| #version 100 | |
| 
 | |
| precision mediump float; | |
| 
 | |
| varying vec3 fragPosition; | |
| varying vec2 fragTexCoord; | |
| varying vec4 fragColor; | |
| varying vec3 fragNormal; | |
| 
 | |
| uniform sampler2D texture0; | |
| uniform sampler2D texture1; | |
| uniform sampler2D texture2; | |
| 
 | |
| uniform vec4 colAmbient; | |
| uniform vec4 colDiffuse; | |
| uniform vec4 colSpecular; | |
| uniform float glossiness; | |
| 
 | |
| uniform int useNormal; | |
| uniform int useSpecular; | |
| 
 | |
| uniform mat4 modelMatrix; | |
| uniform vec3 viewDir; | |
| 
 | |
| struct Light { | |
|     int enabled; | |
|     int type; | |
|     vec3 position; | |
|     vec3 direction; | |
|     vec4 diffuse; | |
|     float intensity; | |
|     float radius; | |
|     float coneAngle; | |
| }; | |
| 
 | |
| const int maxLights = 8; | |
| uniform Light lights[maxLights]; | |
| 
 | |
| vec3 ComputeLightPoint(Light l, vec3 n, vec3 v, float s) | |
| { | |
|     vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1.0)); | |
|     vec3 surfaceToLight = l.position - surfacePos; | |
|      | |
|     // Diffuse shading | |
|     float brightness = clamp(float(dot(n, surfaceToLight)/(length(surfaceToLight)*length(n))), 0.0, 1.0); | |
|     float diff = 1.0/dot(surfaceToLight/l.radius, surfaceToLight/l.radius)*brightness*l.intensity; | |
|      | |
|     // Specular shading | |
|     float spec = 0.0; | |
|     if (diff > 0.0) | |
|     { | |
|         vec3 h = normalize(-l.direction + v); | |
|         spec = pow(abs(dot(n, h)), 3.0 + glossiness)*s; | |
|     } | |
|      | |
|     return (diff*l.diffuse.rgb + spec*colSpecular.rgb); | |
| } | |
| 
 | |
| vec3 ComputeLightDirectional(Light l, vec3 n, vec3 v, float s) | |
| { | |
|     vec3 lightDir = normalize(-l.direction); | |
|      | |
|     // Diffuse shading | |
|     float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity; | |
|      | |
|     // Specular shading | |
|     float spec = 0.0; | |
|     if (diff > 0.0) | |
|     { | |
|         vec3 h = normalize(lightDir + v); | |
|         spec = pow(abs(dot(n, h)), 3.0 + glossiness)*s; | |
|     } | |
|      | |
|     // Combine results | |
|     return (diff*l.intensity*l.diffuse.rgb + spec*colSpecular.rgb); | |
| } | |
| 
 | |
| vec3 ComputeLightSpot(Light l, vec3 n, vec3 v, float s) | |
| { | |
|     vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1)); | |
|     vec3 lightToSurface = normalize(surfacePos - l.position); | |
|     vec3 lightDir = normalize(-l.direction); | |
|      | |
|     // Diffuse shading | |
|     float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity; | |
|      | |
|     // Spot attenuation | |
|     float attenuation = clamp(float(dot(n, lightToSurface)), 0.0, 1.0); | |
|     attenuation = dot(lightToSurface, -lightDir); | |
|      | |
|     float lightToSurfaceAngle = degrees(acos(attenuation)); | |
|     if (lightToSurfaceAngle > l.coneAngle) attenuation = 0.0; | |
|      | |
|     float falloff = (l.coneAngle - lightToSurfaceAngle)/l.coneAngle; | |
|      | |
|     // Combine diffuse and attenuation | |
|     float diffAttenuation = diff*attenuation; | |
|      | |
|     // Specular shading | |
|     float spec = 0.0; | |
|     if (diffAttenuation > 0.0) | |
|     { | |
|         vec3 h = normalize(lightDir + v); | |
|         spec = pow(abs(dot(n, h)), 3.0 + glossiness)*s; | |
|     } | |
|      | |
|     return (falloff*(diffAttenuation*l.diffuse.rgb + spec*colSpecular.rgb)); | |
| } | |
| 
 | |
| void main() | |
| { | |
|     // Calculate fragment normal in screen space | |
|     // NOTE: important to multiply model matrix by fragment normal to apply model transformation (rotation and scale) | |
|     mat3 normalMatrix = mat3(modelMatrix); | |
|     vec3 normal = normalize(normalMatrix*fragNormal); | |
| 
 | |
|     // Normalize normal and view direction vectors | |
|     vec3 n = normalize(normal); | |
|     vec3 v = normalize(viewDir); | |
| 
 | |
|     // Calculate diffuse texture color fetching | |
|     vec4 texelColor = texture2D(texture0, fragTexCoord); | |
|     vec3 lighting = colAmbient.rgb; | |
|      | |
|     // Calculate normal texture color fetching or set to maximum normal value by default | |
|     if (useNormal == 1) | |
|     { | |
|         n *= texture2D(texture1, fragTexCoord).rgb; | |
|         n = normalize(n); | |
|     } | |
|      | |
|     // Calculate specular texture color fetching or set to maximum specular value by default | |
|     float spec = 1.0; | |
|     if (useSpecular == 1) spec = texture2D(texture2, fragTexCoord).r; | |
|      | |
|     for (int i = 0; i < maxLights; i++) | |
|     { | |
|         // Check if light is enabled | |
|         if (lights[i].enabled == 1) | |
|         { | |
|             // Calculate lighting based on light type | |
|             if(lights[i].type == 0) lighting += ComputeLightPoint(lights[i], n, v, spec); | |
|             else if(lights[i].type == 1) lighting += ComputeLightDirectional(lights[i], n, v, spec); | |
|             else if(lights[i].type == 2) lighting += ComputeLightSpot(lights[i], n, v, spec); | |
|              | |
|             // NOTE: It seems that too many ComputeLight*() operations inside for loop breaks the shader on RPI | |
|         } | |
|     } | |
|      | |
|     // Calculate final fragment color | |
|     gl_FragColor = vec4(texelColor.rgb*lighting*colDiffuse.rgb, texelColor.a*colDiffuse.a); | |
| }
 |