Browse Source

Added Vector2 math functions

Reviewed some Vector3 functions
Added auxiliary Clamp() function
pull/262/head
raysan5 7 years ago
parent
commit
f5894278b7
2 changed files with 183 additions and 141 deletions
  1. +7
    -5
      src/gestures.h
  2. +176
    -136
      src/raymath.h

+ 7
- 5
src/gestures.h View File

@ -213,8 +213,11 @@ static unsigned int enabledGestures = 0b0000001111111111;
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
#if defined(GESTURES_STANDALONE)
// Some required math functions provided by raymath.h
static float Vector2Angle(Vector2 initialPosition, Vector2 finalPosition);
static float Vector2Distance(Vector2 v1, Vector2 v2);
#endif
static double GetCurrentTime(void);
//----------------------------------------------------------------------------------
@ -477,13 +480,11 @@ float GetGesturePinchAngle(void)
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
#if defined(GESTURES_STANDALONE)
// Returns angle from two-points vector with X-axis
static float Vector2Angle(Vector2 initialPosition, Vector2 finalPosition)
static float Vector2Angle(Vector2 v1, Vector2 v2)
{
float angle;
angle = atan2f(finalPosition.y - initialPosition.y, finalPosition.x - initialPosition.x)*(180.0f/PI);
float angle = angle = atan2f(v2.y - v1.y, v2.x - v1.x)*(180.0f/PI);
if (angle < 0) angle += 360.0f;
@ -502,6 +503,7 @@ static float Vector2Distance(Vector2 v1, Vector2 v2)
return result;
}
#endif
// Time measure returned are milliseconds
static double GetCurrentTime(void)

+ 176
- 136
src/raymath.h View File

@ -112,45 +112,67 @@ typedef struct Quaternion {
#ifndef RAYMATH_EXTERN_INLINE
//------------------------------------------------------------------------------------
// Functions Declaration - math utils
//------------------------------------------------------------------------------------
RMDEF float Clamp(float value, float min, float max); // Clamp float value
//------------------------------------------------------------------------------------
// Functions Declaration to work with Vector2
//------------------------------------------------------------------------------------
RMDEF Vector2 Vector2Zero(void); // Vector with components value 0.0f
RMDEF Vector2 Vector2One(void); // Vector with components value 1.0f
RMDEF Vector2 Vector2Add(Vector2 v1, Vector2 v2); // Add two vectors (v1 + v2)
RMDEF Vector2 Vector2Subtract(Vector2 v1, Vector2 v2); // Subtract two vectors (v1 - v2)
RMDEF float Vector2Lenght(Vector2 v); // Calculate vector lenght
RMDEF float Vector2DotProduct(Vector2 v1, Vector2 v2); // Calculate two vectors dot product
RMDEF float Vector2Distance(Vector2 v1, Vector2 v2); // Calculate distance between two vectors
RMDEF float Vector2Angle(Vector2 v1, Vector2 v2); // Calculate angle between two vectors in X-axis
RMDEF void Vector2Scale(Vector2 *v, float scale); // Scale vector (multiply by value)
RMDEF void Vector2Negate(Vector2 *v); // Negate vector
RMDEF void Vector2Divide(Vector2 *v, float div); // Divide vector by a float value
RMDEF void Vector2Normalize(Vector2 *v); // Normalize provided vector
//------------------------------------------------------------------------------------
// Functions Declaration to work with Vector3
//------------------------------------------------------------------------------------
RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2); // Add two vectors
RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2); // Substract two vectors
RMDEF Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2); // Calculate two vectors cross product
RMDEF Vector3 VectorPerpendicular(Vector3 v); // Calculate one vector perpendicular vector
RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2); // Calculate two vectors dot product
RMDEF float VectorLength(const Vector3 v); // Calculate vector lenght
RMDEF void VectorScale(Vector3 *v, float scale); // Scale provided vector
RMDEF void VectorNegate(Vector3 *v); // Negate provided vector (invert direction)
RMDEF void VectorNormalize(Vector3 *v); // Normalize provided vector
RMDEF float VectorDistance(Vector3 v1, Vector3 v2); // Calculate distance between two points
RMDEF Vector3 VectorZero(void); // Vector with components value 0.0f
RMDEF Vector3 VectorOne(void); // Vector with components value 1.0f
RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2); // Add two vectors
RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2); // Substract two vectors
RMDEF Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2); // Calculate two vectors cross product
RMDEF Vector3 VectorPerpendicular(Vector3 v); // Calculate one vector perpendicular vector
RMDEF float VectorLength(const Vector3 v); // Calculate vector lenght
RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2); // Calculate two vectors dot product
RMDEF float VectorDistance(Vector3 v1, Vector3 v2); // Calculate distance between two points
RMDEF void VectorScale(Vector3 *v, float scale); // Scale provided vector
RMDEF void VectorNegate(Vector3 *v); // Negate provided vector (invert direction)
RMDEF void VectorNormalize(Vector3 *v); // Normalize provided vector
RMDEF void VectorTransform(Vector3 *v, Matrix mat); // Transforms a Vector3 by a given Matrix
RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount); // Calculate linear interpolation between two vectors
RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal); // Calculate reflected vector to normal
RMDEF void VectorTransform(Vector3 *v, Matrix mat); // Transforms a Vector3 by a given Matrix
RMDEF Vector3 VectorZero(void); // Return a Vector3 init to zero
RMDEF Vector3 VectorMin(Vector3 vec1, Vector3 vec2); // Return min value for each pair of components
RMDEF Vector3 VectorMax(Vector3 vec1, Vector3 vec2); // Return max value for each pair of components
RMDEF Vector3 Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c); // Barycenter coords for p in triangle abc
RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal); // Calculate reflected vector to normal
RMDEF Vector3 VectorMin(Vector3 vec1, Vector3 vec2); // Return min value for each pair of components
RMDEF Vector3 VectorMax(Vector3 vec1, Vector3 vec2); // Return max value for each pair of components
RMDEF Vector3 VectorBarycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c); // Barycenter coords for p in triangle abc
//------------------------------------------------------------------------------------
// Functions Declaration to work with Matrix
//------------------------------------------------------------------------------------
RMDEF float MatrixDeterminant(Matrix mat); // Compute matrix determinant
RMDEF float MatrixTrace(Matrix mat); // Returns the trace of the matrix (sum of the values along the diagonal)
RMDEF void MatrixTranspose(Matrix *mat); // Transposes provided matrix
RMDEF void MatrixInvert(Matrix *mat); // Invert provided matrix
RMDEF void MatrixNormalize(Matrix *mat); // Normalize provided matrix
RMDEF Matrix MatrixIdentity(void); // Returns identity matrix
RMDEF Matrix MatrixAdd(Matrix left, Matrix right); // Add two matrices
RMDEF Matrix MatrixSubstract(Matrix left, Matrix right); // Substract two matrices (left - right)
RMDEF Matrix MatrixTranslate(float x, float y, float z); // Returns translation matrix
RMDEF Matrix MatrixRotate(Vector3 axis, float angle); // Returns rotation matrix for an angle around an specified axis (angle in radians)
RMDEF Matrix MatrixRotateX(float angle); // Returns x-rotation matrix (angle in radians)
RMDEF Matrix MatrixRotateY(float angle); // Returns y-rotation matrix (angle in radians)
RMDEF Matrix MatrixRotateZ(float angle); // Returns z-rotation matrix (angle in radians)
RMDEF Matrix MatrixScale(float x, float y, float z); // Returns scaling matrix
RMDEF Matrix MatrixMultiply(Matrix left, Matrix right); // Returns two matrix multiplication
RMDEF float MatrixDeterminant(Matrix mat); // Compute matrix determinant
RMDEF float MatrixTrace(Matrix mat); // Returns the trace of the matrix (sum of the values along the diagonal)
RMDEF void MatrixTranspose(Matrix *mat); // Transposes provided matrix
RMDEF void MatrixInvert(Matrix *mat); // Invert provided matrix
RMDEF void MatrixNormalize(Matrix *mat); // Normalize provided matrix
RMDEF Matrix MatrixIdentity(void); // Returns identity matrix
RMDEF Matrix MatrixAdd(Matrix left, Matrix right); // Add two matrices
RMDEF Matrix MatrixSubstract(Matrix left, Matrix right); // Substract two matrices (left - right)
RMDEF Matrix MatrixTranslate(float x, float y, float z); // Returns translation matrix
RMDEF Matrix MatrixRotate(Vector3 axis, float angle); // Returns rotation matrix for an angle around an specified axis (angle in radians)
RMDEF Matrix MatrixRotateX(float angle); // Returns x-rotation matrix (angle in radians)
RMDEF Matrix MatrixRotateY(float angle); // Returns y-rotation matrix (angle in radians)
RMDEF Matrix MatrixRotateZ(float angle); // Returns z-rotation matrix (angle in radians)
RMDEF Matrix MatrixScale(float x, float y, float z); // Returns scaling matrix
RMDEF Matrix MatrixMultiply(Matrix left, Matrix right); // Returns two matrix multiplication
RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far); // Returns perspective projection matrix
RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far); // Returns perspective projection matrix
RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far); // Returns orthographic projection matrix
@ -159,9 +181,9 @@ RMDEF Matrix MatrixLookAt(Vector3 position, Vector3 target, Vector3 up); // Ret
//------------------------------------------------------------------------------------
// Functions Declaration to work with Quaternions
//------------------------------------------------------------------------------------
RMDEF float QuaternionLength(Quaternion quat); // Compute the length of a quaternion
RMDEF void QuaternionNormalize(Quaternion *q); // Normalize provided quaternion
RMDEF void QuaternionInvert(Quaternion *quat); // Invert provided quaternion
RMDEF float QuaternionLength(Quaternion quat); // Compute the length of a quaternion
RMDEF void QuaternionNormalize(Quaternion *q); // Normalize provided quaternion
RMDEF void QuaternionInvert(Quaternion *quat); // Invert provided quaternion
RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2); // Calculate two quaternion multiplication
RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float slerp); // Calculates spherical linear interpolation between two quaternions
RMDEF Quaternion QuaternionFromMatrix(Matrix matrix); // Returns a quaternion for a given rotation matrix
@ -179,32 +201,113 @@ RMDEF void QuaternionTransform(Quaternion *q, Matrix mat); // Transfo
#include <math.h> // Required for: sinf(), cosf(), tan(), fabs()
//----------------------------------------------------------------------------------
// Module Functions Definition - Utils math
//----------------------------------------------------------------------------------
// Clamp float value
RMDEF float Clamp(float value, float min, float max)
{
const float res = value < min ? min : value;
return res > max ? max : res;
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Vector2 math
//----------------------------------------------------------------------------------
// Vector with components value 0.0f
RMDEF Vector2 Vector2Zero(void) { return (Vector2){ 0.0f, 0.0f }; }
// Vector with components value 1.0f
RMDEF Vector2 Vector2One(void) { return (Vector2){ 1.0f, 1.0f }; }
// Add two vectors (v1 + v2)
RMDEF Vector2 Vector2Add(Vector2 v1, Vector2 v2)
{
return (Vector2){ v1.x + v2.x, v1.y + v2.y };
}
// Subtract two vectors (v1 - v2)
RMDEF Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
{
return (Vector2){ v1.x - v2.x, v1.y - v2.y };
}
// Calculate vector lenght
RMDEF float Vector2Lenght(Vector2 v)
{
return sqrtf((v.x*v.x) + (v.y*v.y));
}
// Calculate two vectors dot product
RMDEF float Vector2DotProduct(Vector2 v1, Vector2 v2)
{
return (v1.x*v2.x + v1.y*v2.y);
}
// Calculate distance between two vectors
RMDEF float Vector2Distance(Vector2 v1, Vector2 v2)
{
return sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
}
// Calculate angle from two vectors in X-axis
RMDEF float Vector2Angle(Vector2 v1, Vector2 v2)
{
float angle = atan2f(v2.y - v1.y, v2.x - v1.x)*(180.0f/PI);
if (angle < 0) angle += 360.0f;
return angle;
}
// Scale vector (multiply by value)
RMDEF void Vector2Scale(Vector2 *v, float scale)
{
v->x *= scale;
v->y *= scale;
}
// Negate vector
RMDEF void Vector2Negate(Vector2 *v)
{
v->x = -v->x;
v->y = -v->y;
}
// Divide vector by a float value
RMDEF void Vector2Divide(Vector2 *v, float div)
{
*v = (Vector2){v->x/div, v->y/div};
}
// Normalize provided vector
RMDEF void Vector2Normalize(Vector2 *v)
{
Vector2Divide(v, Vector2Lenght(*v));
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Vector3 math
//----------------------------------------------------------------------------------
// Vector with components value 0.0f
RMDEF Vector3 VectorZero(void) { return (Vector3){ 0.0f, 0.0f, 0.0f }; }
// Vector with components value 1.0f
RMDEF Vector3 VectorOne(void) { return (Vector3){ 1.0f, 1.0f, 1.0f }; }
// Add two vectors
RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2)
{
Vector3 result;
result.x = v1.x + v2.x;
result.y = v1.y + v2.y;
result.z = v1.z + v2.z;
return result;
return (Vector3){ v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
}
// Substract two vectors
RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2)
{
Vector3 result;
result.x = v1.x - v2.x;
result.y = v1.y - v2.y;
result.z = v1.z - v2.z;
return result;
return (Vector3){ v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
}
// Calculate two vectors cross product
@ -233,7 +336,7 @@ RMDEF Vector3 VectorPerpendicular(Vector3 v)
cardinalAxis = (Vector3){0.0f, 1.0f, 0.0f};
}
if(fabsf(v.z) < min)
if (fabsf(v.z) < min)
{
cardinalAxis = (Vector3){0.0f, 0.0f, 1.0f};
}
@ -243,24 +346,26 @@ RMDEF Vector3 VectorPerpendicular(Vector3 v)
return result;
}
// Calculate vector lenght
RMDEF float VectorLength(const Vector3 v)
{
return sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
}
// Calculate two vectors dot product
RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2)
{
float result;
result = v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;
return result;
return (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
}
// Calculate vector lenght
RMDEF float VectorLength(const Vector3 v)
// Calculate distance between two vectors
RMDEF float VectorDistance(Vector3 v1, Vector3 v2)
{
float length;
n">length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
float dx = v2.x - v1.x;
float dy = v2.y - v1.y;
kt">float dz = v2.z - v1.z;
return ">length;
return f">sqrtf(dx*dx + dy*dy + dz*dz);
}
// Scale provided vector
@ -295,19 +400,18 @@ RMDEF void VectorNormalize(Vector3 *v)
v->z *= ilength;
}
// Calculate distance between two points
RMDEF float VectorDistance(Vector3 v1, Vector3 v2)
// Transforms a Vector3 by a given Matrix
// TODO: Review math (matrix transpose required?)
RMDEF void VectorTransform(Vector3 *v, Matrix mat)
{
float result;
float dx = v2.x - v1.x;
float dy = v2.y - v1.y;
float dz = v2.z - v1.z;
result = sqrtf(dx*dx + dy*dy + dz*dz);
float x = v->x;
float y = v->y;
float z = v->z;
return result;
}
v->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
v->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
v->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
};
// Calculate linear interpolation between two vectors
RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount)
@ -339,27 +443,6 @@ RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal)
return result;
}
// Transforms a Vector3 by a given Matrix
// TODO: Review math (matrix transpose required?)
RMDEF void VectorTransform(Vector3 *v, Matrix mat)
{
float x = v->x;
float y = v->y;
float z = v->z;
v->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
v->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
v->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
};
// Return a Vector3 init to zero
RMDEF Vector3 VectorZero(void)
{
Vector3 zero = { 0.0f, 0.0f, 0.0f };
return zero;
}
// Return min value for each pair of components
RMDEF Vector3 VectorMin(Vector3 vec1, Vector3 vec2)
{
@ -386,7 +469,7 @@ RMDEF Vector3 VectorMax(Vector3 vec1, Vector3 vec2)
// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
// NOTE: Assumes P is on the plane of the triangle
RMDEF Vector3 Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
RMDEF Vector3 VectorBarycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
{
//Vector v0 = b - a, v1 = c - a, v2 = p - a;
@ -663,49 +746,6 @@ RMDEF Matrix MatrixRotate(Vector3 axis, float angle)
return result;
}
/*
// Another implementation for MatrixRotate...
RMDEF Matrix MatrixRotate(float angle, float x, float y, float z)
{
Matrix result = MatrixIdentity();
float c = cosf(angle); // cosine
float s = sinf(angle); // sine
float c1 = 1.0f - c; // 1 - c
float m0 = result.m0, m4 = result.m4, m8 = result.m8, m12 = result.m12,
m1 = result.m1, m5 = result.m5, m9 = result.m9, m13 = result.m13,
m2 = result.m2, m6 = result.m6, m10 = result.m10, m14 = result.m14;
// build rotation matrix
float r0 = x*x*c1 + c;
float r1 = x*y*c1 + z*s;
float r2 = x*z*c1 - y*s;
float r4 = x*y*c1 - z*s;
float r5 = y*y*c1 + c;
float r6 = y*z*c1 + x*s;
float r8 = x*z*c1 + y*s;
float r9 = y*z*c1 - x*s;
float r10= z*z*c1 + c;
// multiply rotation matrix
result.m0 = r0*m0 + r4*m1 + r8*m2;
result.m1 = r1*m0 + r5*m1 + r9*m2;
result.m2 = r2*m0 + r6*m1 + r10*m2;
result.m4 = r0*m4 + r4*m5 + r8*m6;
result.m5 = r1*m4 + r5*m5 + r9*m6;
result.m6 = r2*m4 + r6*m5 + r10*m6;
result.m8 = r0*m8 + r4*m9 + r8*m10;
result.m9 = r1*m8 + r5*m9 + r9*m10;
result.m10 = r2*m8 + r6*m9 + r10*m10;
result.m12 = r0*m12+ r4*m13 + r8*m14;
result.m13 = r1*m12+ r5*m13 + r9*m14;
result.m14 = r2*m12+ r6*m13 + r10*m14;
return result;
}
*/
// Returns x-rotation matrix (angle in radians)
RMDEF Matrix MatrixRotateX(float angle)
{

Loading…
Cancel
Save