Browse Source

Review last PR formatting to follow raylib standards

pull/1379/head
raysan5 4 years ago
parent
commit
ea832628c4
2 changed files with 58 additions and 52 deletions
  1. +1
    -1
      examples/Makefile
  2. +57
    -51
      src/raymath.h

+ 1
- 1
examples/Makefile View File

@ -291,7 +291,7 @@ ifeq ($(PLATFORM),PLATFORM_DESKTOP)
ifeq ($(PLATFORM_OS),LINUX)
# Reset everything.
# Precedence: immediately local, installed version, raysan5 provided libs
LDFLAGS = -L. -L$(RAYLIB_INSTALL_PATH) -L$(RAYLIB_RELEASE_PATH) -L$(RAYLIB_PATH)
LDFLAGS = -L. -L$(RAYLIB_INSTALL_PATH) -L$(RAYLIB_RELEASE_PATH) -L$(RAYLIB_PATH)
endif
endif

+ 57
- 51
src/raymath.h View File

@ -78,8 +78,6 @@
#define PI 3.14159265358979323846
#endif
#ifndef DEG2RAD
#define DEG2RAD (PI/180.0f)
#endif
@ -880,6 +878,18 @@ RMDEF Matrix MatrixRotateXYZ(Vector3 ang)
return result;
}
// Returns zyx-rotation matrix (angles in radians)
// TODO: This solution is suboptimal, it should be possible to create this matrix in one go
// instead of using a 3 matrix multiplication
RMDEF Matrix MatrixRotateZYX(Vector3 ang)
{
Matrix result = MatrixRotateZ(ang.z);
result = MatrixMultiply(result, MatrixRotateY(ang.y));
result = MatrixMultiply(result, MatrixRotateX(ang.x));
return result;
}
// Returns x-rotation matrix (angle in radians)
RMDEF Matrix MatrixRotateX(float angle)
{
@ -928,8 +938,6 @@ RMDEF Matrix MatrixRotateZ(float angle)
return result;
}
// Returns scaling matrix
RMDEF Matrix MatrixScale(float x, float y, float z)
{
@ -967,17 +975,6 @@ RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
return result;
}
// TODO suboptimal should be able to create this matrix in one go
// this is an aditional 3 matrix multiplies!
RMDEF Matrix MatrixRotateZYX(Vector3 v)
{
Matrix result = MatrixRotateZ(v.z);
result = MatrixMultiply(result, MatrixRotateY(v.y));
result = MatrixMultiply(result, MatrixRotateX(v.x));
return result;
}
// Returns perspective projection matrix
RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
{
@ -1312,53 +1309,62 @@ RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
}
// Returns a quaternion for a given rotation matrix
RMDEF Quaternion QuaternionFromMatrix(Matrix m)
{
Quaternion q;
if ( m.m0 > m.m5 && m.m0 > m.m10 ) {
float s = sqrt( 1.0 + m.m0 - m.m5 - m.m10 ) * 2;
q.x = 0.25 * s;
q.y = (m.m4 + m.m1 ) / s;
q.z = (m.m2 + m.m8 ) / s;
q.w = (m.m9 - m.m6 ) / s;
} else if ( m.m5 > m.m10 ) {
float s = sqrt( 1.0 + m.m5 - m.m0 - m.m10 ) * 2;
q.x = (m.m4 + m.m1 ) / s;
q.y = 0.25 * s;
q.z = (m.m9 + m.m6 ) / s;
q.w = (m.m2 - m.m8 ) / s;
} else {
float s = sqrt( 1.0 + m.m10 - m.m0 - m.m5 ) * 2;
q.x = (m.m2 + m.m8 ) / s;
q.y = (m.m9 + m.m6 ) / s;
q.z = 0.25 * s;
q.w = (m.m4 - m.m1 ) / s;
RMDEF Quaternion QuaternionFromMatrix(Matrix mat)
{
Quaternion result = { 0.0f };
if ((mat.m0 > mat.m5) && (mat.m0 > mat.m10))
{
float s = sqrtf(1.0f + mat.m0 - mat.m5 - mat.m10)*2;
result.x = 0.25f*s;
result.y = (mat.m4 + mat.m1)/s;
result.z = (mat.m2 + mat.m8)/s;
result.w = (mat.m9 - mat.m6)/s;
}
return q;
else if (mat.m5 > mat.m10)
{
float s = sqrtf(1.0f + mat.m5 - mat.m0 - mat.m10)*2;
result.x = (mat.m4 + mat.m1)/s;
result.y = 0.25f*s;
result.z = (mat.m9 + mat.m6)/s;
result.w = (mat.m2 - mat.m8)/s;
}
else
{
float s = sqrtf(1.0f + mat.m10 - mat.m0 - mat.m5)*2;
result.x = (mat.m2 + mat.m8)/s;
result.y = (mat.m9 + mat.m6)/s;
result.z = 0.25f*s;
result.w = (mat.m4 - mat.m1)/s;
}
return result;
}
// Returns a matrix for a given quaternion
RMDEF Matrix QuaternionToMatrix(Quaternion q)
{
Matrix m = MatrixIdentity();
float a2=2*(q.x*q.x), b2=2*(q.y*q.y), c2=2*(q.z*q.z); //, d2=2*(q.w*q.w);
Matrix result = MatrixIdentity();
float a2 = 2*(q.x*q.x), b2=2*(q.y*q.y), c2=2*(q.z*q.z); //, d2=2*(q.w*q.w);
float ab=2*(q.x*q.y), ac=2*(q.x*q.z), bc=2*(q.y*q.z);
float ad=2*(q.x*q.w), bd=2*(q.y*q.w), cd=2*(q.z*q.w);
float ab = 2*(q.x*q.y), ac=2*(q.x*q.z), bc=2*(q.y*q.z);
float ad = 2*(q.x*q.w), bd=2*(q.y*q.w), cd=2*(q.z*q.w);
m.m0 = 1 - b2 - c2;
m.m1 = ab - cd;
m.m2 = ac + bd;
result.m0 = 1 - b2 - c2;
result.m1 = ab - cd;
result.m2 = ac + bd;
m.m4 = ab + cd;
m.m5 = 1 - a2 - c2;
m.m6 = bc - ad;
result.m4 = ab + cd;
result.m5 = 1 - a2 - c2;
result.m6 = bc - ad;
m.m8 = ac - bd;
m.m9 = bc + ad;
m.m10 = 1 - a2 - b2;
result.m8 = ac - bd;
result.m9 = bc + ad;
result.m10 = 1 - a2 - b2;
return m;
return result;
}
// Returns rotation quaternion for an angle and axis

Loading…
Cancel
Save