/********************************************************************************************** * * raymath * * Some useful functions to work with Vector3, Matrix and Quaternions * * Copyright (c) 2014 Ramon Santamaria (Ray San - raysan@raysanweb.com) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ #include "raymath.h" #include // Used only on PrintMatrix() #include // Standard math libary: sin(), cos(), tan()... #include // Used for abs() //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- //... //---------------------------------------------------------------------------------- // Module specific Functions Declaration //---------------------------------------------------------------------------------- // ... //---------------------------------------------------------------------------------- // Module Functions Definition - Vector3 math //---------------------------------------------------------------------------------- // Add two vectors Vector3 VectorAdd(Vector3 v1, Vector3 v2) { Vector3 result; result.x = v1.x + v2.x; result.y = v1.y + v2.y; result.z = v1.z + v2.z; return result; } // Substract two vectors Vector3 VectorSubtract(Vector3 v1, Vector3 v2) { Vector3 result; result.x = v1.x - v2.x; result.y = v1.y - v2.y; result.z = v1.z - v2.z; return result; } // Calculate two vectors cross product Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2) { Vector3 result; result.x = v1.y*v2.z - v1.z*v2.y; result.y = v1.z*v2.x - v1.x*v2.z; result.z = v1.x*v2.y - v1.y*v2.x; return result; } // Calculate one vector perpendicular vector Vector3 VectorPerpendicular(Vector3 v) { Vector3 result; float min = fabs(v.x); Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f}; if (fabs(v.y) < min) { min = fabs(v.y); cardinalAxis = (Vector3){0.0f, 1.0f, 0.0f}; } if(fabs(v.z) < min) { cardinalAxis = (Vector3){0.0f, 0.0f, 1.0f}; } result = VectorCrossProduct(v, cardinalAxis); return result; } // Calculate two vectors dot product float VectorDotProduct(Vector3 v1, Vector3 v2) { float result; result = v1.x*v2.x + v1.y*v2.y + v1.z*v2.z; return result; } // Calculate vector lenght float VectorLength(const Vector3 v) { float length; length = sqrt(v.x*v.x + v.y*v.y + v.z*v.z); return length; } // Scale provided vector void VectorScale(Vector3 *v, float scale) { v->x *= scale; v->y *= scale; v->z *= scale; } // Negate provided vector (invert direction) void VectorNegate(Vector3 *v) { v->x = -v->x; v->y = -v->y; v->z = -v->z; } // Normalize provided vector void VectorNormalize(Vector3 *v) { float length, ilength; length = VectorLength(*v); if (length == 0) length = 1; ilength = 1.0/length; v->x *= ilength; v->y *= ilength; v->z *= ilength; } // Calculate distance between two points float VectorDistance(Vector3 v1, Vector3 v2) { float result; float dx = v2.x - v1.x; float dy = v2.y - v1.y; float dz = v2.z - v1.z; result = sqrt(dx*dx + dy*dy + dz*dz); return result; } // Calculate linear interpolation between two vectors Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount) { Vector3 result; result.x = v1.x + amount * (v2.x - v1.x); result.y = v1.y + amount * (v2.y - v1.y); result.z = v1.z + amount * (v2.z - v1.z); return result; } // Calculate reflected vector to normal Vector3 VectorReflect(Vector3 vector, Vector3 normal) { // I is the original vector // N is the normal of the incident plane // R = I - (2 * N * ( DotProduct[ I,N] )) Vector3 result; float dotProduct = VectorDotProduct(vector, normal); result.x = vector.x - (2.0 * normal.x) * dotProduct; result.y = vector.y - (2.0 * normal.y) * dotProduct; result.z = vector.z - (2.0 * normal.z) * dotProduct; return result; } // Transforms a Vector3 with a given Matrix void VectorTransform(Vector3 *v, Matrix mat) { float x = v->x; float y = v->y; float z = v->z; //MatrixTranspose(&mat); v->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12; v->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13; v->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14; }; // Return a Vector3 init to zero Vector3 VectorZero(void) { Vector3 zero = { 0.0f, 0.0f, 0.0f }; return zero; } //---------------------------------------------------------------------------------- // Module Functions Definition - Matrix math //---------------------------------------------------------------------------------- // Returns an OpenGL-ready vector (glMultMatrixf) float *GetMatrixVector(Matrix mat) { static float vector[16]; vector[0] = mat.m0; vector[1] = mat.m4; vector[2] = mat.m8; vector[3] = mat.m12; vector[4] = mat.m1; vector[5] = mat.m5; vector[6] = mat.m9; vector[7] = mat.m13; vector[8] = mat.m2; vector[9] = mat.m6; vector[10] = mat.m10; vector[11] = mat.m14; vector[12] = mat.m3; vector[13] = mat.m7; vector[14] = mat.m11; vector[15] = mat.m15; return vector; } // Compute matrix determinant float MatrixDeterminant(Matrix mat) { float result; // Cache the matrix values (speed optimization) float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15; result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 + a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 + a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 + a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 + a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 + a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33; return result; } // Returns the trace of the matrix (sum of the values along the diagonal) float MatrixTrace(Matrix mat) { return (mat.m0 + mat.m5 + mat.m10 + mat.m15); } // Transposes provided matrix void MatrixTranspose(Matrix *mat) { Matrix temp; temp.m0 = mat->m0; temp.m1 = mat->m4; temp.m2 = mat->m8; temp.m3 = mat->m12; temp.m4 = mat->m1; temp.m5 = mat->m5; temp.m6 = mat->m9; temp.m7 = mat->m13; temp.m8 = mat->m2; temp.m9 = mat->m6; temp.m10 = mat->m10; temp.m11 = mat->m14; temp.m12 = mat->m3; temp.m13 = mat->m7; temp.m14 = mat->m11; temp.m15 = mat->m15; *mat = temp; } // Invert provided matrix void MatrixInvert(Matrix *mat) { Matrix temp; // Cache the matrix values (speed optimization) float a00 = mat->m0, a01 = mat->m1, a02 = mat->m2, a03 = mat->m3; float a10 = mat->m4, a11 = mat->m5, a12 = mat->m6, a13 = mat->m7; float a20 = mat->m8, a21 = mat->m9, a22 = mat->m10, a23 = mat->m11; float a30 = mat->m12, a31 = mat->m13, a32 = mat->m14, a33 = mat->m15; float b00 = a00*a11 - a01*a10; float b01 = a00*a12 - a02*a10; float b02 = a00*a13 - a03*a10; float b03 = a01*a12 - a02*a11; float b04 = a01*a13 - a03*a11; float b05 = a02*a13 - a03*a12; float b06 = a20*a31 - a21*a30; float b07 = a20*a32 - a22*a30; float b08 = a20*a33 - a23*a30; float b09 = a21*a32 - a22*a31; float b10 = a21*a33 - a23*a31; float b11 = a22*a33 - a23*a32; // Calculate the invert determinant (inlined to avoid double-caching) float invDet = 1/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06); printf("%f\n", invDet); temp.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet; temp.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet; temp.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet; temp.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet; temp.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet; temp.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet; temp.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet; temp.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet; temp.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet; temp.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet; temp.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet; temp.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet; temp.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet; temp.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet; temp.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet; temp.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet; PrintMatrix(temp); *mat = temp; } // Normalize provided matrix void MatrixNormalize(Matrix *mat) { float det = MatrixDeterminant(*mat); mat->m0 /= det; mat->m1 /= det; mat->m2 /= det; mat->m3 /= det; mat->m4 /= det; mat->m5 /= det; mat->m6 /= det; mat->m7 /= det; mat->m8 /= det; mat->m9 /= det; mat->m10 /= det; mat->m11 /= det; mat->m12 /= det; mat->m13 /= det; mat->m14 /= det; mat->m15 /= det; } // Returns identity matrix Matrix MatrixIdentity(void) { Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 }; return result; } // Add two matrices Matrix MatrixAdd(Matrix left, Matrix right) { Matrix result = MatrixIdentity(); result.m0 = left.m0 + right.m0; result.m1 = left.m1 + right.m1; result.m2 = left.m2 + right.m2; result.m3 = left.m3 + right.m3; result.m4 = left.m4 + right.m4; result.m5 = left.m5 + right.m5; result.m6 = left.m6 + right.m6; result.m7 = left.m7 + right.m7; result.m8 = left.m8 + right.m8; result.m9 = left.m9 + right.m9; result.m10 = left.m10 + right.m10; result.m11 = left.m11 + right.m11; result.m12 = left.m12 + right.m12; result.m13 = left.m13 + right.m13; result.m14 = left.m14 + right.m14; result.m15 = left.m15 + right.m15; return result; } // Substract two matrices (left - right) Matrix MatrixSubstract(Matrix left, Matrix right) { Matrix result = MatrixIdentity(); result.m0 = left.m0 - right.m0; result.m1 = left.m1 - right.m1; result.m2 = left.m2 - right.m2; result.m3 = left.m3 - right.m3; result.m4 = left.m4 - right.m4; result.m5 = left.m5 - right.m5; result.m6 = left.m6 - right.m6; result.m7 = left.m7 - right.m7; result.m8 = left.m8 - right.m8; result.m9 = left.m9 - right.m9; result.m10 = left.m10 - right.m10; result.m11 = left.m11 - right.m11; result.m12 = left.m12 - right.m12; result.m13 = left.m13 - right.m13; result.m14 = left.m14 - right.m14; result.m15 = left.m15 - right.m15; return result; } // Returns translation matrix // TODO: Review this function Matrix MatrixTranslate(float x, float y, float z) { /* For OpenGL 1, 0, 0, 0 0, 1, 0, 0 0, 0, 1, 0 x, y, z, 1 Is the correct Translation Matrix. Why? Opengl Uses column-major matrix ordering. Which is the Transpose of the Matrix you initially presented, which is in row-major ordering. Row major is used in most math text-books and also DirectX, so it is a common point of confusion for those new to OpenGL. * matrix notation used in opengl documentation does not describe in-memory layout for OpenGL matrices Translation matrix should be laid out in memory like this: { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, trabsX, transY, transZ, 1 } 9.005 Are OpenGL matrices column-major or row-major? For programming purposes, OpenGL matrices are 16-value arrays with base vectors laid out contiguously in memory. The translation components occupy the 13th, 14th, and 15th elements of the 16-element matrix, where indices are numbered from 1 to 16 as described in section 2.11.2 of the OpenGL 2.1 Specification. Column-major versus row-major is purely a notational convention. Note that post-multiplying with column-major matrices produces the same result as pre-multiplying with row-major matrices. The OpenGL Specification and the OpenGL Reference Manual both use column-major notation. You can use any notation, as long as it's clearly stated. Sadly, the use of column-major format in the spec and blue book has resulted in endless confusion in the OpenGL programming community. Column-major notation suggests that matrices are not laid out in memory as a programmer would expect. */ Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 }; return result; } // Returns rotation matrix // TODO: Review this function Matrix MatrixRotate(float angleX, float angleY, float angleZ) { Matrix result; Matrix rotX = MatrixRotateX(angleX); Matrix rotY = MatrixRotateY(angleY); Matrix rotZ = MatrixRotateZ(angleZ); result = MatrixMultiply(MatrixMultiply(rotX, rotY), rotZ); return result; } // Create rotation matrix from axis and angle // TODO: Test this function // NOTE: NO prototype defined! Matrix MatrixFromAxisAngle(Vector3 axis, float angle) { Matrix result; Matrix mat = MatrixIdentity(); float x = axis.x, y = axis.y, z = axis.z; float length = sqrt(x*x + y*y + z*z); if ((length != 1) && (length != 0)) { length = 1 / length; x *= length; y *= length; z *= length; } float s = sin(angle); float c = cos(angle); float t = 1-c; // Cache some matrix values (speed optimization) float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; // Construct the elements of the rotation matrix float b00 = x*x*t + c, b01 = y*x*t + z*s, b02 = z*x*t - y*s; float b10 = x*y*t - z*s, b11 = y*y*t + c, b12 = z*y*t + x*s; float b20 = x*z*t + y*s, b21 = y*z*t - x*s, b22 = z*z*t + c; // Perform rotation-specific matrix multiplication result.m0 = a00*b00 + a10*b01 + a20*b02; result.m1 = a01*b00 + a11*b01 + a21*b02; result.m2 = a02*b00 + a12*b01 + a22*b02; result.m3 = a03*b00 + a13*b01 + a23*b02; result.m4 = a00*b10 + a10*b11 + a20*b12; result.m5 = a01*b10 + a11*b11 + a21*b12; result.m6 = a02*b10 + a12*b11 + a22*b12; result.m7 = a03*b10 + a13*b11 + a23*b12; result.m8 = a00*b20 + a10*b21 + a20*b22; result.m9 = a01*b20 + a11*b21 + a21*b22; result.m10 = a02*b20 + a12*b21 + a22*b22; result.m11 = a03*b20 + a13*b21 + a23*b22; result.m12 = mat.m12; result.m13 = mat.m13; result.m14 = mat.m14; result.m15 = mat.m15; return result; }; // Create rotation matrix from axis and angle (version 2) // TODO: Test this function // NOTE: NO prototype defined! Matrix MatrixFromAxisAngle2(Vector3 axis, float angle) { Matrix result; VectorNormalize(&axis); float axisX = axis.x, axisY = axis.y, axisZ = axis.y; // Calculate angles float cosres = (float)cos(-angle); float sinres = (float)sin(-angle); float t = 1.0f - cosres; // Do the conversion math once float tXX = t * axisX * axisX; float tXY = t * axisX * axisY; float tXZ = t * axisX * axisZ; float tYY = t * axisY * axisY; float tYZ = t * axisY * axisZ; float tZZ = t * axisZ * axisZ; float sinX = sinres * axisX; float sinY = sinres * axisY; float sinZ = sinres * axisZ; result.m0 = tXX + cosres; result.m1 = tXY + sinZ; result.m2 = tXZ - sinY; result.m3 = 0; result.m4 = tXY - sinZ; result.m5 = tYY + cosres; result.m6 = tYZ + sinX; result.m7 = 0; result.m8 = tXZ + sinY; result.m9 = tYZ - sinX; result.m10 = tZZ + cosres; result.m11 = 0; result.m12 = 0; result.m13 = 0; result.m14 = 0; result.m15 = 1; return result; } // Returns rotation matrix for a given quaternion Matrix MatrixFromQuaternion(Quaternion q) { Matrix result = MatrixIdentity(); Vector3 axis; float angle; QuaternionToAxisAngle(q, &axis, &angle); result = MatrixFromAxisAngle2(axis, angle); return result; } // Returns x-rotation matrix (angle in radians) Matrix MatrixRotateX(float angle) { Matrix result = MatrixIdentity(); float cosres = (float)cos(angle); float sinres = (float)sin(angle); result.m5 = cosres; result.m6 = -sinres; result.m9 = sinres; result.m10 = cosres; return result; } // Returns y-rotation matrix (angle in radians) Matrix MatrixRotateY(float angle) { Matrix result = MatrixIdentity(); float cosres = (float)cos(angle); float sinres = (float)sin(angle); result.m0 = cosres; result.m2 = sinres; result.m8 = -sinres; result.m10 = cosres; return result; } // Returns z-rotation matrix (angle in radians) Matrix MatrixRotateZ(float angle) { Matrix result = MatrixIdentity(); float cosres = (float)cos(angle); float sinres = (float)sin(angle); result.m0 = cosres; result.m1 = -sinres; result.m4 = sinres; result.m5 = cosres; return result; } // Returns scaling matrix Matrix MatrixScale(float x, float y, float z) { Matrix result = { x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 }; return result; } // Returns transformation matrix for a given translation, rotation and scale // NOTE: Transformation order is rotation -> scale -> translation Matrix MatrixTransform(Vector3 translation, Vector3 rotation, Vector3 scale) { Matrix result = MatrixIdentity(); Matrix mRotation = MatrixRotate(rotation.x, rotation.y, rotation.z); Matrix mScale = MatrixScale(scale.x, scale.y, scale.z); Matrix mTranslate = MatrixTranslate(translation.x, translation.y, translation.z); result = MatrixMultiply(MatrixMultiply(mRotation, mScale), mTranslate); return result; } // Returns two matrix multiplication // NOTE: When multiplying matrices... the order matters! Matrix MatrixMultiply(Matrix left, Matrix right) { Matrix result; // Cache the matrix values (speed optimization) float a00 = left.m0, a01 = left.m1, a02 = left.m2, a03 = left.m3; float a10 = left.m4, a11 = left.m5, a12 = left.m6, a13 = left.m7; float a20 = left.m8, a21 = left.m9, a22 = left.m10, a23 = left.m11; float a30 = left.m12, a31 = left.m13, a32 = left.m14, a33 = left.m15; float b00 = right.m0, b01 = right.m1, b02 = right.m2, b03 = right.m3; float b10 = right.m4, b11 = right.m5, b12 = right.m6, b13 = right.m7; float b20 = right.m8, b21 = right.m9, b22 = right.m10, b23 = right.m11; float b30 = right.m12, b31 = right.m13, b32 = right.m14, b33 = right.m15; result.m0 = b00*a00 + b01*a10 + b02*a20 + b03*a30; result.m1 = b00*a01 + b01*a11 + b02*a21 + b03*a31; result.m2 = b00*a02 + b01*a12 + b02*a22 + b03*a32; result.m3 = b00*a03 + b01*a13 + b02*a23 + b03*a33; result.m4 = b10*a00 + b11*a10 + b12*a20 + b13*a30; result.m5 = b10*a01 + b11*a11 + b12*a21 + b13*a31; result.m6 = b10*a02 + b11*a12 + b12*a22 + b13*a32; result.m7 = b10*a03 + b11*a13 + b12*a23 + b13*a33; result.m8 = b20*a00 + b21*a10 + b22*a20 + b23*a30; result.m9 = b20*a01 + b21*a11 + b22*a21 + b23*a31; result.m10 = b20*a02 + b21*a12 + b22*a22 + b23*a32; result.m11 = b20*a03 + b21*a13 + b22*a23 + b23*a33; result.m12 = b30*a00 + b31*a10 + b32*a20 + b33*a30; result.m13 = b30*a01 + b31*a11 + b32*a21 + b33*a31; result.m14 = b30*a02 + b31*a12 + b32*a22 + b33*a32; result.m15 = b30*a03 + b31*a13 + b32*a23 + b33*a33; return result; } // Returns perspective projection matrix Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far) { Matrix result; float rl = (right - left); float tb = (top - bottom); float fn = (far - near); result.m0 = (near*2.0f) / rl; result.m1 = 0; result.m2 = 0; result.m3 = 0; result.m4 = 0; result.m5 = (near*2.0f) / tb; result.m6 = 0; result.m7 = 0; result.m8 = (right + left) / rl; result.m9 = (top + bottom) / tb; result.m10 = -(far + near) / fn; result.m11 = -1.0f; result.m12 = 0; result.m13 = 0; result.m14 = -(far*near*2.0f) / fn; result.m15 = 0; return result; } // Returns perspective projection matrix Matrix MatrixPerspective(double fovy, double aspect, double near, double far) { double top = near*tanf(fovy*PI / 360.0f); double right = top*aspect; return MatrixFrustum(-right, right, -top, top, near, far); } // Returns orthographic projection matrix Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far) { Matrix result; float rl = (right - left); float tb = (top - bottom); float fn = (far - near); result.m0 = 2 / rl; result.m1 = 0; result.m2 = 0; result.m3 = 0; result.m4 = 0; result.m5 = 2 / tb; result.m6 = 0; result.m7 = 0; result.m8 = 0; result.m9 = 0; result.m10 = -2 / fn; result.m11 = 0; result.m12 = -(left + right) / rl; result.m13 = -(top + bottom) / tb; result.m14 = -(far + near) / fn; result.m15 = 1; return result; } // Returns camera look-at matrix (view matrix) Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) { Matrix result; Vector3 z = VectorSubtract(eye, target); VectorNormalize(&z); Vector3 x = VectorCrossProduct(up, z); VectorNormalize(&x); Vector3 y = VectorCrossProduct(z, x); VectorNormalize(&y); result.m0 = x.x; result.m1 = x.y; result.m2 = x.z; result.m3 = -((x.x * eye.x) + (x.y * eye.y) + (x.z * eye.z)); result.m4 = y.x; result.m5 = y.y; result.m6 = y.z; result.m7 = -((y.x * eye.x) + (y.y * eye.y) + (y.z * eye.z)); result.m8 = z.x; result.m9 = z.y; result.m10 = z.z; result.m11 = -((z.x * eye.x) + (z.y * eye.y) + (z.z * eye.z)); result.m12 = 0; result.m13 = 0; result.m14 = 0; result.m15 = 1; return result; } // Print matrix utility (for debug) void PrintMatrix(Matrix m) { printf("----------------------\n"); printf("%2.2f %2.2f %2.2f %2.2f\n", m.m0, m.m4, m.m8, m.m12); printf("%2.2f %2.2f %2.2f %2.2f\n", m.m1, m.m5, m.m9, m.m13); printf("%2.2f %2.2f %2.2f %2.2f\n", m.m2, m.m6, m.m10, m.m14); printf("%2.2f %2.2f %2.2f %2.2f\n", m.m3, m.m7, m.m11, m.m15); printf("----------------------\n"); } //---------------------------------------------------------------------------------- // Module Functions Definition - Quaternion math //---------------------------------------------------------------------------------- // Calculates the length of a quaternion float QuaternionLength(Quaternion quat) { return sqrt(quat.x*quat.x + quat.y*quat.y + quat.z*quat.z + quat.w*quat.w); } // Normalize provided quaternion void QuaternionNormalize(Quaternion *q) { float length, ilength; length = QuaternionLength(*q); if (length == 0) length = 1; ilength = 1.0/length; q->x *= ilength; q->y *= ilength; q->z *= ilength; q->w *= ilength; } // Calculate two quaternion multiplication Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2) { Quaternion result; float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w; float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w; result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby; result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz; result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx; result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz; return result; } // Calculates spherical linear interpolation between two quaternions Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount) { Quaternion result; float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w; if (abs(cosHalfTheta) >= 1.0f) result = q1; else { float halfTheta = acos(cosHalfTheta); float sinHalfTheta = sqrt(1.0f - cosHalfTheta*cosHalfTheta); if (abs(sinHalfTheta) < 0.001f) { result.x = (q1.x*0.5f + q2.x*0.5f); result.y = (q1.y*0.5f + q2.y*0.5f); result.z = (q1.z*0.5f + q2.z*0.5f); result.w = (q1.w*0.5f + q2.w*0.5f); } else { float ratioA = sin((1 - amount)*halfTheta) / sinHalfTheta; float ratioB = sin(amount*halfTheta) / sinHalfTheta; result.x = (q1.x*ratioA + q2.x*ratioB); result.y = (q1.y*ratioA + q2.y*ratioB); result.z = (q1.z*ratioA + q2.z*ratioB); result.w = (q1.w*ratioA + q2.w*ratioB); } } return result; } // Returns a quaternion from a given rotation matrix Quaternion QuaternionFromMatrix(Matrix matrix) { Quaternion result; float trace = MatrixTrace(matrix); if (trace > 0) { float s = (float)sqrt(trace + 1) * 2; float invS = 1 / s; result.w = s * 0.25; result.x = (matrix.m6 - matrix.m9) * invS; result.y = (matrix.m8 - matrix.m2) * invS; result.z = (matrix.m1 - matrix.m4) * invS; } else { float m00 = matrix.m0, m11 = matrix.m5, m22 = matrix.m10; if (m00 > m11 && m00 > m22) { float s = (float)sqrt(1 + m00 - m11 - m22) * 2; float invS = 1 / s; result.w = (matrix.m6 - matrix.m9) * invS; result.x = s * 0.25; result.y = (matrix.m4 + matrix.m1) * invS; result.z = (matrix.m8 + matrix.m2) * invS; } else if (m11 > m22) { float s = (float)sqrt(1 + m11 - m00 - m22) * 2; float invS = 1 / s; result.w = (matrix.m8 - matrix.m2) * invS; result.x = (matrix.m4 + matrix.m1) * invS; result.y = s * 0.25; result.z = (matrix.m9 + matrix.m6) * invS; } else { float s = (float)sqrt(1 + m22 - m00 - m11) * 2; float invS = 1 / s; result.w = (matrix.m1 - matrix.m4) * invS; result.x = (matrix.m8 + matrix.m2) * invS; result.y = (matrix.m9 + matrix.m6) * invS; result.z = s * 0.25; } } return result; } // Returns rotation quaternion for an angle around an axis // NOTE: angle must be provided in radians Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle) { Quaternion result = { 0, 0, 0, 1 }; if (VectorLength(axis) != 0.0) angle *= 0.5; VectorNormalize(&axis); result.x = axis.x * (float)sin(angle); result.y = axis.y * (float)sin(angle); result.z = axis.z * (float)sin(angle); result.w = (float)cos(angle); QuaternionNormalize(&result); return result; } // Calculates the matrix from the given quaternion Matrix QuaternionToMatrix(Quaternion q) { Matrix result; float x = q.x, y = q.y, z = q.z, w = q.w; float x2 = x + x; float y2 = y + y; float z2 = z + z; float xx = x*x2; float xy = x*y2; float xz = x*z2; float yy = y*y2; float yz = y*z2; float zz = z*z2; float wx = w*x2; float wy = w*y2; float wz = w*z2; result.m0 = 1 - (yy + zz); result.m1 = xy - wz; result.m2 = xz + wy; result.m3 = 0; result.m4 = xy + wz; result.m5 = 1 - (xx + zz); result.m6 = yz - wx; result.m7 = 0; result.m8 = xz - wy; result.m9 = yz + wx; result.m10 = 1 - (xx + yy); result.m11 = 0; result.m12 = 0; result.m13 = 0; result.m14 = 0; result.m15 = 1; return result; } // Returns the axis and the angle for a given quaternion void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle) { if (abs(q.w) > 1.0f) QuaternionNormalize(&q); Vector3 resAxis = { 0, 0, 0 }; float resAngle = 0; resAngle = 2.0f * (float)acos(q.w); float den = (float)sqrt(1.0 - q.w * q.w); if (den > 0.0001f) { resAxis.x = q.x / den; resAxis.y = q.y / den; resAxis.z = q.z / den; } else { // This occurs when the angle is zero. // Not a problem: just set an arbitrary normalized axis. resAxis.x = 1.0; } *outAxis = resAxis; *outAngle = resAngle; }