@ -0,0 +1,58 @@ | |||
#version 100 | |||
precision mediump float; | |||
/************************************************************************************* | |||
The Sieve of Eratosthenes -- a simple shader by ProfJski | |||
An early prime number sieve: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes | |||
The screen is divided into a square grid of boxes, each representing an integer value. | |||
Each integer is tested to see if it is a prime number. Primes are colored white. | |||
Non-primes are colored with a color that indicates the smallest factor which evenly divdes our integer. | |||
You can change the scale variable to make a larger or smaller grid. | |||
Total number of integers displayed = scale squared, so scale = 100 tests the first 10,000 integers. | |||
WARNING: If you make scale too large, your GPU may bog down! | |||
***************************************************************************************/ | |||
// Input vertex attributes (from vertex shader) | |||
varying vec2 fragTexCoord; | |||
varying vec4 fragColor; | |||
// Make a nice spectrum of colors based on counter and maxSize | |||
vec4 Colorizer(float counter, float maxSize) | |||
{ | |||
float red = 0.0, green = 0.0, blue = 0.0; | |||
float normsize = counter/maxSize; | |||
red = smoothstep(0.3, 0.7, normsize); | |||
green = sin(3.14159*normsize); | |||
blue = 1.0 - smoothstep(0.0, 0.4, normsize); | |||
return vec4(0.8*red, 0.8*green, 0.8*blue, 1.0); | |||
} | |||
void main() | |||
{ | |||
vec4 color = vec4(1.0); | |||
float scale = 1000.0; // Makes 100x100 square grid. Change this variable to make a smaller or larger grid. | |||
int value = int(scale*floor(fragTexCoord.y*scale) + floor(fragTexCoord.x*scale)); // Group pixels into boxes representing integer values | |||
if ((value == 0) || (value == 1) || (value == 2)) gl_FragColor = vec4(1.0); | |||
else | |||
{ | |||
for (int i = 2; (i < max(2, sqrt(value) + 1)); i++) | |||
{ | |||
if ((value - i*floor(value/i)) == 0) | |||
{ | |||
color = Colorizer(float(i), scale); | |||
//break; // Uncomment to color by the largest factor instead | |||
} | |||
} | |||
gl_FragColor = color; | |||
} | |||
} |
@ -0,0 +1,59 @@ | |||
#version 330 | |||
/************************************************************************************* | |||
The Sieve of Eratosthenes -- a simple shader by ProfJski | |||
An early prime number sieve: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes | |||
The screen is divided into a square grid of boxes, each representing an integer value. | |||
Each integer is tested to see if it is a prime number. Primes are colored white. | |||
Non-primes are colored with a color that indicates the smallest factor which evenly divdes our integer. | |||
You can change the scale variable to make a larger or smaller grid. | |||
Total number of integers displayed = scale squared, so scale = 100 tests the first 10,000 integers. | |||
WARNING: If you make scale too large, your GPU may bog down! | |||
***************************************************************************************/ | |||
// Input vertex attributes (from vertex shader) | |||
in vec2 fragTexCoord; | |||
in vec4 fragColor; | |||
// Output fragment color | |||
out vec4 finalColor; | |||
// Make a nice spectrum of colors based on counter and maxSize | |||
vec4 Colorizer(float counter, float maxSize) | |||
{ | |||
float red = 0.0, green = 0.0, blue = 0.0; | |||
float normsize = counter/maxSize; | |||
red = smoothstep(0.3, 0.7, normsize); | |||
green = sin(3.14159*normsize); | |||
blue = 1.0 - smoothstep(0.0, 0.4, normsize); | |||
return vec4(0.8*red, 0.8*green, 0.8*blue, 1.0); | |||
} | |||
void main() | |||
{ | |||
vec4 color = vec4(1.0); | |||
float scale = 1000.0; // Makes 100x100 square grid. Change this variable to make a smaller or larger grid. | |||
int value = int(scale*floor(fragTexCoord.y*scale)+floor(fragTexCoord.x*scale)); // Group pixels into boxes representing integer values | |||
if ((value == 0) || (value == 1) || (value == 2)) finalColor = vec4(1.0); | |||
else | |||
{ | |||
for (int i = 2; (i < max(2, sqrt(value) + 1)); i++) | |||
{ | |||
if ((value - i*floor(value/i)) == 0) | |||
{ | |||
color = Colorizer(float(i), scale); | |||
//break; // Uncomment to color by the largest factor instead | |||
} | |||
} | |||
finalColor = color; | |||
} | |||
} |
@ -0,0 +1,94 @@ | |||
/******************************************************************************************* | |||
* | |||
* raylib [shaders] example - Sieve of Eratosthenes | |||
* | |||
* Sieve of Eratosthenes, the earliest known (ancient Greek) prime number sieve. | |||
* | |||
* "Sift the twos and sift the threes, | |||
* The Sieve of Eratosthenes. | |||
* When the multiples sublime, | |||
* the numbers that are left are prime." | |||
* | |||
* NOTE: This example requires raylib OpenGL 3.3 or ES2 versions for shaders support, | |||
* OpenGL 1.1 does not support shaders, recompile raylib to OpenGL 3.3 version. | |||
* | |||
* NOTE: Shaders used in this example are #version 330 (OpenGL 3.3). | |||
* | |||
* This example has been created using raylib 2.5 (www.raylib.com) | |||
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details) | |||
* | |||
* Example contributed by ProfJski and reviewed by Ramon Santamaria (@raysan5) | |||
* | |||
* Copyright (c) 2019 ProfJski and Ramon Santamaria (@raysan5) | |||
* | |||
********************************************************************************************/ | |||
#include "raylib.h" | |||
#if defined(PLATFORM_DESKTOP) | |||
#define GLSL_VERSION 330 | |||
#else // PLATFORM_RPI, PLATFORM_ANDROID, PLATFORM_WEB | |||
#define GLSL_VERSION 100 | |||
#endif | |||
int main() | |||
{ | |||
// Initialization | |||
//-------------------------------------------------------------------------------------- | |||
const int screenWidth = 800; | |||
const int screenHeight = 450; | |||
InitWindow(screenWidth, screenHeight, "raylib [shaders] example - Sieve of Eratosthenes"); | |||
RenderTexture2D target = LoadRenderTexture(screenWidth, screenHeight); | |||
// Load Eratosthenes shader | |||
// NOTE: Defining 0 (NULL) for vertex shader forces usage of internal default vertex shader | |||
Shader shader = LoadShader(0, FormatText("resources/shaders/glsl%i/eratosthenes.fs", GLSL_VERSION)); | |||
SetTargetFPS(60); | |||
//-------------------------------------------------------------------------------------- | |||
// Main game loop | |||
while (!WindowShouldClose()) // Detect window close button or ESC key | |||
{ | |||
// Update | |||
//---------------------------------------------------------------------------------- | |||
// Nothing to do here, everything is happening in the shader | |||
//---------------------------------------------------------------------------------- | |||
// Draw | |||
//---------------------------------------------------------------------------------- | |||
BeginDrawing(); | |||
ClearBackground(RAYWHITE); | |||
BeginTextureMode(target); // Enable drawing to texture | |||
ClearBackground(BLACK); // Clear the render texture | |||
// Draw a rectangle in shader mode to be used as shader canvas | |||
// NOTE: Rectangle uses font white character texture coordinates, | |||
// so shader can not be applied here directly because input vertexTexCoord | |||
// do not represent full screen coordinates (space where want to apply shader) | |||
DrawRectangle(0, 0, GetScreenWidth(), GetScreenHeight(), BLACK); | |||
EndTextureMode(); // End drawing to texture (now we have a blank texture available for the shader) | |||
BeginShaderMode(shader); | |||
// NOTE: Render texture must be y-flipped due to default OpenGL coordinates (left-bottom) | |||
DrawTextureRec(target.texture, (Rectangle){ 0, 0, target.texture.width, -target.texture.height }, (Vector2){ 0.0f, 0.0f }, WHITE); | |||
EndShaderMode(); | |||
EndDrawing(); | |||
//---------------------------------------------------------------------------------- | |||
} | |||
// De-Initialization | |||
//-------------------------------------------------------------------------------------- | |||
UnloadShader(shader); // Unload shader | |||
UnloadRenderTexture(target); // Unload texture | |||
CloseWindow(); // Close window and OpenGL context | |||
//-------------------------------------------------------------------------------------- | |||
return 0; | |||
} |