/******************************************************************************************* * * rPBR [shader] - Bidirectional reflectance distribution function fragment shader * * Copyright (c) 2017 Victor Fisac * **********************************************************************************************/ #version 330 #define MAX_SAMPLES 1024u // Input vertex attributes (from vertex shader) in vec2 fragTexCoord; // Constant values const float PI = 3.14159265359; // Output fragment color out vec4 finalColor; float DistributionGGX(vec3 N, vec3 H, float roughness); float RadicalInverse_VdC(uint bits); vec2 Hammersley(uint i, uint N); vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness); float GeometrySchlickGGX(float NdotV, float roughness); float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness); vec2 IntegrateBRDF(float NdotV, float roughness); float DistributionGGX(vec3 N, vec3 H, float roughness) { float a = roughness*roughness; float a2 = a*a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH*NdotH; float nom = a2; float denom = (NdotH2*(a2 - 1.0) + 1.0); denom = PI*denom*denom; return nom/denom; } float RadicalInverse_VdC(uint bits) { bits = (bits << 16u) | (bits >> 16u); bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); return float(bits) * 2.3283064365386963e-10; // / 0x100000000 } vec2 Hammersley(uint i, uint N) { return vec2(float(i)/float(N), RadicalInverse_VdC(i)); } vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness) { float a = roughness*roughness; float phi = 2.0 * PI * Xi.x; float cosTheta = sqrt((1.0 - Xi.y)/(1.0 + (a*a - 1.0)*Xi.y)); float sinTheta = sqrt(1.0 - cosTheta*cosTheta); // Transform from spherical coordinates to cartesian coordinates (halfway vector) vec3 H = vec3(cos(phi)*sinTheta, sin(phi)*sinTheta, cosTheta); // Transform from tangent space H vector to world space sample vector vec3 up = ((abs(N.z) < 0.999) ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0)); vec3 tangent = normalize(cross(up, N)); vec3 bitangent = cross(N, tangent); vec3 sampleVec = tangent*H.x + bitangent*H.y + N*H.z; return normalize(sampleVec); } float GeometrySchlickGGX(float NdotV, float roughness) { // For IBL k is calculated different float k = (roughness*roughness)/2.0; float nom = NdotV; float denom = NdotV*(1.0 - k) + k; return nom/denom; } float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1*ggx2; } vec2 IntegrateBRDF(float NdotV, float roughness) { vec3 V = vec3(sqrt(1.0 - NdotV*NdotV), 0.0, NdotV); float A = 0.0; float B = 0.0; vec3 N = vec3(0.0, 0.0, 1.0); for(uint i = 0u; i < MAX_SAMPLES; i++) { // Generate a sample vector that's biased towards the preferred alignment direction (importance sampling) vec2 Xi = Hammersley(i, MAX_SAMPLES); vec3 H = ImportanceSampleGGX(Xi, N, roughness); vec3 L = normalize(2.0*dot(V, H)*H - V); float NdotL = max(L.z, 0.0); float NdotH = max(H.z, 0.0); float VdotH = max(dot(V, H), 0.0); if (NdotL > 0.0) { float G = GeometrySmith(N, V, L, roughness); float G_Vis = (G*VdotH)/(NdotH*NdotV); float Fc = pow(1.0 - VdotH, 5.0); A += (1.0 - Fc)*G_Vis; B += Fc*G_Vis; } } // Calculate brdf average sample A /= float(MAX_SAMPLES); B /= float(MAX_SAMPLES); return vec2(A, B); } void main() { // Calculate brdf based on texture coordinates vec2 brdf = IntegrateBRDF(fragTexCoord.x, fragTexCoord.y); // Calculate final fragment color finalColor = vec4(brdf.r, brdf.g, 0.0, 1.0); }