;
// Check if the closest point is inside the circle
if (CheckCollisionPointCircle(closestPoint, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
{
// Calculate direction vector between circles
direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2;
direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2;
// Calculate closest point on rectangle to circle
Vector2 closestPoint = { 0.0f, 0.0f };
if (direction.x > 0.0f) closestPoint.x = physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width;
else closestPoint.x = physicBodies[i]->collider.bounds.x;
// Recalculate direction based on closest point position
direction.x = physicBodies[k]->transform.position.x - closestPoint.x;
direction.y = physicBodies[k]->transform.position.y - closestPoint.y;
float distance = Vector2Length(direction);
if (direction.y > 0.0f) closestPoint.y = physicBodies[i]->collider.bounds.y + physicBodies[i]->collider.bounds.height;
else closestPoint.y = physicBodies[i]->collider.bounds.y;
// Calculate final contact normal
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
// Check if the closest point is inside the circle
if (CheckCollisionPointCircle(closestPoint, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
// Calculate penetration depth
penetrationDepth = physicBodies[k]->collider.radius - distance;
}
else
{
if (abs(direction.y) < abs(direction.x))
{
// Recalculate direction based on closest point position
direction.x = physicBodies[k]->transform.position.x - closestPoint.x;
direction.y = physicBodies[k]->transform.position.y - closestPoint.y;
float distance = Vector2Length(direction);
// Calculate final contact normal
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
// Calculate penetration depth
penetrationDepth = physicBodies[k]->collider.radius - distance;
if (direction.y > 0.0f)
{
contactNormal = (Vector2){ 0.0f, -1.0f };
penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y - physicBodies[k]->collider.radius);
}
else
{
contactNormal = (Vector2){ 0.0f, 1.0f };
penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y + physicBodies[k]->collider.radius);
}
}
else
{
if (abs(direction.y) < abs(direction.x))
// Calculate final contact normal
if (direction.x > 0.0f)
{
// Calculate final contact normal
if (direction.y > 0.0f)
{
contactNormal = (Vector2){ 0.0f, -1.0f };
penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y - physicBodies[k]->collider.radius);
}
else
{
contactNormal = (Vector2){ 0.0f, 1.0f };
penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y + physicBodies[k]->collider.radius);
}
contactNormal = (Vector2){ 1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[k]->transform.position.x + physicBodies[k]->collider.radius - physicBodies[i]->collider.bounds.x);
}
else
else
{
// Calculate final contact normal
if (direction.x > 0.0f)
{
contactNormal = (Vector2){ 1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[k]->transform.position.x + physicBodies[k]->collider.radius - physicBodies[i]->collider.bounds.x);
}
else
{
contactNormal = (Vector2){ -1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width - physicBodies[k]->transform.position.x - physicBodies[k]->collider.radius);
}
contactNormal = (Vector2){ -1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width - physicBodies[k]->transform.position.x - physicBodies[k]->collider.radius);
}
}
}
} break;
}
} break;
case COLLIDER_CIRCLE:
}
} break;
}
} break;
case COLLIDER_CIRCLE:
{
switch (physicBodies[k]->collider.type)
{
switch (physicBodies[k]->collider.type)
case COLLIDER_RECTANGLE:
{
case COLLIDER_RECTANGLE:
if (CheckCollisionCircleRec(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->collider.bounds))
{
if (CheckCollisionCircleRec(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->collider.bounds))
// Calculate direction vector between circles
direction.x = physicBodies[k]->transform.position.x + physicBodies[i]->transform.scale.x/2 - physicBodies[i]->transform.position.x;
direction.y = physicBodies[k]->transform.position.y + physicBodies[i]->transform.scale.y/2 - physicBodies[i]->transform.position.y;
// Calculate closest point on rectangle to circle
Vector2 closestPoint = { 0.0f, 0.0f };
if (direction.x > 0.0f) closestPoint.x = physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width;
else closestPoint.x = physicBodies[k]->collider.bounds.x;
if (direction.y > 0.0f) closestPoint.y = physicBodies[k]->collider.bounds.y + physicBodies[k]->collider.bounds.height;
else closestPoint.y = physicBodies[k]->collider.bounds.y;
// Check if the closest point is inside the circle
if (CheckCollisionPointCircle(closestPoint, physicBodies[i]->transform.position, physicBodies[i]->collider.radius))
{
// Calculate direction vector between circles
direction.x = physicBodies[k]->transform.position.x + physicBodies[i]->transform.scale.x/2 - physicBodies[i]->transform.position.x;
direction.y = physicBodies[k]->transform.position.y + physicBodies[i]->transform.scale.y/2 - physicBodies[i]->transform.position.y;
// Calculate closest point on rectangle to circle
Vector2 closestPoint = { 0.0f, 0.0f };
if (direction.x > 0.0f) closestPoint.x = physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width;
else closestPoint.x = physicBodies[k]->collider.bounds.x;
// Recalculate direction based on closest point position
direction.x = physicBodies[i]->transform.position.x - closestPoint.x;
direction.y = physicBodies[i]->transform.position.y - closestPoint.y;
float distance = Vector2Length(direction);
if (direction.y > 0.0f) closestPoint.y = physicBodies[k]->collider.bounds.y + physicBodies[k]->collider.bounds.height;
else closestPoint.y = physicBodies[k]->collider.bounds.y;
// Calculate final contact normal
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
// Check if the closest point is inside the circle
if (CheckCollisionPointCircle(closestPoint, physicBodies[i]->transform.position, physicBodies[i]->collider.radius))
// Calculate penetration depth
penetrationDepth = physicBodies[k]->collider.radius - distance;
}
else
{
if (abs(direction.y) < abs(direction.x))
{
// Recalculate direction based on closest point position
direction.x = physicBodies[i]->transform.position.x - closestPoint.x;
direction.y = physicBodies[i]->transform.position.y - closestPoint.y;
float distance = Vector2Length(direction);
// Calculate final contact normal
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
// Calculate penetration depth
penetrationDepth = physicBodies[k]->collider.radius - distance;
if (direction.y > 0.0f)
{
contactNormal = (Vector2){ 0.0f, -1.0f };
penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y - physicBodies[i]->collider.radius);
}
else
{
contactNormal = (Vector2){ 0.0f, 1.0f };
penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y + physicBodies[i]->collider.radius);
}
}
else
{
if (abs(direction.y) < abs(direction.x))
// Calculate final contact normal and penetration depth
if (direction.x > 0.0f)
{
// Calculate final contact normal
if (direction.y > 0.0f)
{
contactNormal = (Vector2){ 0.0f, -1.0f };
penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y - physicBodies[i]->collider.radius);
}
else
{
contactNormal = (Vector2){ 0.0f, 1.0f };
penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y + physicBodies[i]->collider.radius);
}
contactNormal = (Vector2){ 1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[i]->transform.position.x + physicBodies[i]->collider.radius - physicBodies[k]->collider.bounds.x);
}
else
else
{
// Calculate final contact normal and penetration depth
if (direction.x > 0.0f)
{
contactNormal = (Vector2){ 1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[i]->transform.position.x + physicBodies[i]->collider.radius - physicBodies[k]->collider.bounds.x);
}
else
{
contactNormal = (Vector2){ -1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width - physicBodies[i]->transform.position.x - physicBodies[i]->collider.radius);
}
contactNormal = (Vector2){ -1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width - physicBodies[i]->transform.position.x - physicBodies[i]->collider.radius);
}
}
}
} break;
case COLLIDER_CIRCLE:
}
} break;
case COLLIDER_CIRCLE:
{
// Check if colliders are overlapped
if (CheckCollisionCircles(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
{
// Check if colliders are overlapped
if (CheckCollisionCircles(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
{
// Calculate direction vector between circles
direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x;
direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y;
// Calculate distance between circles
float distance = Vector2Length(direction);
// Check if circles are not completely overlapped
if (distance != 0.0f)
{
// Calculate contact normal direction (Y axis needs to be flipped)
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
}
else contactNormal = (Vector2){ 1.0f, 0.0f }; // Choose random (but consistent) values
// Calculate direction vector between circles
direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x;
direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y;
// Calculate distance between circles
float distance = Vector2Length(direction);
// Check if circles are not completely overlapped
if (distance != 0.0f)
{
// Calculate contact normal direction (Y axis needs to be flipped)
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
}
} break;
default: break;
}
} break;
default: break;
}
else contactNormal = (Vector2){ 1.0f, 0.0f }; // Choose random (but consistent) values
}
} break;
default: break;
}
} break;
default: break;
}
// Update rigidbody grounded state
if (physicBodies[i]->rigidbody.enabled) physicBodies[i]->rigidbody.isGrounded = (contactNormal.y < 0.0f);
// 2. Calculate collision impulse
// -------------------------------------------------------------------------------------------------------------------------------------
// Calculate relative velocity
Vector2 relVelocity = { 0.0f, 0.0f };
relVelocity.x = physicBodies[k]->rigidbody.velocity.x - physicBodies[i]->rigidbody.velocity.x;
relVelocity.y = physicBodies[k]->rigidbody.velocity.y - physicBodies[i]->rigidbody.velocity.y;
// Calculate relative velocity in terms of the normal direction
float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
// Dot not resolve if velocities are separating
if (velAlongNormal <= 0.0f)
{
// Calculate minimum bounciness value from both objects
float e = fminf(physicBodies[i]->rigidbody.bounciness, physicBodies[k]->rigidbody.bounciness);
// Update rigidbody grounded state
if (physicBodies[i]->rigidbody.enabled)
{
if (contactNormal.y < 0.0f) physicBodies[i]->rigidbody.isGrounded = true;
}
// Calculate impulse scalar value
float j = -(1.0f + e)*velAlongNormal;
j /= 1.0f/physicBodies[i]->rigidbody.mass + 1.0f/physicBodies[k]->rigidbody.mass;
// 2. Calculate collision impulse
// -------------------------------------------------------------------------------------------------------------------------------------
// Calculate final impulse vector
n">Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
// Calculate relative velocity
Vector2 relVelocity = { 0.0f, 0.0f };
relVelocity.x = physicBodies[k]->rigidbody.velocity.x - physicBodies[i]->rigidbody.velocity.x;
relVelocity.y = physicBodies[k]->rigidbody.velocity.y - physicBodies[i]->rigidbody.velocity.y;
// Calculate relative velocity in terms of the normal direction
float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
// Dot not resolve if velocities are separating
if (velAlongNormal <= 0.0f)
// Calculate collision mass ration
float massSum = physicBodies[i]->rigidbody.mass + physicBodies[k]->rigidbody.mass;
float ratio = 0.0f;
// Apply impulse to current rigidbodies velocities if they are enabled
if (physicBodies[i]->rigidbody.enabled)
{
// Calculate minimum bounciness value from both objects
float e = fminf(physicBodies[i]->rigidbody.bounciness, physicBodies[k]->rigidbody.bounciness);
// Calculate impulse scalar value
float j = -(1.0f + e)*velAlongNormal;
j /= 1.0f/physicBodies[i]->rigidbody.mass + 1.0f/physicBodies[k]->rigidbody.mass;
// Calculate inverted mass ration
ratio = physicBodies[i]->rigidbody.mass/massSum;
// Calculate final impulse vector
Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
// Apply impulse direction to velocity
physicBodies[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
physicBodies[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
}
if (physicBodies[k]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicBodies[k]->rigidbody.mass/massSum;
// Calculate collision mass ration
float massSum = physicBodies[i]->rigidbody.mass + physicBodies[k]->rigidbody.mass;
float ratio = 0.0f;
// Apply impulse direction to velocity
physicBodies[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
physicBodies[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
}
// 3. Correct colliders overlaping (transform position)
// ---------------------------------------------------------------------------------------------------------------------------------
// Calculate transform position penetration correction
Vector2 posCorrection;
posCorrection.x = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
posCorrection.y = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
// Fix transform positions
if (physicBodies[i]->rigidbody.enabled)
{
// Fix physic objects transform position
physicBodies[i]->transform.position.x -= 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.x;
physicBodies[i]->transform.position.y += 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.y;
// Apply impulse to current rigidbodies velocities if they are enabled
if (physicBodies[i]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicBodies[i]->rigidbody.mass/massSum;
// Apply impulse direction to velocity
physicBodies[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
physicBodies[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
}
// Update collider bounds
physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
if (physicBodies[k]->rigidbody.enabled)
if (physicBodies[k]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicBodies[k]->rigidbody.mass/massSum;
// Apply impulse direction to velocity
physicBodies[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
physicBodies[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
}
// 3. Correct colliders overlaping (transform position)
// ---------------------------------------------------------------------------------------------------------------------------------
// Calculate transform position penetration correction
Vector2 posCorrection;
posCorrection.x = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
posCorrection.y = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
// Fix transform positions
if (physicBodies[i]->rigidbody.enabled)
{
// Fix physic objects transform position
physicBodies[i]->transform.position.x -= 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.x;
physicBodies[i]->transform.position.y += 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.y;
physicBodies[k]->transform.position.x += 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.x;
physicBodies[k]->transform.position.y -= 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.y;
// Update collider bounds
physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
if (physicBodies[k]->rigidbody.enabled)
{
// Fix physic objects transform position
physicBodies[k]->transform.position.x += 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.x;
physicBodies[k]->transform.position.y -= 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.y;
// Update collider bounds
physicBodies[k]->collider.bounds = TransformToRectangle(physicBodies[k]->transform);
}
physicBodies[k]->collider.bounds = TransformToRectangle(physicBodies[k]->transform);
}
}
}

Ladataan…
Peruuta
Tallenna