|
|
@ -1,12 +1,15 @@ |
|
|
|
/******************************************************************************************* |
|
|
|
* |
|
|
|
* rPBR [shader] - Bidirectional reflectance distribution function fragment shader |
|
|
|
* BRDF LUT Generation - Bidirectional reflectance distribution function fragment shader |
|
|
|
* |
|
|
|
* REF: https://github.com/HectorMF/BRDFGenerator |
|
|
|
* |
|
|
|
* Copyright (c) 2017 Victor Fisac |
|
|
|
* |
|
|
|
**********************************************************************************************/ |
|
|
|
|
|
|
|
#version 330 |
|
|
|
|
|
|
|
#define MAX_SAMPLES 1024u |
|
|
|
|
|
|
|
// Input vertex attributes (from vertex shader) |
|
|
@ -18,43 +21,30 @@ const float PI = 3.14159265359; |
|
|
|
// Output fragment color |
|
|
|
out vec4 finalColor; |
|
|
|
|
|
|
|
float DistributionGGX(vec3 N, vec3 H, float roughness); |
|
|
|
float RadicalInverse_VdC(uint bits); |
|
|
|
vec2 Hammersley(uint i, uint N); |
|
|
|
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness); |
|
|
|
float RadicalInverseVdC(uint bits); |
|
|
|
float GeometrySchlickGGX(float NdotV, float roughness); |
|
|
|
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness); |
|
|
|
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness); |
|
|
|
vec2 IntegrateBRDF(float NdotV, float roughness); |
|
|
|
|
|
|
|
float DistributionGGX(vec3 N, vec3 H, float roughness) |
|
|
|
{ |
|
|
|
float a = roughness*roughness; |
|
|
|
float a2 = a*a; |
|
|
|
float NdotH = max(dot(N, H), 0.0); |
|
|
|
float NdotH2 = NdotH*NdotH; |
|
|
|
|
|
|
|
float nom = a2; |
|
|
|
float denom = (NdotH2*(a2 - 1.0) + 1.0); |
|
|
|
denom = PI*denom*denom; |
|
|
|
|
|
|
|
return nom/denom; |
|
|
|
} |
|
|
|
|
|
|
|
float RadicalInverse_VdC(uint bits) |
|
|
|
float RadicalInverseVdC(uint bits) |
|
|
|
{ |
|
|
|
bits = (bits << 16u) | (bits >> 16u); |
|
|
|
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); |
|
|
|
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); |
|
|
|
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); |
|
|
|
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); |
|
|
|
return float(bits) * 2.3283064365386963e-10; // / 0x100000000 |
|
|
|
bits = (bits << 16u) | (bits >> 16u); |
|
|
|
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); |
|
|
|
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); |
|
|
|
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); |
|
|
|
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); |
|
|
|
return float(bits) * 2.3283064365386963e-10; // / 0x100000000 |
|
|
|
} |
|
|
|
|
|
|
|
// Compute Hammersley coordinates |
|
|
|
vec2 Hammersley(uint i, uint N) |
|
|
|
{ |
|
|
|
return vec2(float(i)/float(N), RadicalInverse_VdC(i)); |
|
|
|
return vec2(float(i)/float(N), RadicalInverseVdC(i)); |
|
|
|
} |
|
|
|
|
|
|
|
// Integrate number of importance samples for (roughness and NoV) |
|
|
|
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness) |
|
|
|
{ |
|
|
|
float a = roughness*roughness; |
|
|
@ -85,6 +75,7 @@ float GeometrySchlickGGX(float NdotV, float roughness) |
|
|
|
return nom/denom; |
|
|
|
} |
|
|
|
|
|
|
|
// Compute the geometry term for the BRDF given roughness squared, NoV, NoL |
|
|
|
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) |
|
|
|
{ |
|
|
|
float NdotV = max(dot(N, V), 0.0); |
|
|
@ -97,29 +88,31 @@ float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) |
|
|
|
|
|
|
|
vec2 IntegrateBRDF(float NdotV, float roughness) |
|
|
|
{ |
|
|
|
vec3 V = vec3(sqrt(1.0 - NdotV*NdotV), 0.0, NdotV); |
|
|
|
float A = 0.0; |
|
|
|
float B = 0.0; |
|
|
|
float B = 0.0; |
|
|
|
vec3 V = vec3(sqrt(1.0 - NdotV*NdotV), 0.0, NdotV); |
|
|
|
vec3 N = vec3(0.0, 0.0, 1.0); |
|
|
|
|
|
|
|
for(uint i = 0nf">u; i < MAX_SAMPLES; i++) |
|
|
|
for (int i = 0k">; i < MAX_SAMPLES; i++) |
|
|
|
{ |
|
|
|
// Generate a sample vector that's biased towards the preferred alignment direction (importance sampling) |
|
|
|
vec2 Xi = Hammersley(i, MAX_SAMPLES); |
|
|
|
vec3 H = ImportanceSampleGGX(Xi, N, roughness); |
|
|
|
vec3 L = normalize(2.0*dot(V, H)*H - V); |
|
|
|
float NdotL = max(L.z, 0.0); |
|
|
|
float NdotH = max(H.z, 0.0); |
|
|
|
float VdotH = max(dot(V, H), 0.0); |
|
|
|
|
|
|
|
vec2 Xi = Hammersley(i, MAX_SAMPLES); // Compute a Hammersely coordinate |
|
|
|
vec3 H = ImportanceSampleGGX(Xi, N, roughness); // Integrate number of importance samples for (roughness and NoV) |
|
|
|
vec3 L = normalize(2.0*dot(V, H)*H - V); // Compute reflection vector L |
|
|
|
|
|
|
|
float NdotL = max(L.z, 0.0); // Compute normal dot light |
|
|
|
float NdotH = max(H.z, 0.0); // Compute normal dot half |
|
|
|
float VdotH = max(dot(V, H), 0.0); // Compute view dot half |
|
|
|
|
|
|
|
if (NdotL > 0.0) |
|
|
|
{ |
|
|
|
float G = GeometrySmith(N, V, L, err">roughness); |
|
|
|
float G_Vis = err">(G*VdotH)/(NdotH*NdotV); |
|
|
|
float Fc = pow(1.0 - VdotH, 5.0err">); |
|
|
|
float G = GeometrySmith(N, V, L, nf">roughness); // Compute the geometry term for the BRDF given roughness squared, NoV, NoL |
|
|
|
float GVis = nf">(G*VdotH)/(NdotH*NdotV); // Compute the visibility term given G, VoH, NoH, NoV, NoL |
|
|
|
float Fc = pow(1.0 - VdotH, 5.0nf">); // Compute the fresnel term given VoH |
|
|
|
|
|
|
|
A += (1.0 - err">Fc)*G_Vis; |
|
|
|
B += Fc*G_Vis; |
|
|
|
A += (1.0 - nf">Fc)*GVis; // Sum the result given fresnel, geometry, visibility |
|
|
|
B += Fc*GVis; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|