Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.
 
 
 
 
 
 

5207 рядки
207 KiB

/**********************************************************************************************
*
* rtextures - Basic functions to load and draw textures
*
* CONFIGURATION:
* #define SUPPORT_MODULE_RTEXTURES
* rtextures module is included in the build
*
* #define SUPPORT_FILEFORMAT_BMP
* #define SUPPORT_FILEFORMAT_PNG
* #define SUPPORT_FILEFORMAT_TGA
* #define SUPPORT_FILEFORMAT_JPG
* #define SUPPORT_FILEFORMAT_GIF
* #define SUPPORT_FILEFORMAT_QOI
* #define SUPPORT_FILEFORMAT_PSD
* #define SUPPORT_FILEFORMAT_HDR
* #define SUPPORT_FILEFORMAT_PIC
* #define SUPPORT_FILEFORMAT_PNM
* #define SUPPORT_FILEFORMAT_DDS
* #define SUPPORT_FILEFORMAT_PKM
* #define SUPPORT_FILEFORMAT_KTX
* #define SUPPORT_FILEFORMAT_PVR
* #define SUPPORT_FILEFORMAT_ASTC
* Select desired fileformats to be supported for image data loading. Some of those formats are
* supported by default, to remove support, just comment unrequired #define in this module
*
* #define SUPPORT_IMAGE_EXPORT
* Support image export in multiple file formats
*
* #define SUPPORT_IMAGE_MANIPULATION
* Support multiple image editing functions to scale, adjust colors, flip, draw on images, crop...
* If not defined only some image editing functions supported: ImageFormat(), ImageAlphaMask(), ImageResize*()
*
* #define SUPPORT_IMAGE_GENERATION
* Support procedural image generation functionality (gradient, spot, perlin-noise, cellular)
*
* DEPENDENCIES:
* stb_image - Multiple image formats loading (JPEG, PNG, BMP, TGA, PSD, GIF, PIC)
* NOTE: stb_image has been slightly modified to support Android platform.
* stb_image_resize - Multiple image resize algorithms
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2013-2024 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#include "raylib.h" // Declares module functions
// Check if config flags have been externally provided on compilation line
#if !defined(EXTERNAL_CONFIG_FLAGS)
#include "config.h" // Defines module configuration flags
#endif
#if defined(SUPPORT_MODULE_RTEXTURES)
#include "utils.h" // Required for: TRACELOG()
#include "rlgl.h" // OpenGL abstraction layer to multiple versions
#include <stdlib.h> // Required for: malloc(), calloc(), free()
#include <string.h> // Required for: strlen() [Used in ImageTextEx()], strcmp() [Used in LoadImageFromMemory()/LoadImageAnimFromMemory()/ExportImageToMemory()]
#include <math.h> // Required for: fabsf() [Used in DrawTextureRec()]
#include <stdio.h> // Required for: sprintf() [Used in ExportImageAsCode()]
// Support only desired texture formats on stb_image
#if !defined(SUPPORT_FILEFORMAT_BMP)
#define STBI_NO_BMP
#endif
#if !defined(SUPPORT_FILEFORMAT_PNG)
#define STBI_NO_PNG
#endif
#if !defined(SUPPORT_FILEFORMAT_TGA)
#define STBI_NO_TGA
#endif
#if !defined(SUPPORT_FILEFORMAT_JPG)
#define STBI_NO_JPEG // Image format .jpg and .jpeg
#endif
#if !defined(SUPPORT_FILEFORMAT_PSD)
#define STBI_NO_PSD
#endif
#if !defined(SUPPORT_FILEFORMAT_GIF)
#define STBI_NO_GIF
#endif
#if !defined(SUPPORT_FILEFORMAT_PIC)
#define STBI_NO_PIC
#endif
#if !defined(SUPPORT_FILEFORMAT_HDR)
#define STBI_NO_HDR
#endif
#if !defined(SUPPORT_FILEFORMAT_PNM)
#define STBI_NO_PNM
#endif
#if defined(SUPPORT_FILEFORMAT_DDS)
#define RL_GPUTEX_SUPPORT_DDS
#endif
#if defined(SUPPORT_FILEFORMAT_PKM)
#define RL_GPUTEX_SUPPORT_PKM
#endif
#if defined(SUPPORT_FILEFORMAT_KTX)
#define RL_GPUTEX_SUPPORT_KTX
#endif
#if defined(SUPPORT_FILEFORMAT_PVR)
#define RL_GPUTEX_SUPPORT_PVR
#endif
#if defined(SUPPORT_FILEFORMAT_ASTC)
#define RL_GPUTEX_SUPPORT_ASTC
#endif
// Image fileformats not supported by default
#if defined(__TINYC__)
#define STBI_NO_SIMD
#endif
#if (defined(SUPPORT_FILEFORMAT_BMP) || \
defined(SUPPORT_FILEFORMAT_PNG) || \
defined(SUPPORT_FILEFORMAT_TGA) || \
defined(SUPPORT_FILEFORMAT_JPG) || \
defined(SUPPORT_FILEFORMAT_PSD) || \
defined(SUPPORT_FILEFORMAT_GIF) || \
defined(SUPPORT_FILEFORMAT_HDR) || \
defined(SUPPORT_FILEFORMAT_PIC) || \
defined(SUPPORT_FILEFORMAT_PNM))
#if defined(__GNUC__) // GCC and Clang
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
#endif
#define STBI_MALLOC RL_MALLOC
#define STBI_FREE RL_FREE
#define STBI_REALLOC RL_REALLOC
#define STBI_NO_THREAD_LOCALS
#define STB_IMAGE_IMPLEMENTATION
#include "external/stb_image.h" // Required for: stbi_load_from_file()
// NOTE: Used to read image data (multiple formats support)
#if defined(__GNUC__) // GCC and Clang
#pragma GCC diagnostic pop
#endif
#endif
#if (defined(SUPPORT_FILEFORMAT_DDS) || \
defined(SUPPORT_FILEFORMAT_PKM) || \
defined(SUPPORT_FILEFORMAT_KTX) || \
defined(SUPPORT_FILEFORMAT_PVR) || \
defined(SUPPORT_FILEFORMAT_ASTC))
#if defined(__GNUC__) // GCC and Clang
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
#endif
#define RL_GPUTEX_IMPLEMENTATION
#include "external/rl_gputex.h" // Required for: rl_load_xxx_from_memory()
// NOTE: Used to read compressed textures data (multiple formats support)
#if defined(__GNUC__) // GCC and Clang
#pragma GCC diagnostic pop
#endif
#endif
#if defined(SUPPORT_FILEFORMAT_QOI)
#define QOI_MALLOC RL_MALLOC
#define QOI_FREE RL_FREE
#if defined(_MSC_VER) // Disable some MSVC warning
#pragma warning(push)
#pragma warning(disable : 4267)
#endif
#define QOI_IMPLEMENTATION
#include "external/qoi.h"
#if defined(_MSC_VER)
#pragma warning(pop) // Disable MSVC warning suppression
#endif
#endif
#if defined(SUPPORT_IMAGE_EXPORT)
#define STBIW_MALLOC RL_MALLOC
#define STBIW_FREE RL_FREE
#define STBIW_REALLOC RL_REALLOC
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "external/stb_image_write.h" // Required for: stbi_write_*()
#endif
#if defined(SUPPORT_IMAGE_GENERATION)
#define STB_PERLIN_IMPLEMENTATION
#include "external/stb_perlin.h" // Required for: stb_perlin_fbm_noise3
#endif
#define STBIR_MALLOC(size,c) ((void)(c), RL_MALLOC(size))
#define STBIR_FREE(ptr,c) ((void)(c), RL_FREE(ptr))
#if defined(__GNUC__) // GCC and Clang
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
#endif
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include "external/stb_image_resize2.h" // Required for: stbir_resize_uint8_linear() [ImageResize()]
#if defined(__GNUC__) // GCC and Clang
#pragma GCC diagnostic pop
#endif
#if defined(SUPPORT_FILEFORMAT_SVG)
#define NANOSVG_IMPLEMENTATION // Expands implementation
#include "external/nanosvg.h"
#define NANOSVGRAST_IMPLEMENTATION
#include "external/nanosvgrast.h"
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#ifndef PIXELFORMAT_UNCOMPRESSED_R5G5B5A1_ALPHA_THRESHOLD
#define PIXELFORMAT_UNCOMPRESSED_R5G5B5A1_ALPHA_THRESHOLD 50 // Threshold over 255 to set alpha as 0
#endif
#ifndef GAUSSIAN_BLUR_ITERATIONS
#define GAUSSIAN_BLUR_ITERATIONS 4 // Number of box blur iterations to approximate gaussian blur
#endif
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
// It's lonely here...
//----------------------------------------------------------------------------------
// Other Modules Functions Declaration (required by text)
//----------------------------------------------------------------------------------
extern void LoadFontDefault(void); // [Module: text] Loads default font, required by ImageDrawText()
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static float HalfToFloat(unsigned short x);
static unsigned short FloatToHalf(float x);
static Vector4 *LoadImageDataNormalized(Image image); // Load pixel data from image as Vector4 array (float normalized)
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Load image from file into CPU memory (RAM)
Image LoadImage(const char *fileName)
{
Image image = { 0 };
#if defined(SUPPORT_FILEFORMAT_PNG) || \
defined(SUPPORT_FILEFORMAT_BMP) || \
defined(SUPPORT_FILEFORMAT_TGA) || \
defined(SUPPORT_FILEFORMAT_JPG) || \
defined(SUPPORT_FILEFORMAT_GIF) || \
defined(SUPPORT_FILEFORMAT_PIC) || \
defined(SUPPORT_FILEFORMAT_HDR) || \
defined(SUPPORT_FILEFORMAT_PNM) || \
defined(SUPPORT_FILEFORMAT_PSD)
#define STBI_REQUIRED
#endif
// Loading file to memory
int dataSize = 0;
unsigned char *fileData = LoadFileData(fileName, &dataSize);
// Loading image from memory data
if (fileData != NULL)
{
image = LoadImageFromMemory(GetFileExtension(fileName), fileData, dataSize);
UnloadFileData(fileData);
}
return image;
}
// Load an image from RAW file data
Image LoadImageRaw(const char *fileName, int width, int height, int format, int headerSize)
{
Image image = { 0 };
int dataSize = 0;
unsigned char *fileData = LoadFileData(fileName, &dataSize);
if (fileData != NULL)
{
unsigned char *dataPtr = fileData;
int size = GetPixelDataSize(width, height, format);
if (size <= dataSize) // Security check
{
// Offset file data to expected raw image by header size
if ((headerSize > 0) && ((headerSize + size) <= dataSize)) dataPtr += headerSize;
image.data = RL_MALLOC(size); // Allocate required memory in bytes
memcpy(image.data, dataPtr, size); // Copy required data to image
image.width = width;
image.height = height;
image.mipmaps = 1;
image.format = format;
}
UnloadFileData(fileData);
}
return image;
}
// Load an image from a SVG file or string with custom size
Image LoadImageSvg(const char *fileNameOrString, int width, int height)
{
Image image = { 0 };
#if defined(SUPPORT_FILEFORMAT_SVG)
bool isSvgStringValid = false;
// Validate fileName or string
if (fileNameOrString != NULL)
{
int dataSize = 0;
unsigned char *fileData = NULL;
if (FileExists(fileNameOrString))
{
fileData = LoadFileData(fileNameOrString, &dataSize);
isSvgStringValid = true;
}
else
{
// Validate fileData as valid SVG string data
//<svg xmlns="http://www.w3.org/2000/svg" width="2500" height="2484" viewBox="0 0 192.756 191.488">
if ((fileNameOrString != NULL) &&
(fileNameOrString[0] == '<') &&
(fileNameOrString[1] == 's') &&
(fileNameOrString[2] == 'v') &&
(fileNameOrString[3] == 'g'))
{
fileData = (unsigned char *)fileNameOrString;
isSvgStringValid = true;
}
}
if (isSvgStringValid)
{
struct NSVGimage *svgImage = nsvgParse(fileData, "px", 96.0f);
unsigned char *img = RL_MALLOC(width*height*4);
// Calculate scales for both the width and the height
const float scaleWidth = width/svgImage->width;
const float scaleHeight = height/svgImage->height;
// Set the largest of the 2 scales to be the scale to use
const float scale = (scaleHeight > scaleWidth)? scaleWidth : scaleHeight;
int offsetX = 0;
int offsetY = 0;
if (scaleHeight > scaleWidth) offsetY = (height - svgImage->height*scale)/2;
else offsetX = (width - svgImage->width*scale)/2;
// Rasterize
struct NSVGrasterizer *rast = nsvgCreateRasterizer();
nsvgRasterize(rast, svgImage, (int)offsetX, (int)offsetY, scale, img, width, height, width*4);
// Populate image struct with all data
image.data = img;
image.width = width;
image.height = height;
image.mipmaps = 1;
image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
// Free used memory
nsvgDelete(svgImage);
nsvgDeleteRasterizer(rast);
}
if (isSvgStringValid && (fileData != fileNameOrString)) UnloadFileData(fileData);
}
#else
TRACELOG(LOG_WARNING, "SVG image support not enabled, image can not be loaded");
#endif
return image;
}
// Load animated image data
// - Image.data buffer includes all frames: [image#0][image#1][image#2][...]
// - Number of frames is returned through 'frames' parameter
// - All frames are returned in RGBA format
// - Frames delay data is discarded
Image LoadImageAnim(const char *fileName, int *frames)
{
Image image = { 0 };
int frameCount = 0;
#if defined(SUPPORT_FILEFORMAT_GIF)
if (IsFileExtension(fileName, ".gif"))
{
int dataSize = 0;
unsigned char *fileData = LoadFileData(fileName, &dataSize);
if (fileData != NULL)
{
int comp = 0;
int *delays = NULL;
image.data = stbi_load_gif_from_memory(fileData, dataSize, &delays, &image.width, &image.height, &frameCount, &comp, 4);
image.mipmaps = 1;
image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
UnloadFileData(fileData);
RL_FREE(delays); // NOTE: Frames delays are discarded
}
}
#else
if (false) { }
#endif
else
{
image = LoadImage(fileName);
frameCount = 1;
}
*frames = frameCount;
return image;
}
// Load animated image data
// - Image.data buffer includes all frames: [image#0][image#1][image#2][...]
// - Number of frames is returned through 'frames' parameter
// - All frames are returned in RGBA format
// - Frames delay data is discarded
Image LoadImageAnimFromMemory(const char *fileType, const unsigned char *fileData, int dataSize, int *frames)
{
Image image = { 0 };
int frameCount = 0;
// Security check for input data
if ((fileType == NULL) || (fileData == NULL) || (dataSize == 0)) return image;
#if defined(SUPPORT_FILEFORMAT_GIF)
if ((strcmp(fileType, ".gif") == 0) || (strcmp(fileType, ".GIF") == 0))
{
if (fileData != NULL)
{
int comp = 0;
int *delays = NULL;
image.data = stbi_load_gif_from_memory(fileData, dataSize, &delays, &image.width, &image.height, &frameCount, &comp, 4);
image.mipmaps = 1;
image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
RL_FREE(delays); // NOTE: Frames delays are discarded
}
}
#else
if (false) { }
#endif
else
{
image = LoadImageFromMemory(fileType, fileData, dataSize);
frameCount = 1;
}
*frames = frameCount;
return image;
}
// Load image from memory buffer, fileType refers to extension: i.e. ".png"
// WARNING: File extension must be provided in lower-case
Image LoadImageFromMemory(const char *fileType, const unsigned char *fileData, int dataSize)
{
Image image = { 0 };
// Security check for input data
if ((fileType == NULL) || (fileData == NULL) || (dataSize == 0)) return image;
if ((false)
#if defined(SUPPORT_FILEFORMAT_PNG)
|| (strcmp(fileType, ".png") == 0) || (strcmp(fileType, ".PNG") == 0)
#endif
#if defined(SUPPORT_FILEFORMAT_BMP)
|| (strcmp(fileType, ".bmp") == 0) || (strcmp(fileType, ".BMP") == 0)
#endif
#if defined(SUPPORT_FILEFORMAT_TGA)
|| (strcmp(fileType, ".tga") == 0) || (strcmp(fileType, ".TGA") == 0)
#endif
#if defined(SUPPORT_FILEFORMAT_JPG)
|| (strcmp(fileType, ".jpg") == 0) || (strcmp(fileType, ".jpeg") == 0)
|| (strcmp(fileType, ".JPG") == 0) || (strcmp(fileType, ".JPEG") == 0)
#endif
#if defined(SUPPORT_FILEFORMAT_GIF)
|| (strcmp(fileType, ".gif") == 0) || (strcmp(fileType, ".GIF") == 0)
#endif
#if defined(SUPPORT_FILEFORMAT_PIC)
|| (strcmp(fileType, ".pic") == 0) || (strcmp(fileType, ".PIC") == 0)
#endif
#if defined(SUPPORT_FILEFORMAT_PNM)
|| (strcmp(fileType, ".ppm") == 0) || (strcmp(fileType, ".pgm") == 0)
|| (strcmp(fileType, ".PPM") == 0) || (strcmp(fileType, ".PGM") == 0)
#endif
#if defined(SUPPORT_FILEFORMAT_PSD)
|| (strcmp(fileType, ".psd") == 0) || (strcmp(fileType, ".PSD") == 0)
#endif
)
{
#if defined(STBI_REQUIRED)
// NOTE: Using stb_image to load images (Supports multiple image formats)
if (fileData != NULL)
{
int comp = 0;
image.data = stbi_load_from_memory(fileData, dataSize, &image.width, &image.height, &comp, 0);
if (image.data != NULL)
{
image.mipmaps = 1;
if (comp == 1) image.format = PIXELFORMAT_UNCOMPRESSED_GRAYSCALE;
else if (comp == 2) image.format = PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA;
else if (comp == 3) image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8;
else if (comp == 4) image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
}
}
#endif
}
#if defined(SUPPORT_FILEFORMAT_HDR)
else if ((strcmp(fileType, ".hdr") == 0) || (strcmp(fileType, ".HDR") == 0))
{
#if defined(STBI_REQUIRED)
if (fileData != NULL)
{
int comp = 0;
image.data = stbi_loadf_from_memory(fileData, dataSize, &image.width, &image.height, &comp, 0);
image.mipmaps = 1;
if (comp == 1) image.format = PIXELFORMAT_UNCOMPRESSED_R32;
else if (comp == 3) image.format = PIXELFORMAT_UNCOMPRESSED_R32G32B32;
else if (comp == 4) image.format = PIXELFORMAT_UNCOMPRESSED_R32G32B32A32;
else
{
TRACELOG(LOG_WARNING, "IMAGE: HDR file format not supported");
UnloadImage(image);
}
}
#endif
}
#endif
#if defined(SUPPORT_FILEFORMAT_QOI)
else if ((strcmp(fileType, ".qoi") == 0) || (strcmp(fileType, ".QOI") == 0))
{
if (fileData != NULL)
{
qoi_desc desc = { 0 };
image.data = qoi_decode(fileData, dataSize, &desc, 4);
image.width = desc.width;
image.height = desc.height;
image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
image.mipmaps = 1;
}
}
#endif
#if defined(SUPPORT_FILEFORMAT_SVG)
else if ((strcmp(fileType, ".svg") == 0) || (strcmp(fileType, ".SVG") == 0))
{
// Validate fileData as valid SVG string data
//<svg xmlns="http://www.w3.org/2000/svg" width="2500" height="2484" viewBox="0 0 192.756 191.488">
if ((fileData != NULL) &&
(fileData[0] == '<') &&
(fileData[1] == 's') &&
(fileData[2] == 'v') &&
(fileData[3] == 'g'))
{
struct NSVGimage *svgImage = nsvgParse(fileData, "px", 96.0f);
unsigned char *img = RL_MALLOC(svgImage->width*svgImage->height*4);
// Rasterize
struct NSVGrasterizer *rast = nsvgCreateRasterizer();
nsvgRasterize(rast, svgImage, 0, 0, 1.0f, img, svgImage->width, svgImage->height, svgImage->width*4);
// Populate image struct with all data
image.data = img;
image.width = svgImage->width;
image.height = svgImage->height;
image.mipmaps = 1;
image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
nsvgDelete(svgImage);
nsvgDeleteRasterizer(rast);
}
}
#endif
#if defined(SUPPORT_FILEFORMAT_DDS)
else if ((strcmp(fileType, ".dds") == 0) || (strcmp(fileType, ".DDS") == 0))
{
image.data = rl_load_dds_from_memory(fileData, dataSize, &image.width, &image.height, &image.format, &image.mipmaps);
}
#endif
#if defined(SUPPORT_FILEFORMAT_PKM)
else if ((strcmp(fileType, ".pkm") == 0) || (strcmp(fileType, ".PKM") == 0))
{
image.data = rl_load_pkm_from_memory(fileData, dataSize, &image.width, &image.height, &image.format, &image.mipmaps);
}
#endif
#if defined(SUPPORT_FILEFORMAT_KTX)
else if ((strcmp(fileType, ".ktx") == 0) || (strcmp(fileType, ".KTX") == 0))
{
image.data = rl_load_ktx_from_memory(fileData, dataSize, &image.width, &image.height, &image.format, &image.mipmaps);
}
#endif
#if defined(SUPPORT_FILEFORMAT_PVR)
else if ((strcmp(fileType, ".pvr") == 0) || (strcmp(fileType, ".PVR") == 0))
{
image.data = rl_load_pvr_from_memory(fileData, dataSize, &image.width, &image.height, &image.format, &image.mipmaps);
}
#endif
#if defined(SUPPORT_FILEFORMAT_ASTC)
else if ((strcmp(fileType, ".astc") == 0) || (strcmp(fileType, ".ASTC") == 0))
{
image.data = rl_load_astc_from_memory(fileData, dataSize, &image.width, &image.height, &image.format, &image.mipmaps);
}
#endif
else TRACELOG(LOG_WARNING, "IMAGE: Data format not supported");
if (image.data != NULL) TRACELOG(LOG_INFO, "IMAGE: Data loaded successfully (%ix%i | %s | %i mipmaps)", image.width, image.height, rlGetPixelFormatName(image.format), image.mipmaps);
else TRACELOG(LOG_WARNING, "IMAGE: Failed to load image data");
return image;
}
// Load image from GPU texture data
// NOTE: Compressed texture formats not supported
Image LoadImageFromTexture(Texture2D texture)
{
Image image = { 0 };
if (texture.format < PIXELFORMAT_COMPRESSED_DXT1_RGB)
{
image.data = rlReadTexturePixels(texture.id, texture.width, texture.height, texture.format);
if (image.data != NULL)
{
image.width = texture.width;
image.height = texture.height;
image.format = texture.format;
image.mipmaps = 1;
#if defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: Data retrieved on OpenGL ES 2.0 should be RGBA,
// coming from FBO color buffer attachment, but it seems
// original texture format is retrieved on RPI...
image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
#endif
TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Pixel data retrieved successfully", texture.id);
}
else TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Failed to retrieve pixel data", texture.id);
}
else TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Failed to retrieve compressed pixel data", texture.id);
return image;
}
// Load image from screen buffer and (screenshot)
Image LoadImageFromScreen(void)
{
Vector2 scale = GetWindowScaleDPI();
Image image = { 0 };
image.width = (int)(GetScreenWidth()*scale.x);
image.height = (int)(GetScreenHeight()*scale.y);
image.mipmaps = 1;
image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
image.data = rlReadScreenPixels(image.width, image.height);
return image;
}
// Check if an image is ready
bool IsImageReady(Image image)
{
bool result = false;
if ((image.data != NULL) && // Validate pixel data available
(image.width > 0) &&
(image.height > 0) && // Validate image size
(image.format > 0) && // Validate image format
(image.mipmaps > 0)) result = true; // Validate image mipmaps (at least 1 for basic mipmap level)
return result;
}
// Unload image from CPU memory (RAM)
void UnloadImage(Image image)
{
RL_FREE(image.data);
}
// Export image data to file
// NOTE: File format depends on fileName extension
bool ExportImage(Image image, const char *fileName)
{
int result = 0;
// Security check for input data
if ((image.width == 0) || (image.height == 0) || (image.data == NULL)) return result;
#if defined(SUPPORT_IMAGE_EXPORT)
int channels = 4;
bool allocatedData = false;
unsigned char *imgData = (unsigned char *)image.data;
if (image.format == PIXELFORMAT_UNCOMPRESSED_GRAYSCALE) channels = 1;
else if (image.format == PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA) channels = 2;
else if (image.format == PIXELFORMAT_UNCOMPRESSED_R8G8B8) channels = 3;
else if (image.format == PIXELFORMAT_UNCOMPRESSED_R8G8B8A8) channels = 4;
else
{
// NOTE: Getting Color array as RGBA unsigned char values
imgData = (unsigned char *)LoadImageColors(image);
allocatedData = true;
}
#if defined(SUPPORT_FILEFORMAT_PNG)
if (IsFileExtension(fileName, ".png"))
{
int dataSize = 0;
unsigned char *fileData = stbi_write_png_to_mem((const unsigned char *)imgData, image.width*channels, image.width, image.height, channels, &dataSize);
result = SaveFileData(fileName, fileData, dataSize);
RL_FREE(fileData);
}
#else
if (false) { }
#endif
#if defined(SUPPORT_FILEFORMAT_BMP)
else if (IsFileExtension(fileName, ".bmp")) result = stbi_write_bmp(fileName, image.width, image.height, channels, imgData);
#endif
#if defined(SUPPORT_FILEFORMAT_TGA)
else if (IsFileExtension(fileName, ".tga")) result = stbi_write_tga(fileName, image.width, image.height, channels, imgData);
#endif
#if defined(SUPPORT_FILEFORMAT_JPG)
else if (IsFileExtension(fileName, ".jpg") ||
IsFileExtension(fileName, ".jpeg")) result = stbi_write_jpg(fileName, image.width, image.height, channels, imgData, 90); // JPG quality: between 1 and 100
#endif
#if defined(SUPPORT_FILEFORMAT_QOI)
else if (IsFileExtension(fileName, ".qoi"))
{
channels = 0;
if (image.format == PIXELFORMAT_UNCOMPRESSED_R8G8B8) channels = 3;
else if (image.format == PIXELFORMAT_UNCOMPRESSED_R8G8B8A8) channels = 4;
else TRACELOG(LOG_WARNING, "IMAGE: Image pixel format must be R8G8B8 or R8G8B8A8");
if ((channels == 3) || (channels == 4))
{
qoi_desc desc = { 0 };
desc.width = image.width;
desc.height = image.height;
desc.channels = channels;
desc.colorspace = QOI_SRGB;
result = qoi_write(fileName, imgData, &desc);
}
}
#endif
#if defined(SUPPORT_FILEFORMAT_KTX)
else if (IsFileExtension(fileName, ".ktx"))
{
result = rl_save_ktx(fileName, image.data, image.width, image.height, image.format, image.mipmaps);
}
#endif
else if (IsFileExtension(fileName, ".raw"))
{
// Export raw pixel data (without header)
// NOTE: It's up to the user to track image parameters
result = SaveFileData(fileName, image.data, GetPixelDataSize(image.width, image.height, image.format));
}
if (allocatedData) RL_FREE(imgData);
#endif // SUPPORT_IMAGE_EXPORT
if (result != 0) TRACELOG(LOG_INFO, "FILEIO: [%s] Image exported successfully", fileName);
else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to export image", fileName);
return result;
}
// Export image to memory buffer
unsigned char *ExportImageToMemory(Image image, const char *fileType, int *dataSize)
{
unsigned char *fileData = NULL;
*dataSize = 0;
// Security check for input data
if ((image.width == 0) || (image.height == 0) || (image.data == NULL)) return NULL;
#if defined(SUPPORT_IMAGE_EXPORT)
int channels = 4;
if (image.format == PIXELFORMAT_UNCOMPRESSED_GRAYSCALE) channels = 1;
else if (image.format == PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA) channels = 2;
else if (image.format == PIXELFORMAT_UNCOMPRESSED_R8G8B8) channels = 3;
else if (image.format == PIXELFORMAT_UNCOMPRESSED_R8G8B8A8) channels = 4;
#if defined(SUPPORT_FILEFORMAT_PNG)
if ((strcmp(fileType, ".png") == 0) || (strcmp(fileType, ".PNG") == 0))
{
fileData = stbi_write_png_to_mem((const unsigned char *)image.data, image.width*channels, image.width, image.height, channels, dataSize);
}
#endif
#endif
return fileData;
}
// Export image as code file (.h) defining an array of bytes
bool ExportImageAsCode(Image image, const char *fileName)
{
bool success = false;
#if defined(SUPPORT_IMAGE_EXPORT)
#ifndef TEXT_BYTES_PER_LINE
#define TEXT_BYTES_PER_LINE 20
#endif
int dataSize = GetPixelDataSize(image.width, image.height, image.format);
// NOTE: Text data buffer size is estimated considering image data size in bytes
// and requiring 6 char bytes for every byte: "0x00, "
char *txtData = (char *)RL_CALLOC(dataSize*6 + 2000, sizeof(char));
int byteCount = 0;
byteCount += sprintf(txtData + byteCount, "////////////////////////////////////////////////////////////////////////////////////////\n");
byteCount += sprintf(txtData + byteCount, "// //\n");
byteCount += sprintf(txtData + byteCount, "// ImageAsCode exporter v1.0 - Image pixel data exported as an array of bytes //\n");
byteCount += sprintf(txtData + byteCount, "// //\n");
byteCount += sprintf(txtData + byteCount, "// more info and bugs-report: github.com/raysan5/raylib //\n");
byteCount += sprintf(txtData + byteCount, "// feedback and support: ray[at]raylib.com //\n");
byteCount += sprintf(txtData + byteCount, "// //\n");
byteCount += sprintf(txtData + byteCount, "// Copyright (c) 2018-2024 Ramon Santamaria (@raysan5) //\n");
byteCount += sprintf(txtData + byteCount, "// //\n");
byteCount += sprintf(txtData + byteCount, "////////////////////////////////////////////////////////////////////////////////////////\n\n");
// Get file name from path and convert variable name to uppercase
char varFileName[256] = { 0 };
strcpy(varFileName, GetFileNameWithoutExt(fileName));
for (int i = 0; varFileName[i] != '\0'; i++) if ((varFileName[i] >= 'a') && (varFileName[i] <= 'z')) { varFileName[i] = varFileName[i] - 32; }
// Add image information
byteCount += sprintf(txtData + byteCount, "// Image data information\n");
byteCount += sprintf(txtData + byteCount, "#define %s_WIDTH %i\n", varFileName, image.width);
byteCount += sprintf(txtData + byteCount, "#define %s_HEIGHT %i\n", varFileName, image.height);
byteCount += sprintf(txtData + byteCount, "#define %s_FORMAT %i // raylib internal pixel format\n\n", varFileName, image.format);
byteCount += sprintf(txtData + byteCount, "static unsigned char %s_DATA[%i] = { ", varFileName, dataSize);
for (int i = 0; i < dataSize - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "0x%x,\n" : "0x%x, "), ((unsigned char *)image.data)[i]);
byteCount += sprintf(txtData + byteCount, "0x%x };\n", ((unsigned char *)image.data)[dataSize - 1]);
// NOTE: Text data size exported is determined by '\0' (NULL) character
success = SaveFileText(fileName, txtData);
RL_FREE(txtData);
#endif // SUPPORT_IMAGE_EXPORT
if (success != 0) TRACELOG(LOG_INFO, "FILEIO: [%s] Image as code exported successfully", fileName);
else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to export image as code", fileName);
return success;
}
//------------------------------------------------------------------------------------
// Image generation functions
//------------------------------------------------------------------------------------
// Generate image: plain color
Image GenImageColor(int width, int height, Color color)
{
Color *pixels = (Color *)RL_CALLOC(width*height, sizeof(Color));
for (int i = 0; i < width*height; i++) pixels[i] = color;
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
#if defined(SUPPORT_IMAGE_GENERATION)
// Generate image: linear gradient
// The direction value specifies the direction of the gradient (in degrees)
// with 0 being vertical (from top to bottom), 90 being horizontal (from left to right)
// The gradient effectively rotates counter-clockwise by the specified amount
Image GenImageGradientLinear(int width, int height, int direction, Color start, Color end)
{
Color *pixels = (Color *)RL_MALLOC(width*height*sizeof(Color));
float radianDirection = (float)(90 - direction)/180.f*3.14159f;
float cosDir = cosf(radianDirection);
float sinDir = sinf(radianDirection);
for (int i = 0; i < width; i++)
{
for (int j = 0; j < height; j++)
{
// Calculate the relative position of the pixel along the gradient direction
float pos = (i*cosDir + j*sinDir)/(width*cosDir + height*sinDir);
float factor = pos;
factor = (factor > 1.0f)? 1.0f : factor; // Clamp to [0,1]
factor = (factor < 0.0f)? 0.0f : factor; // Clamp to [0,1]
// Generate the color for this pixel
pixels[j*width + i].r = (int)((float)end.r*factor + (float)start.r*(1.0f - factor));
pixels[j*width + i].g = (int)((float)end.g*factor + (float)start.g*(1.0f - factor));
pixels[j*width + i].b = (int)((float)end.b*factor + (float)start.b*(1.0f - factor));
pixels[j*width + i].a = (int)((float)end.a*factor + (float)start.a*(1.0f - factor));
}
}
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
// Generate image: radial gradient
Image GenImageGradientRadial(int width, int height, float density, Color inner, Color outer)
{
Color *pixels = (Color *)RL_MALLOC(width*height*sizeof(Color));
float radius = (width < height)? (float)width/2.0f : (float)height/2.0f;
float centerX = (float)width/2.0f;
float centerY = (float)height/2.0f;
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
float dist = hypotf((float)x - centerX, (float)y - centerY);
float factor = (dist - radius*density)/(radius*(1.0f - density));
factor = (float)fmax(factor, 0.0f);
factor = (float)fmin(factor, 1.f); // dist can be bigger than radius, so we have to check
pixels[y*width + x].r = (int)((float)outer.r*factor + (float)inner.r*(1.0f - factor));
pixels[y*width + x].g = (int)((float)outer.g*factor + (float)inner.g*(1.0f - factor));
pixels[y*width + x].b = (int)((float)outer.b*factor + (float)inner.b*(1.0f - factor));
pixels[y*width + x].a = (int)((float)outer.a*factor + (float)inner.a*(1.0f - factor));
}
}
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
// Generate image: square gradient
Image GenImageGradientSquare(int width, int height, float density, Color inner, Color outer)
{
Color *pixels = (Color *)RL_MALLOC(width*height*sizeof(Color));
float centerX = (float)width/2.0f;
float centerY = (float)height/2.0f;
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
// Calculate the Manhattan distance from the center
float distX = fabsf(x - centerX);
float distY = fabsf(y - centerY);
// Normalize the distances by the dimensions of the gradient rectangle
float normalizedDistX = distX/centerX;
float normalizedDistY = distY/centerY;
// Calculate the total normalized Manhattan distance
float manhattanDist = fmaxf(normalizedDistX, normalizedDistY);
// Subtract the density from the manhattanDist, then divide by (1 - density)
// This makes the gradient start from the center when density is 0, and from the edge when density is 1
float factor = (manhattanDist - density)/(1.0f - density);
// Clamp the factor between 0 and 1
factor = fminf(fmaxf(factor, 0.0f), 1.0f);
// Blend the colors based on the calculated factor
pixels[y*width + x].r = (int)((float)outer.r*factor + (float)inner.r*(1.0f - factor));
pixels[y*width + x].g = (int)((float)outer.g*factor + (float)inner.g*(1.0f - factor));
pixels[y*width + x].b = (int)((float)outer.b*factor + (float)inner.b*(1.0f - factor));
pixels[y*width + x].a = (int)((float)outer.a*factor + (float)inner.a*(1.0f - factor));
}
}
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
// Generate image: checked
Image GenImageChecked(int width, int height, int checksX, int checksY, Color col1, Color col2)
{
Color *pixels = (Color *)RL_MALLOC(width*height*sizeof(Color));
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
if ((x/checksX + y/checksY)%2 == 0) pixels[y*width + x] = col1;
else pixels[y*width + x] = col2;
}
}
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
// Generate image: white noise
// NOTE: It requires GetRandomValue(), defined in [rcore]
Image GenImageWhiteNoise(int width, int height, float factor)
{
Color *pixels = (Color *)RL_MALLOC(width*height*sizeof(Color));
for (int i = 0; i < width*height; i++)
{
if (GetRandomValue(0, 99) < (int)(factor*100.0f)) pixels[i] = WHITE;
else pixels[i] = BLACK;
}
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
// Generate image: perlin noise
Image GenImagePerlinNoise(int width, int height, int offsetX, int offsetY, float scale)
{
Color *pixels = (Color *)RL_MALLOC(width*height*sizeof(Color));
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
float nx = (float)(x + offsetX)*(scale/(float)width);
float ny = (float)(y + offsetY)*(scale/(float)height);
// Basic perlin noise implementation (not used)
//float p = (stb_perlin_noise3(nx, ny, 0.0f, 0, 0, 0);
// Calculate a better perlin noise using fbm (fractal brownian motion)
// Typical values to start playing with:
// lacunarity = ~2.0 -- spacing between successive octaves (use exactly 2.0 for wrapping output)
// gain = 0.5 -- relative weighting applied to each successive octave
// octaves = 6 -- number of "octaves" of noise3() to sum
float p = stb_perlin_fbm_noise3(nx, ny, 1.0f, 2.0f, 0.5f, 6);
// Clamp between -1.0f and 1.0f
if (p < -1.0f) p = -1.0f;
if (p > 1.0f) p = 1.0f;
// We need to normalize the data from [-1..1] to [0..1]
float np = (p + 1.0f)/2.0f;
int intensity = (int)(np*255.0f);
pixels[y*width + x] = (Color){ intensity, intensity, intensity, 255 };
}
}
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
// Generate image: cellular algorithm. Bigger tileSize means bigger cells
Image GenImageCellular(int width, int height, int tileSize)
{
Color *pixels = (Color *)RL_MALLOC(width*height*sizeof(Color));
int seedsPerRow = width/tileSize;
int seedsPerCol = height/tileSize;
int seedCount = seedsPerRow*seedsPerCol;
Vector2 *seeds = (Vector2 *)RL_MALLOC(seedCount*sizeof(Vector2));
for (int i = 0; i < seedCount; i++)
{
int y = (i/seedsPerRow)*tileSize + GetRandomValue(0, tileSize - 1);
int x = (i%seedsPerRow)*tileSize + GetRandomValue(0, tileSize - 1);
seeds[i] = (Vector2){ (float)x, (float)y };
}
for (int y = 0; y < height; y++)
{
int tileY = y/tileSize;
for (int x = 0; x < width; x++)
{
int tileX = x/tileSize;
float minDistance = 65536.0f; //(float)strtod("Inf", NULL);
// Check all adjacent tiles
for (int i = -1; i < 2; i++)
{
if ((tileX + i < 0) || (tileX + i >= seedsPerRow)) continue;
for (int j = -1; j < 2; j++)
{
if ((tileY + j < 0) || (tileY + j >= seedsPerCol)) continue;
Vector2 neighborSeed = seeds[(tileY + j)*seedsPerRow + tileX + i];
float dist = (float)hypot(x - (int)neighborSeed.x, y - (int)neighborSeed.y);
minDistance = (float)fmin(minDistance, dist);
}
}
// I made this up, but it seems to give good results at all tile sizes
int intensity = (int)(minDistance*256.0f/tileSize);
if (intensity > 255) intensity = 255;
pixels[y*width + x] = (Color){ intensity, intensity, intensity, 255 };
}
}
RL_FREE(seeds);
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
// Generate image: grayscale image from text data
Image GenImageText(int width, int height, const char *text)
{
Image image = { 0 };
int textLength = TextLength(text);
int imageViewSize = width*height;
image.width = width;
image.height = height;
image.format = PIXELFORMAT_UNCOMPRESSED_GRAYSCALE;
image.data = RL_CALLOC(imageViewSize, 1);
image.mipmaps = 1;
memcpy(image.data, text, (textLength > imageViewSize)? imageViewSize : textLength);
return image;
}
#endif // SUPPORT_IMAGE_GENERATION
//------------------------------------------------------------------------------------
// Image manipulation functions
//------------------------------------------------------------------------------------
// Copy an image to a new image
Image ImageCopy(Image image)
{
Image newImage = { 0 };
int width = image.width;
int height = image.height;
int size = 0;
for (int i = 0; i < image.mipmaps; i++)
{
size += GetPixelDataSize(width, height, image.format);
width /= 2;
height /= 2;
// Security check for NPOT textures
if (width < 1) width = 1;
if (height < 1) height = 1;
}
newImage.data = RL_CALLOC(size, 1);
if (newImage.data != NULL)
{
// NOTE: Size must be provided in bytes
memcpy(newImage.data, image.data, size);
newImage.width = image.width;
newImage.height = image.height;
newImage.mipmaps = image.mipmaps;
newImage.format = image.format;
}
return newImage;
}
// Create an image from another image piece
Image ImageFromImage(Image image, Rectangle rec)
{
Image result = { 0 };
int bytesPerPixel = GetPixelDataSize(1, 1, image.format);
result.width = (int)rec.width;
result.height = (int)rec.height;
result.data = RL_CALLOC((int)rec.width*(int)rec.height*bytesPerPixel, 1);
result.format = image.format;
result.mipmaps = 1;
for (int y = 0; y < (int)rec.height; y++)
{
memcpy(((unsigned char *)result.data) + y*(int)rec.width*bytesPerPixel, ((unsigned char *)image.data) + ((y + (int)rec.y)*image.width + (int)rec.x)*bytesPerPixel, (int)rec.width*bytesPerPixel);
}
return result;
}
// Crop an image to area defined by a rectangle
// NOTE: Security checks are performed in case rectangle goes out of bounds
void ImageCrop(Image *image, Rectangle crop)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
// Security checks to validate crop rectangle
if (crop.x < 0) { crop.width += crop.x; crop.x = 0; }
if (crop.y < 0) { crop.height += crop.y; crop.y = 0; }
if ((crop.x + crop.width) > image->width) crop.width = image->width - crop.x;
if ((crop.y + crop.height) > image->height) crop.height = image->height - crop.y;
if ((crop.x > image->width) || (crop.y > image->height))
{
TRACELOG(LOG_WARNING, "IMAGE: Failed to crop, rectangle out of bounds");
return;
}
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else
{
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *croppedData = (unsigned char *)RL_MALLOC((int)(crop.width*crop.height)*bytesPerPixel);
// OPTION 1: Move cropped data line-by-line
for (int y = (int)crop.y, offsetSize = 0; y < (int)(crop.y + crop.height); y++)
{
memcpy(croppedData + offsetSize, ((unsigned char *)image->data) + (y*image->width + (int)crop.x)*bytesPerPixel, (int)crop.width*bytesPerPixel);
offsetSize += ((int)crop.width*bytesPerPixel);
}
/*
// OPTION 2: Move cropped data pixel-by-pixel or byte-by-byte
for (int y = (int)crop.y; y < (int)(crop.y + crop.height); y++)
{
for (int x = (int)crop.x; x < (int)(crop.x + crop.width); x++)
{
//memcpy(croppedData + ((y - (int)crop.y)*(int)crop.width + (x - (int)crop.x))*bytesPerPixel, ((unsigned char *)image->data) + (y*image->width + x)*bytesPerPixel, bytesPerPixel);
for (int i = 0; i < bytesPerPixel; i++) croppedData[((y - (int)crop.y)*(int)crop.width + (x - (int)crop.x))*bytesPerPixel + i] = ((unsigned char *)image->data)[(y*image->width + x)*bytesPerPixel + i];
}
}
*/
RL_FREE(image->data);
image->data = croppedData;
image->width = (int)crop.width;
image->height = (int)crop.height;
}
}
// Convert image data to desired format
void ImageFormat(Image *image, int newFormat)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if ((newFormat != 0) && (image->format != newFormat))
{
if ((image->format < PIXELFORMAT_COMPRESSED_DXT1_RGB) && (newFormat < PIXELFORMAT_COMPRESSED_DXT1_RGB))
{
Vector4 *pixels = LoadImageDataNormalized(*image); // Supports 8 to 32 bit per channel
RL_FREE(image->data); // WARNING! We loose mipmaps data --> Regenerated at the end...
image->data = NULL;
image->format = newFormat;
switch (image->format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE:
{
image->data = (unsigned char *)RL_MALLOC(image->width*image->height*sizeof(unsigned char));
for (int i = 0; i < image->width*image->height; i++)
{
((unsigned char *)image->data)[i] = (unsigned char)((pixels[i].x*0.299f + pixels[i].y*0.587f + pixels[i].z*0.114f)*255.0f);
}
} break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
{
image->data = (unsigned char *)RL_MALLOC(image->width*image->height*2*sizeof(unsigned char));
for (int i = 0, k = 0; i < image->width*image->height*2; i += 2, k++)
{
((unsigned char *)image->data)[i] = (unsigned char)((pixels[k].x*0.299f + (float)pixels[k].y*0.587f + (float)pixels[k].z*0.114f)*255.0f);
((unsigned char *)image->data)[i + 1] = (unsigned char)(pixels[k].w*255.0f);
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
{
image->data = (unsigned short *)RL_MALLOC(image->width*image->height*sizeof(unsigned short));
unsigned char r = 0;
unsigned char g = 0;
unsigned char b = 0;
for (int i = 0; i < image->width*image->height; i++)
{
r = (unsigned char)(round(pixels[i].x*31.0f));
g = (unsigned char)(round(pixels[i].y*63.0f));
b = (unsigned char)(round(pixels[i].z*31.0f));
((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 5 | (unsigned short)b;
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8:
{
image->data = (unsigned char *)RL_MALLOC(image->width*image->height*3*sizeof(unsigned char));
for (int i = 0, k = 0; i < image->width*image->height*3; i += 3, k++)
{
((unsigned char *)image->data)[i] = (unsigned char)(pixels[k].x*255.0f);
((unsigned char *)image->data)[i + 1] = (unsigned char)(pixels[k].y*255.0f);
((unsigned char *)image->data)[i + 2] = (unsigned char)(pixels[k].z*255.0f);
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
image->data = (unsigned short *)RL_MALLOC(image->width*image->height*sizeof(unsigned short));
unsigned char r = 0;
unsigned char g = 0;
unsigned char b = 0;
unsigned char a = 0;
for (int i = 0; i < image->width*image->height; i++)
{
r = (unsigned char)(round(pixels[i].x*31.0f));
g = (unsigned char)(round(pixels[i].y*31.0f));
b = (unsigned char)(round(pixels[i].z*31.0f));
a = (pixels[i].w > ((float)PIXELFORMAT_UNCOMPRESSED_R5G5B5A1_ALPHA_THRESHOLD/255.0f))? 1 : 0;
((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 6 | (unsigned short)b << 1 | (unsigned short)a;
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
image->data = (unsigned short *)RL_MALLOC(image->width*image->height*sizeof(unsigned short));
unsigned char r = 0;
unsigned char g = 0;
unsigned char b = 0;
unsigned char a = 0;
for (int i = 0; i < image->width*image->height; i++)
{
r = (unsigned char)(round(pixels[i].x*15.0f));
g = (unsigned char)(round(pixels[i].y*15.0f));
b = (unsigned char)(round(pixels[i].z*15.0f));
a = (unsigned char)(round(pixels[i].w*15.0f));
((unsigned short *)image->data)[i] = (unsigned short)r << 12 | (unsigned short)g << 8 | (unsigned short)b << 4 | (unsigned short)a;
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8:
{
image->data = (unsigned char *)RL_MALLOC(image->width*image->height*4*sizeof(unsigned char));
for (int i = 0, k = 0; i < image->width*image->height*4; i += 4, k++)
{
((unsigned char *)image->data)[i] = (unsigned char)(pixels[k].x*255.0f);
((unsigned char *)image->data)[i + 1] = (unsigned char)(pixels[k].y*255.0f);
((unsigned char *)image->data)[i + 2] = (unsigned char)(pixels[k].z*255.0f);
((unsigned char *)image->data)[i + 3] = (unsigned char)(pixels[k].w*255.0f);
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R32:
{
// WARNING: Image is converted to GRAYSCALE equivalent 32bit
image->data = (float *)RL_MALLOC(image->width*image->height*sizeof(float));
for (int i = 0; i < image->width*image->height; i++)
{
((float *)image->data)[i] = (float)(pixels[i].x*0.299f + pixels[i].y*0.587f + pixels[i].z*0.114f);
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32:
{
image->data = (float *)RL_MALLOC(image->width*image->height*3*sizeof(float));
for (int i = 0, k = 0; i < image->width*image->height*3; i += 3, k++)
{
((float *)image->data)[i] = pixels[k].x;
((float *)image->data)[i + 1] = pixels[k].y;
((float *)image->data)[i + 2] = pixels[k].z;
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32:
{
image->data = (float *)RL_MALLOC(image->width*image->height*4*sizeof(float));
for (int i = 0, k = 0; i < image->width*image->height*4; i += 4, k++)
{
((float *)image->data)[i] = pixels[k].x;
((float *)image->data)[i + 1] = pixels[k].y;
((float *)image->data)[i + 2] = pixels[k].z;
((float *)image->data)[i + 3] = pixels[k].w;
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R16:
{
// WARNING: Image is converted to GRAYSCALE equivalent 16bit
image->data = (unsigned short *)RL_MALLOC(image->width*image->height*sizeof(unsigned short));
for (int i = 0; i < image->width*image->height; i++)
{
((unsigned short *)image->data)[i] = FloatToHalf((float)(pixels[i].x*0.299f + pixels[i].y*0.587f + pixels[i].z*0.114f));
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16:
{
image->data = (unsigned short *)RL_MALLOC(image->width*image->height*3*sizeof(unsigned short));
for (int i = 0, k = 0; i < image->width*image->height*3; i += 3, k++)
{
((unsigned short *)image->data)[i] = FloatToHalf(pixels[k].x);
((unsigned short *)image->data)[i + 1] = FloatToHalf(pixels[k].y);
((unsigned short *)image->data)[i + 2] = FloatToHalf(pixels[k].z);
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16:
{
image->data = (unsigned short *)RL_MALLOC(image->width*image->height*4*sizeof(unsigned short));
for (int i = 0, k = 0; i < image->width*image->height*4; i += 4, k++)
{
((unsigned short *)image->data)[i] = FloatToHalf(pixels[k].x);
((unsigned short *)image->data)[i + 1] = FloatToHalf(pixels[k].y);
((unsigned short *)image->data)[i + 2] = FloatToHalf(pixels[k].z);
((unsigned short *)image->data)[i + 3] = FloatToHalf(pixels[k].w);
}
} break;
default: break;
}
RL_FREE(pixels);
pixels = NULL;
// In case original image had mipmaps, generate mipmaps for formatted image
// NOTE: Original mipmaps are replaced by new ones, if custom mipmaps were used, they are lost
if (image->mipmaps > 1)
{
image->mipmaps = 1;
#if defined(SUPPORT_IMAGE_MANIPULATION)
if (image->data != NULL) ImageMipmaps(image);
#endif
}
}
else TRACELOG(LOG_WARNING, "IMAGE: Data format is compressed, can not be converted");
}
}
// Create an image from text (default font)
Image ImageText(const char *text, int fontSize, Color color)
{
Image imText = { 0 };
#if defined(SUPPORT_MODULE_RTEXT)
int defaultFontSize = 10; // Default Font chars height in pixel
if (fontSize < defaultFontSize) fontSize = defaultFontSize;
int spacing = fontSize/defaultFontSize;
imText = ImageTextEx(GetFontDefault(), text, (float)fontSize, (float)spacing, color); // WARNING: Module required: rtext
#else
imText = GenImageColor(200, 60, BLACK); // Generating placeholder black image rectangle
TRACELOG(LOG_WARNING, "IMAGE: ImageTextEx() requires module: rtext");
#endif
return imText;
}
// Create an image from text (custom sprite font)
// WARNING: Module required: rtext
Image ImageTextEx(Font font, const char *text, float fontSize, float spacing, Color tint)
{
Image imText = { 0 };
#if defined(SUPPORT_MODULE_RTEXT)
int size = (int)strlen(text); // Get size in bytes of text
int textOffsetX = 0; // Image drawing position X
int textOffsetY = 0; // Offset between lines (on linebreak '\n')
// NOTE: Text image is generated at font base size, later scaled to desired font size
Vector2 imSize = MeasureTextEx(font, text, (float)font.baseSize, spacing); // WARNING: Module required: rtext
Vector2 textSize = MeasureTextEx(font, text, fontSize, spacing);
// Create image to store text
imText = GenImageColor((int)imSize.x, (int)imSize.y, BLANK);
for (int i = 0; i < size;)
{
// Get next codepoint from byte string and glyph index in font
int codepointByteCount = 0;
int codepoint = GetCodepointNext(&text[i], &codepointByteCount); // WARNING: Module required: rtext
int index = GetGlyphIndex(font, codepoint); // WARNING: Module required: rtext
if (codepoint == '\n')
{
// NOTE: Fixed line spacing of 1.5 line-height
// TODO: Support custom line spacing defined by user
textOffsetY += (font.baseSize + font.baseSize/2);
textOffsetX = 0;
}
else
{
if ((codepoint != ' ') && (codepoint != '\t'))
{
Rectangle rec = { (float)(textOffsetX + font.glyphs[index].offsetX), (float)(textOffsetY + font.glyphs[index].offsetY), (float)font.recs[index].width, (float)font.recs[index].height };
ImageDraw(&imText, font.glyphs[index].image, (Rectangle){ 0, 0, (float)font.glyphs[index].image.width, (float)font.glyphs[index].image.height }, rec, tint);
}
if (font.glyphs[index].advanceX == 0) textOffsetX += (int)(font.recs[index].width + spacing);
else textOffsetX += font.glyphs[index].advanceX + (int)spacing;
}
i += codepointByteCount; // Move text bytes counter to next codepoint
}
// Scale image depending on text size
if (textSize.y != imSize.y)
{
float scaleFactor = textSize.y/imSize.y;
TRACELOG(LOG_INFO, "IMAGE: Text scaled by factor: %f", scaleFactor);
// Using nearest-neighbor scaling algorithm for default font
// TODO: Allow defining the preferred scaling mechanism externally
if (font.texture.id == GetFontDefault().texture.id) ImageResizeNN(&imText, (int)(imSize.x*scaleFactor), (int)(imSize.y*scaleFactor));
else ImageResize(&imText, (int)(imSize.x*scaleFactor), (int)(imSize.y*scaleFactor));
}
#else
imText = GenImageColor(200, 60, BLACK); // Generating placeholder black image rectangle
TRACELOG(LOG_WARNING, "IMAGE: ImageTextEx() requires module: rtext");
#endif
return imText;
}
// Resize and image to new size using Nearest-Neighbor scaling algorithm
void ImageResizeNN(Image *image,int newWidth,int newHeight)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
Color *pixels = LoadImageColors(*image);
Color *output = (Color *)RL_MALLOC(newWidth*newHeight*sizeof(Color));
// EDIT: added +1 to account for an early rounding problem
int xRatio = (int)((image->width << 16)/newWidth) + 1;
int yRatio = (int)((image->height << 16)/newHeight) + 1;
int x2, y2;
for (int y = 0; y < newHeight; y++)
{
for (int x = 0; x < newWidth; x++)
{
x2 = ((x*xRatio) >> 16);
y2 = ((y*yRatio) >> 16);
output[(y*newWidth) + x] = pixels[(y2*image->width) + x2] ;
}
}
int format = image->format;
RL_FREE(image->data);
image->data = output;
image->width = newWidth;
image->height = newHeight;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format); // Reformat 32bit RGBA image to original format
UnloadImageColors(pixels);
}
// Resize and image to new size
// NOTE: Uses stb default scaling filters (both bicubic):
// STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_CATMULLROM
// STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_MITCHELL (high-quality Catmull-Rom)
void ImageResize(Image *image, int newWidth, int newHeight)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
// Check if we can use a fast path on image scaling
// It can be for 8 bit per channel images with 1 to 4 channels per pixel
if ((image->format == PIXELFORMAT_UNCOMPRESSED_GRAYSCALE) ||
(image->format == PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA) ||
(image->format == PIXELFORMAT_UNCOMPRESSED_R8G8B8) ||
(image->format == PIXELFORMAT_UNCOMPRESSED_R8G8B8A8))
{
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *output = (unsigned char *)RL_MALLOC(newWidth*newHeight*bytesPerPixel);
switch (image->format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: stbir_resize_uint8_linear((unsigned char *)image->data, image->width, image->height, 0, output, newWidth, newHeight, 0, (stbir_pixel_layout)1); break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA: stbir_resize_uint8_linear((unsigned char *)image->data, image->width, image->height, 0, output, newWidth, newHeight, 0, (stbir_pixel_layout)2); break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8: stbir_resize_uint8_linear((unsigned char *)image->data, image->width, image->height, 0, output, newWidth, newHeight, 0, (stbir_pixel_layout)3); break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: stbir_resize_uint8_linear((unsigned char *)image->data, image->width, image->height, 0, output, newWidth, newHeight, 0, (stbir_pixel_layout)4); break;
default: break;
}
RL_FREE(image->data);
image->data = output;
image->width = newWidth;
image->height = newHeight;
}
else
{
// Get data as Color pixels array to work with it
Color *pixels = LoadImageColors(*image);
Color *output = (Color *)RL_MALLOC(newWidth*newHeight*sizeof(Color));
// NOTE: Color data is cast to (unsigned char *), there shouldn't been any problem...
stbir_resize_uint8_linear((unsigned char *)pixels, image->width, image->height, 0, (unsigned char *)output, newWidth, newHeight, 0, (stbir_pixel_layout)4);
int format = image->format;
UnloadImageColors(pixels);
RL_FREE(image->data);
image->data = output;
image->width = newWidth;
image->height = newHeight;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format); // Reformat 32bit RGBA image to original format
}
}
// Resize canvas and fill with color
// NOTE: Resize offset is relative to the top-left corner of the original image
void ImageResizeCanvas(Image *image, int newWidth, int newHeight, int offsetX, int offsetY, Color fill)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else if ((newWidth != image->width) || (newHeight != image->height))
{
Rectangle srcRec = { 0, 0, (float)image->width, (float)image->height };
Vector2 dstPos = { (float)offsetX, (float)offsetY };
if (offsetX < 0)
{
srcRec.x = (float)-offsetX;
srcRec.width += (float)offsetX;
dstPos.x = 0;
}
else if ((offsetX + image->width) > newWidth) srcRec.width = (float)(newWidth - offsetX);
if (offsetY < 0)
{
srcRec.y = (float)-offsetY;
srcRec.height += (float)offsetY;
dstPos.y = 0;
}
else if ((offsetY + image->height) > newHeight) srcRec.height = (float)(newHeight - offsetY);
if (newWidth < srcRec.width) srcRec.width = (float)newWidth;
if (newHeight < srcRec.height) srcRec.height = (float)newHeight;
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *resizedData = (unsigned char *)RL_CALLOC(newWidth*newHeight*bytesPerPixel, 1);
// Fill resized canvas with fill color
// Set first pixel with image->format
SetPixelColor(resizedData, fill, image->format);
// Fill remaining bytes of first row
for (int x = 1; x < newWidth; x++)
{
memcpy(resizedData + x*bytesPerPixel, resizedData, bytesPerPixel);
}
// Copy the first row into the other rows
for (int y = 1; y < newHeight; y++)
{
memcpy(resizedData + y*newWidth*bytesPerPixel, resizedData, newWidth*bytesPerPixel);
}
// Copy old image to resized canvas
int dstOffsetSize = ((int)dstPos.y*newWidth + (int)dstPos.x)*bytesPerPixel;
for (int y = 0; y < (int)srcRec.height; y++)
{
memcpy(resizedData + dstOffsetSize, ((unsigned char *)image->data) + ((y + (int)srcRec.y)*image->width + (int)srcRec.x)*bytesPerPixel, (int)srcRec.width*bytesPerPixel);
dstOffsetSize += (newWidth*bytesPerPixel);
}
RL_FREE(image->data);
image->data = resizedData;
image->width = newWidth;
image->height = newHeight;
}
}
#if defined(SUPPORT_IMAGE_MANIPULATION)
// Convert image to POT (power-of-two)
// NOTE: It could be useful on OpenGL ES 2.0 (RPI, HTML5)
void ImageToPOT(Image *image, Color fill)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
// Calculate next power-of-two values
// NOTE: Just add the required amount of pixels at the right and bottom sides of image...
int potWidth = (int)powf(2, ceilf(logf((float)image->width)/logf(2)));
int potHeight = (int)powf(2, ceilf(logf((float)image->height)/logf(2)));
// Check if POT texture generation is required (if texture is not already POT)
if ((potWidth != image->width) || (potHeight != image->height)) ImageResizeCanvas(image, potWidth, potHeight, 0, 0, fill);
}
// Crop image depending on alpha value
// NOTE: Threshold is defined as a percentage: 0.0f -> 1.0f
void ImageAlphaCrop(Image *image, float threshold)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
Rectangle crop = GetImageAlphaBorder(*image, threshold);
// Crop if rectangle is valid
if (((int)crop.width != 0) && ((int)crop.height != 0)) ImageCrop(image, crop);
}
// Clear alpha channel to desired color
// NOTE: Threshold defines the alpha limit, 0.0f to 1.0f
void ImageAlphaClear(Image *image, Color color, float threshold)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else
{
switch (image->format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
{
unsigned char thresholdValue = (unsigned char)(threshold*255.0f);
for (int i = 1; i < image->width*image->height*2; i += 2)
{
if (((unsigned char *)image->data)[i] <= thresholdValue)
{
((unsigned char *)image->data)[i - 1] = color.r;
((unsigned char *)image->data)[i] = color.a;
}
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
unsigned char thresholdValue = ((threshold < 0.5f)? 0 : 1);
unsigned char r = (unsigned char)(round((float)color.r*31.0f));
unsigned char g = (unsigned char)(round((float)color.g*31.0f));
unsigned char b = (unsigned char)(round((float)color.b*31.0f));
unsigned char a = (color.a < 128)? 0 : 1;
for (int i = 0; i < image->width*image->height; i++)
{
if ((((unsigned short *)image->data)[i] & 0b0000000000000001) <= thresholdValue)
{
((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 6 | (unsigned short)b << 1 | (unsigned short)a;
}
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
unsigned char thresholdValue = (unsigned char)(threshold*15.0f);
unsigned char r = (unsigned char)(round((float)color.r*15.0f));
unsigned char g = (unsigned char)(round((float)color.g*15.0f));
unsigned char b = (unsigned char)(round((float)color.b*15.0f));
unsigned char a = (unsigned char)(round((float)color.a*15.0f));
for (int i = 0; i < image->width*image->height; i++)
{
if ((((unsigned short *)image->data)[i] & 0x000f) <= thresholdValue)
{
((unsigned short *)image->data)[i] = (unsigned short)r << 12 | (unsigned short)g << 8 | (unsigned short)b << 4 | (unsigned short)a;
}
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8:
{
unsigned char thresholdValue = (unsigned char)(threshold*255.0f);
for (int i = 3; i < image->width*image->height*4; i += 4)
{
if (((unsigned char *)image->data)[i] <= thresholdValue)
{
((unsigned char *)image->data)[i - 3] = color.r;
((unsigned char *)image->data)[i - 2] = color.g;
((unsigned char *)image->data)[i - 1] = color.b;
((unsigned char *)image->data)[i] = color.a;
}
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32:
{
for (int i = 3; i < image->width*image->height*4; i += 4)
{
if (((float *)image->data)[i] <= threshold)
{
((float *)image->data)[i - 3] = (float)color.r/255.0f;
((float *)image->data)[i - 2] = (float)color.g/255.0f;
((float *)image->data)[i - 1] = (float)color.b/255.0f;
((float *)image->data)[i] = (float)color.a/255.0f;
}
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16:
{
for (int i = 3; i < image->width*image->height*4; i += 4)
{
if (HalfToFloat(((unsigned short *)image->data)[i]) <= threshold)
{
((unsigned short *)image->data)[i - 3] = FloatToHalf((float)color.r/255.0f);
((unsigned short *)image->data)[i - 2] = FloatToHalf((float)color.g/255.0f);
((unsigned short *)image->data)[i - 1] = FloatToHalf((float)color.b/255.0f);
((unsigned short *)image->data)[i] = FloatToHalf((float)color.a/255.0f);
}
}
} break;
default: break;
}
}
}
// Apply alpha mask to image
// NOTE 1: Returned image is GRAY_ALPHA (16bit) or RGBA (32bit)
// NOTE 2: alphaMask should be same size as image
void ImageAlphaMask(Image *image, Image alphaMask)
{
if ((image->width != alphaMask.width) || (image->height != alphaMask.height))
{
TRACELOG(LOG_WARNING, "IMAGE: Alpha mask must be same size as image");
}
else if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB)
{
TRACELOG(LOG_WARNING, "IMAGE: Alpha mask can not be applied to compressed data formats");
}
else
{
// Force mask to be Grayscale
Image mask = ImageCopy(alphaMask);
if (mask.format != PIXELFORMAT_UNCOMPRESSED_GRAYSCALE) ImageFormat(&mask, PIXELFORMAT_UNCOMPRESSED_GRAYSCALE);
// In case image is only grayscale, we just add alpha channel
if (image->format == PIXELFORMAT_UNCOMPRESSED_GRAYSCALE)
{
unsigned char *data = (unsigned char *)RL_MALLOC(image->width*image->height*2);
// Apply alpha mask to alpha channel
for (int i = 0, k = 0; (i < mask.width*mask.height) || (i < image->width*image->height); i++, k += 2)
{
data[k] = ((unsigned char *)image->data)[i];
data[k + 1] = ((unsigned char *)mask.data)[i];
}
RL_FREE(image->data);
image->data = data;
image->format = PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA;
}
else
{
// Convert image to RGBA
if (image->format != PIXELFORMAT_UNCOMPRESSED_R8G8B8A8) ImageFormat(image, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8);
// Apply alpha mask to alpha channel
for (int i = 0, k = 3; (i < mask.width*mask.height) || (i < image->width*image->height); i++, k += 4)
{
((unsigned char *)image->data)[k] = ((unsigned char *)mask.data)[i];
}
}
UnloadImage(mask);
}
}
// Premultiply alpha channel
void ImageAlphaPremultiply(Image *image)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
float alpha = 0.0f;
Color *pixels = LoadImageColors(*image);
for (int i = 0; i < image->width*image->height; i++)
{
if (pixels[i].a == 0)
{
pixels[i].r = 0;
pixels[i].g = 0;
pixels[i].b = 0;
}
else if (pixels[i].a < 255)
{
alpha = (float)pixels[i].a/255.0f;
pixels[i].r = (unsigned char)((float)pixels[i].r*alpha);
pixels[i].g = (unsigned char)((float)pixels[i].g*alpha);
pixels[i].b = (unsigned char)((float)pixels[i].b*alpha);
}
}
RL_FREE(image->data);
int format = image->format;
image->data = pixels;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format);
}
// Apply box blur to image
void ImageBlurGaussian(Image *image, int blurSize)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
ImageAlphaPremultiply(image);
Color *pixels = LoadImageColors(*image);
// Loop switches between pixelsCopy1 and pixelsCopy2
Vector4 *pixelsCopy1 = RL_MALLOC((image->height)*(image->width)*sizeof(Vector4));
Vector4 *pixelsCopy2 = RL_MALLOC((image->height)*(image->width)*sizeof(Vector4));
for (int i = 0; i < (image->height*image->width); i++)
{
pixelsCopy1[i].x = pixels[i].r;
pixelsCopy1[i].y = pixels[i].g;
pixelsCopy1[i].z = pixels[i].b;
pixelsCopy1[i].w = pixels[i].a;
}
// Repeated convolution of rectangular window signal by itself converges to a gaussian distribution
for (int j = 0; j < GAUSSIAN_BLUR_ITERATIONS; j++)
{
// Horizontal motion blur
for (int row = 0; row < image->height; row++)
{
float avgR = 0.0f;
float avgG = 0.0f;
float avgB = 0.0f;
float avgAlpha = 0.0f;
int convolutionSize = blurSize;
for (int i = 0; i < blurSize; i++)
{
avgR += pixelsCopy1[row*image->width + i].x;
avgG += pixelsCopy1[row*image->width + i].y;
avgB += pixelsCopy1[row*image->width + i].z;
avgAlpha += pixelsCopy1[row*image->width + i].w;
}
for (int x = 0; x < image->width; x++)
{
if (x-blurSize-1 >= 0)
{
avgR -= pixelsCopy1[row*image->width + x-blurSize-1].x;
avgG -= pixelsCopy1[row*image->width + x-blurSize-1].y;
avgB -= pixelsCopy1[row*image->width + x-blurSize-1].z;
avgAlpha -= pixelsCopy1[row*image->width + x-blurSize-1].w;
convolutionSize--;
}
if (x+blurSize < image->width)
{
avgR += pixelsCopy1[row*image->width + x+blurSize].x;
avgG += pixelsCopy1[row*image->width + x+blurSize].y;
avgB += pixelsCopy1[row*image->width + x+blurSize].z;
avgAlpha += pixelsCopy1[row*image->width + x+blurSize].w;
convolutionSize++;
}
pixelsCopy2[row*image->width + x].x = avgR/convolutionSize;
pixelsCopy2[row*image->width + x].y = avgG/convolutionSize;
pixelsCopy2[row*image->width + x].z = avgB/convolutionSize;
pixelsCopy2[row*image->width + x].w = avgAlpha/convolutionSize;
}
}
// Vertical motion blur
for (int col = 0; col < image->width; col++)
{
float avgR = 0.0f;
float avgG = 0.0f;
float avgB = 0.0f;
float avgAlpha = 0.0f;
int convolutionSize = blurSize;
for (int i = 0; i < blurSize; i++)
{
avgR += pixelsCopy2[i*image->width + col].x;
avgG += pixelsCopy2[i*image->width + col].y;
avgB += pixelsCopy2[i*image->width + col].z;
avgAlpha += pixelsCopy2[i*image->width + col].w;
}
for (int y = 0; y < image->height; y++)
{
if (y-blurSize-1 >= 0)
{
avgR -= pixelsCopy2[(y-blurSize-1)*image->width + col].x;
avgG -= pixelsCopy2[(y-blurSize-1)*image->width + col].y;
avgB -= pixelsCopy2[(y-blurSize-1)*image->width + col].z;
avgAlpha -= pixelsCopy2[(y-blurSize-1)*image->width + col].w;
convolutionSize--;
}
if (y+blurSize < image->height)
{
avgR += pixelsCopy2[(y+blurSize)*image->width + col].x;
avgG += pixelsCopy2[(y+blurSize)*image->width + col].y;
avgB += pixelsCopy2[(y+blurSize)*image->width + col].z;
avgAlpha += pixelsCopy2[(y+blurSize)*image->width + col].w;
convolutionSize++;
}
pixelsCopy1[y*image->width + col].x = (unsigned char) (avgR/convolutionSize);
pixelsCopy1[y*image->width + col].y = (unsigned char) (avgG/convolutionSize);
pixelsCopy1[y*image->width + col].z = (unsigned char) (avgB/convolutionSize);
pixelsCopy1[y*image->width + col].w = (unsigned char) (avgAlpha/convolutionSize);
}
}
}
// Reverse premultiply
for (int i = 0; i < (image->width)*(image->height); i++)
{
if (pixelsCopy1[i].w == 0.0f)
{
pixels[i].r = 0;
pixels[i].g = 0;
pixels[i].b = 0;
pixels[i].a = 0;
}
else if (pixelsCopy1[i].w <= 255.0f)
{
float alpha = (float)pixelsCopy1[i].w/255.0f;
pixels[i].r = (unsigned char)((float)pixelsCopy1[i].x/alpha);
pixels[i].g = (unsigned char)((float)pixelsCopy1[i].y/alpha);
pixels[i].b = (unsigned char)((float)pixelsCopy1[i].z/alpha);
pixels[i].a = (unsigned char) pixelsCopy1[i].w;
}
}
int format = image->format;
RL_FREE(image->data);
RL_FREE(pixelsCopy1);
RL_FREE(pixelsCopy2);
image->data = pixels;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format);
}
// The kernel matrix is assumed to be square. Only supply the width of the kernel
void ImageKernelConvolution(Image *image, float* kernel, int kernelSize)
{
if ((image->data == NULL) || (image->width == 0) || (image->height == 0) || kernel == NULL) return;
int kernelWidth = (int)sqrtf((float)kernelSize);
if (kernelWidth*kernelWidth != kernelSize)
{
TRACELOG(LOG_WARNING, "IMAGE: Convolution kernel must be square to be applied");
return;
}
Color *pixels = LoadImageColors(*image);
Vector4 *imageCopy2 = RL_MALLOC((image->height)*(image->width)*sizeof(Vector4));
Vector4 *temp = RL_MALLOC(kernelSize*sizeof(Vector4));
for (int i = 0; i < kernelSize; i++)
{
temp[i].x = 0.0f;
temp[i].y = 0.0f;
temp[i].z = 0.0f;
temp[i].w = 0.0f;
}
float rRes = 0.0f;
float gRes = 0.0f;
float bRes = 0.0f;
float aRes = 0.0f;
int startRange = 0, endRange = 0;
if (kernelWidth%2 == 0)
{
startRange = -kernelWidth/2;
endRange = kernelWidth/2;
}
else
{
startRange = -kernelWidth/2;
endRange = kernelWidth/2 + 1;
}
for (int x = 0; x < image->height; x++)
{
for (int y = 0; y < image->width; y++)
{
for (int xk = startRange; xk < endRange; xk++)
{
for (int yk = startRange; yk < endRange; yk++)
{
int xkabs = xk + kernelWidth/2;
int ykabs = yk + kernelWidth/2;
unsigned int imgindex = image->width*(x + xk) + (y + yk);
if (imgindex >= (unsigned int)(image->width*image->height))
{
temp[kernelWidth*xkabs + ykabs].x = 0.0f;
temp[kernelWidth*xkabs + ykabs].y = 0.0f;
temp[kernelWidth*xkabs + ykabs].z = 0.0f;
temp[kernelWidth*xkabs + ykabs].w = 0.0f;
}
else
{
temp[kernelWidth*xkabs + ykabs].x = ((float)pixels[imgindex].r)/255.0f*kernel[kernelWidth*xkabs + ykabs];
temp[kernelWidth*xkabs + ykabs].y = ((float)pixels[imgindex].g)/255.0f*kernel[kernelWidth*xkabs + ykabs];
temp[kernelWidth*xkabs + ykabs].z = ((float)pixels[imgindex].b)/255.0f*kernel[kernelWidth*xkabs + ykabs];
temp[kernelWidth*xkabs + ykabs].w = ((float)pixels[imgindex].a)/255.0f*kernel[kernelWidth*xkabs + ykabs];
}
}
}
for (int i = 0; i < kernelSize; i++)
{
rRes += temp[i].x;
gRes += temp[i].y;
bRes += temp[i].z;
aRes += temp[i].w;
}
if (rRes < 0.0f) rRes = 0.0f;
if (gRes < 0.0f) gRes = 0.0f;
if (bRes < 0.0f) bRes = 0.0f;
if (rRes > 1.0f) rRes = 1.0f;
if (gRes > 1.0f) gRes = 1.0f;
if (bRes > 1.0f) bRes = 1.0f;
imageCopy2[image->width*x + y].x = rRes;
imageCopy2[image->width*x + y].y = gRes;
imageCopy2[image->width*x + y].z = bRes;
imageCopy2[image->width*x + y].w = aRes;
rRes = 0.0f;
gRes = 0.0f;
bRes = 0.0f;
aRes = 0.0f;
for (int i = 0; i < kernelSize; i++)
{
temp[i].x = 0.0f;
temp[i].y = 0.0f;
temp[i].z = 0.0f;
temp[i].w = 0.0f;
}
}
}
for (int i = 0; i < (image->width*image->height); i++)
{
float alpha = (float)imageCopy2[i].w;
pixels[i].r = (unsigned char)((imageCopy2[i].x)*255.0f);
pixels[i].g = (unsigned char)((imageCopy2[i].y)*255.0f);
pixels[i].b = (unsigned char)((imageCopy2[i].z)*255.0f);
pixels[i].a = (unsigned char)((alpha)*255.0f);
}
int format = image->format;
RL_FREE(image->data);
RL_FREE(imageCopy2);
RL_FREE(temp);
image->data = pixels;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format);
}
// Generate all mipmap levels for a provided image
// NOTE 1: Supports POT and NPOT images
// NOTE 2: image.data is scaled to include mipmap levels
// NOTE 3: Mipmaps format is the same as base image
void ImageMipmaps(Image *image)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
int mipCount = 1; // Required mipmap levels count (including base level)
int mipWidth = image->width; // Base image width
int mipHeight = image->height; // Base image height
int mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format); // Image data size (in bytes)
// Count mipmap levels required
while ((mipWidth != 1) || (mipHeight != 1))
{
if (mipWidth != 1) mipWidth /= 2;
if (mipHeight != 1) mipHeight /= 2;
// Security check for NPOT textures
if (mipWidth < 1) mipWidth = 1;
if (mipHeight < 1) mipHeight = 1;
TRACELOGD("IMAGE: Next mipmap level: %i x %i - current size %i", mipWidth, mipHeight, mipSize);
mipCount++;
mipSize += GetPixelDataSize(mipWidth, mipHeight, image->format); // Add mipmap size (in bytes)
}
if (image->mipmaps < mipCount)
{
void *temp = RL_REALLOC(image->data, mipSize);
if (temp != NULL) image->data = temp; // Assign new pointer (new size) to store mipmaps data
else TRACELOG(LOG_WARNING, "IMAGE: Mipmaps required memory could not be allocated");
// Pointer to allocated memory point where store next mipmap level data
unsigned char *nextmip = (unsigned char *)image->data + GetPixelDataSize(image->width, image->height, image->format);
mipWidth = image->width/2;
mipHeight = image->height/2;
mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format);
Image imCopy = ImageCopy(*image);
for (int i = 1; i < mipCount; i++)
{
TRACELOGD("IMAGE: Generating mipmap level: %i (%i x %i) - size: %i - offset: 0x%x", i, mipWidth, mipHeight, mipSize, nextmip);
ImageResize(&imCopy, mipWidth, mipHeight); // Uses internally Mitchell cubic downscale filter
memcpy(nextmip, imCopy.data, mipSize);
nextmip += mipSize;
image->mipmaps++;
mipWidth /= 2;
mipHeight /= 2;
// Security check for NPOT textures
if (mipWidth < 1) mipWidth = 1;
if (mipHeight < 1) mipHeight = 1;
mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format);
}
UnloadImage(imCopy);
}
else TRACELOG(LOG_WARNING, "IMAGE: Mipmaps already available");
}
// Dither image data to 16bpp or lower (Floyd-Steinberg dithering)
// NOTE: In case selected bpp do not represent a known 16bit format,
// dithered data is stored in the LSB part of the unsigned short
void ImageDither(Image *image, int rBpp, int gBpp, int bBpp, int aBpp)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB)
{
TRACELOG(LOG_WARNING, "IMAGE: Compressed data formats can not be dithered");
return;
}
if ((rBpp + gBpp + bBpp + aBpp) > 16)
{
TRACELOG(LOG_WARNING, "IMAGE: Unsupported dithering bpps (%ibpp), only 16bpp or lower modes supported", (rBpp+gBpp+bBpp+aBpp));
}
else
{
Color *pixels = LoadImageColors(*image);
RL_FREE(image->data); // free old image data
if ((image->format != PIXELFORMAT_UNCOMPRESSED_R8G8B8) && (image->format != PIXELFORMAT_UNCOMPRESSED_R8G8B8A8))
{
TRACELOG(LOG_WARNING, "IMAGE: Format is already 16bpp or lower, dithering could have no effect");
}
// Define new image format, check if desired bpp match internal known format
if ((rBpp == 5) && (gBpp == 6) && (bBpp == 5) && (aBpp == 0)) image->format = PIXELFORMAT_UNCOMPRESSED_R5G6B5;
else if ((rBpp == 5) && (gBpp == 5) && (bBpp == 5) && (aBpp == 1)) image->format = PIXELFORMAT_UNCOMPRESSED_R5G5B5A1;
else if ((rBpp == 4) && (gBpp == 4) && (bBpp == 4) && (aBpp == 4)) image->format = PIXELFORMAT_UNCOMPRESSED_R4G4B4A4;
else
{
image->format = 0;
TRACELOG(LOG_WARNING, "IMAGE: Unsupported dithered OpenGL internal format: %ibpp (R%iG%iB%iA%i)", (rBpp+gBpp+bBpp+aBpp), rBpp, gBpp, bBpp, aBpp);
}
// NOTE: We will store the dithered data as unsigned short (16bpp)
image->data = (unsigned short *)RL_MALLOC(image->width*image->height*sizeof(unsigned short));
Color oldPixel = WHITE;
Color newPixel = WHITE;
int rError, gError, bError;
unsigned short rPixel, gPixel, bPixel, aPixel; // Used for 16bit pixel composition
#define MIN(a,b) (((a)<(b))?(a):(b))
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
oldPixel = pixels[y*image->width + x];
// NOTE: New pixel obtained by bits truncate, it would be better to round values (check ImageFormat())
newPixel.r = oldPixel.r >> (8 - rBpp); // R bits
newPixel.g = oldPixel.g >> (8 - gBpp); // G bits
newPixel.b = oldPixel.b >> (8 - bBpp); // B bits
newPixel.a = oldPixel.a >> (8 - aBpp); // A bits (not used on dithering)
// NOTE: Error must be computed between new and old pixel but using same number of bits!
// We want to know how much color precision we have lost...
rError = (int)oldPixel.r - (int)(newPixel.r << (8 - rBpp));
gError = (int)oldPixel.g - (int)(newPixel.g << (8 - gBpp));
bError = (int)oldPixel.b - (int)(newPixel.b << (8 - bBpp));
pixels[y*image->width + x] = newPixel;
// NOTE: Some cases are out of the array and should be ignored
if (x < (image->width - 1))
{
pixels[y*image->width + x+1].r = MIN((int)pixels[y*image->width + x+1].r + (int)((float)rError*7.0f/16), 0xff);
pixels[y*image->width + x+1].g = MIN((int)pixels[y*image->width + x+1].g + (int)((float)gError*7.0f/16), 0xff);
pixels[y*image->width + x+1].b = MIN((int)pixels[y*image->width + x+1].b + (int)((float)bError*7.0f/16), 0xff);
}
if ((x > 0) && (y < (image->height - 1)))
{
pixels[(y+1)*image->width + x-1].r = MIN((int)pixels[(y+1)*image->width + x-1].r + (int)((float)rError*3.0f/16), 0xff);
pixels[(y+1)*image->width + x-1].g = MIN((int)pixels[(y+1)*image->width + x-1].g + (int)((float)gError*3.0f/16), 0xff);
pixels[(y+1)*image->width + x-1].b = MIN((int)pixels[(y+1)*image->width + x-1].b + (int)((float)bError*3.0f/16), 0xff);
}
if (y < (image->height - 1))
{
pixels[(y+1)*image->width + x].r = MIN((int)pixels[(y+1)*image->width + x].r + (int)((float)rError*5.0f/16), 0xff);
pixels[(y+1)*image->width + x].g = MIN((int)pixels[(y+1)*image->width + x].g + (int)((float)gError*5.0f/16), 0xff);
pixels[(y+1)*image->width + x].b = MIN((int)pixels[(y+1)*image->width + x].b + (int)((float)bError*5.0f/16), 0xff);
}
if ((x < (image->width - 1)) && (y < (image->height - 1)))
{
pixels[(y+1)*image->width + x+1].r = MIN((int)pixels[(y+1)*image->width + x+1].r + (int)((float)rError*1.0f/16), 0xff);
pixels[(y+1)*image->width + x+1].g = MIN((int)pixels[(y+1)*image->width + x+1].g + (int)((float)gError*1.0f/16), 0xff);
pixels[(y+1)*image->width + x+1].b = MIN((int)pixels[(y+1)*image->width + x+1].b + (int)((float)bError*1.0f/16), 0xff);
}
rPixel = (unsigned short)newPixel.r;
gPixel = (unsigned short)newPixel.g;
bPixel = (unsigned short)newPixel.b;
aPixel = (unsigned short)newPixel.a;
((unsigned short *)image->data)[y*image->width + x] = (rPixel << (gBpp + bBpp + aBpp)) | (gPixel << (bBpp + aBpp)) | (bPixel << aBpp) | aPixel;
}
}
UnloadImageColors(pixels);
}
}
// Flip image vertically
void ImageFlipVertical(Image *image)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else
{
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *flippedData = (unsigned char *)RL_MALLOC(image->width*image->height*bytesPerPixel);
for (int i = (image->height - 1), offsetSize = 0; i >= 0; i--)
{
memcpy(flippedData + offsetSize, ((unsigned char *)image->data) + i*image->width*bytesPerPixel, image->width*bytesPerPixel);
offsetSize += image->width*bytesPerPixel;
}
RL_FREE(image->data);
image->data = flippedData;
}
}
// Flip image horizontally
void ImageFlipHorizontal(Image *image)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else
{
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *flippedData = (unsigned char *)RL_MALLOC(image->width*image->height*bytesPerPixel);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
// OPTION 1: Move pixels with memcpy()
//memcpy(flippedData + (y*image->width + x)*bytesPerPixel, ((unsigned char *)image->data) + (y*image->width + (image->width - 1 - x))*bytesPerPixel, bytesPerPixel);
// OPTION 2: Just copy data pixel by pixel
for (int i = 0; i < bytesPerPixel; i++) flippedData[(y*image->width + x)*bytesPerPixel + i] = ((unsigned char *)image->data)[(y*image->width + (image->width - 1 - x))*bytesPerPixel + i];
}
}
RL_FREE(image->data);
image->data = flippedData;
/*
// OPTION 3: Faster implementation (specific for 32bit pixels)
// NOTE: It does not require additional allocations
uint32_t *ptr = (uint32_t *)image->data;
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width/2; x++)
{
uint32_t backup = ptr[y*image->width + x];
ptr[y*image->width + x] = ptr[y*image->width + (image->width - 1 - x)];
ptr[y*image->width + (image->width - 1 - x)] = backup;
}
}
*/
}
}
// Rotate image in degrees
void ImageRotate(Image *image, int degrees)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else
{
float rad = degrees*PI/180.0f;
float sinRadius = sinf(rad);
float cosRadius = cosf(rad);
int width = (int)(fabsf(image->width*cosRadius) + fabsf(image->height*sinRadius));
int height = (int)(fabsf(image->height*cosRadius) + fabsf(image->width*sinRadius));
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *rotatedData = (unsigned char *)RL_CALLOC(width*height, bytesPerPixel);
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
float oldX = ((x - width/2.0f)*cosRadius + (y - height/2.0f)*sinRadius) + image->width/2.0f;
float oldY = ((y - height/2.0f)*cosRadius - (x - width/2.0f)*sinRadius) + image->height/2.0f;
if ((oldX >= 0) && (oldX < image->width) && (oldY >= 0) && (oldY < image->height))
{
int x1 = (int)floorf(oldX);
int y1 = (int)floorf(oldY);
int x2 = MIN(x1 + 1, image->width - 1);
int y2 = MIN(y1 + 1, image->height - 1);
float px = oldX - x1;
float py = oldY - y1;
for (int i = 0; i < bytesPerPixel; i++)
{
float f1 = ((unsigned char *)image->data)[(y1*image->width + x1)*bytesPerPixel + i];
float f2 = ((unsigned char *)image->data)[(y1*image->width + x2)*bytesPerPixel + i];
float f3 = ((unsigned char *)image->data)[(y2*image->width + x1)*bytesPerPixel + i];
float f4 = ((unsigned char *)image->data)[(y2*image->width + x2)*bytesPerPixel + i];
float val = f1*(1 - px)*(1 - py) + f2*px*(1 - py) + f3*(1 - px)*py + f4*px*py;
rotatedData[(y*width + x)*bytesPerPixel + i] = (unsigned char)val;
}
}
}
}
RL_FREE(image->data);
image->data = rotatedData;
image->width = width;
image->height = height;
}
}
// Rotate image clockwise 90deg
void ImageRotateCW(Image *image)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else
{
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *rotatedData = (unsigned char *)RL_MALLOC(image->width*image->height*bytesPerPixel);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
//memcpy(rotatedData + (x*image->height + (image->height - y - 1))*bytesPerPixel, ((unsigned char *)image->data) + (y*image->width + x)*bytesPerPixel, bytesPerPixel);
for (int i = 0; i < bytesPerPixel; i++) rotatedData[(x*image->height + (image->height - y - 1))*bytesPerPixel + i] = ((unsigned char *)image->data)[(y*image->width + x)*bytesPerPixel + i];
}
}
RL_FREE(image->data);
image->data = rotatedData;
int width = image->width;
int height = image-> height;
image->width = height;
image->height = width;
}
}
// Rotate image counter-clockwise 90deg
void ImageRotateCCW(Image *image)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else
{
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *rotatedData = (unsigned char *)RL_MALLOC(image->width*image->height*bytesPerPixel);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
//memcpy(rotatedData + (x*image->height + y))*bytesPerPixel, ((unsigned char *)image->data) + (y*image->width + (image->width - x - 1))*bytesPerPixel, bytesPerPixel);
for (int i = 0; i < bytesPerPixel; i++) rotatedData[(x*image->height + y)*bytesPerPixel + i] = ((unsigned char *)image->data)[(y*image->width + (image->width - x - 1))*bytesPerPixel + i];
}
}
RL_FREE(image->data);
image->data = rotatedData;
int width = image->width;
int height = image-> height;
image->width = height;
image->height = width;
}
}
// Modify image color: tint
void ImageColorTint(Image *image, Color color)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
Color *pixels = LoadImageColors(*image);
float cR = (float)color.r/255;
float cG = (float)color.g/255;
float cB = (float)color.b/255;
float cA = (float)color.a/255;
for (int i = 0; i < image->width*image->height; i++)
{
unsigned char r = (unsigned char)(((float)pixels[i].r/255*cR)*255.0f);
unsigned char g = (unsigned char)(((float)pixels[i].g/255*cG)*255.0f);
unsigned char b = (unsigned char)(((float)pixels[i].b/255*cB)*255.0f);
unsigned char a = (unsigned char)(((float)pixels[i].a/255*cA)*255.0f);
pixels[i].r = r;
pixels[i].g = g;
pixels[i].b = b;
pixels[i].a = a;
}
int format = image->format;
RL_FREE(image->data);
image->data = pixels;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format);
}
// Modify image color: invert
void ImageColorInvert(Image *image)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
Color *pixels = LoadImageColors(*image);
for (int i = 0; i < image->width*image->height; i++)
{
pixels[i].r = 255 - pixels[i].r;
pixels[i].g = 255 - pixels[i].g;
pixels[i].b = 255 - pixels[i].b;
}
int format = image->format;
RL_FREE(image->data);
image->data = pixels;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format);
}
// Modify image color: grayscale
void ImageColorGrayscale(Image *image)
{
ImageFormat(image, PIXELFORMAT_UNCOMPRESSED_GRAYSCALE);
}
// Modify image color: contrast
// NOTE: Contrast values between -100 and 100
void ImageColorContrast(Image *image, float contrast)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (contrast < -100) contrast = -100;
if (contrast > 100) contrast = 100;
contrast = (100.0f + contrast)/100.0f;
contrast *= contrast;
Color *pixels = LoadImageColors(*image);
for (int i = 0; i < image->width*image->height; i++)
{
float pR = (float)pixels[i].r/255.0f;
pR -= 0.5f;
pR *= contrast;
pR += 0.5f;
pR *= 255;
if (pR < 0) pR = 0;
if (pR > 255) pR = 255;
float pG = (float)pixels[i].g/255.0f;
pG -= 0.5f;
pG *= contrast;
pG += 0.5f;
pG *= 255;
if (pG < 0) pG = 0;
if (pG > 255) pG = 255;
float pB = (float)pixels[i].b/255.0f;
pB -= 0.5f;
pB *= contrast;
pB += 0.5f;
pB *= 255;
if (pB < 0) pB = 0;
if (pB > 255) pB = 255;
pixels[i].r = (unsigned char)pR;
pixels[i].g = (unsigned char)pG;
pixels[i].b = (unsigned char)pB;
}
int format = image->format;
RL_FREE(image->data);
image->data = pixels;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format);
}
// Modify image color: brightness
// NOTE: Brightness values between -255 and 255
void ImageColorBrightness(Image *image, int brightness)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (brightness < -255) brightness = -255;
if (brightness > 255) brightness = 255;
Color *pixels = LoadImageColors(*image);
for (int i = 0; i < image->width*image->height; i++)
{
int cR = pixels[i].r + brightness;
int cG = pixels[i].g + brightness;
int cB = pixels[i].b + brightness;
if (cR < 0) cR = 1;
if (cR > 255) cR = 255;
if (cG < 0) cG = 1;
if (cG > 255) cG = 255;
if (cB < 0) cB = 1;
if (cB > 255) cB = 255;
pixels[i].r = (unsigned char)cR;
pixels[i].g = (unsigned char)cG;
pixels[i].b = (unsigned char)cB;
}
int format = image->format;
RL_FREE(image->data);
image->data = pixels;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format);
}
// Modify image color: replace color
void ImageColorReplace(Image *image, Color color, Color replace)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
Color *pixels = LoadImageColors(*image);
for (int i = 0; i < image->width*image->height; i++)
{
if ((pixels[i].r == color.r) &&
(pixels[i].g == color.g) &&
(pixels[i].b == color.b) &&
(pixels[i].a == color.a))
{
pixels[i].r = replace.r;
pixels[i].g = replace.g;
pixels[i].b = replace.b;
pixels[i].a = replace.a;
}
}
int format = image->format;
RL_FREE(image->data);
image->data = pixels;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format);
}
#endif // SUPPORT_IMAGE_MANIPULATION
// Load color data from image as a Color array (RGBA - 32bit)
// NOTE: Memory allocated should be freed using UnloadImageColors();
Color *LoadImageColors(Image image)
{
if ((image.width == 0) || (image.height == 0)) return NULL;
Color *pixels = (Color *)RL_MALLOC(image.width*image.height*sizeof(Color));
if (image.format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "IMAGE: Pixel data retrieval not supported for compressed image formats");
else
{
if ((image.format == PIXELFORMAT_UNCOMPRESSED_R32) ||
(image.format == PIXELFORMAT_UNCOMPRESSED_R32G32B32) ||
(image.format == PIXELFORMAT_UNCOMPRESSED_R32G32B32A32)) TRACELOG(LOG_WARNING, "IMAGE: Pixel format converted from 32bit to 8bit per channel");
if ((image.format == PIXELFORMAT_UNCOMPRESSED_R16) ||
(image.format == PIXELFORMAT_UNCOMPRESSED_R16G16B16) ||
(image.format == PIXELFORMAT_UNCOMPRESSED_R16G16B16A16)) TRACELOG(LOG_WARNING, "IMAGE: Pixel format converted from 16bit to 8bit per channel");
for (int i = 0, k = 0; i < image.width*image.height; i++)
{
switch (image.format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE:
{
pixels[i].r = ((unsigned char *)image.data)[i];
pixels[i].g = ((unsigned char *)image.data)[i];
pixels[i].b = ((unsigned char *)image.data)[i];
pixels[i].a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
{
pixels[i].r = ((unsigned char *)image.data)[k];
pixels[i].g = ((unsigned char *)image.data)[k];
pixels[i].b = ((unsigned char *)image.data)[k];
pixels[i].a = ((unsigned char *)image.data)[k + 1];
k += 2;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31));
pixels[i].g = (unsigned char)((float)((pixel & 0b0000011111000000) >> 6)*(255/31));
pixels[i].b = (unsigned char)((float)((pixel & 0b0000000000111110) >> 1)*(255/31));
pixels[i].a = (unsigned char)((pixel & 0b0000000000000001)*255);
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31));
pixels[i].g = (unsigned char)((float)((pixel & 0b0000011111100000) >> 5)*(255/63));
pixels[i].b = (unsigned char)((float)(pixel & 0b0000000000011111)*(255/31));
pixels[i].a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].r = (unsigned char)((float)((pixel & 0b1111000000000000) >> 12)*(255/15));
pixels[i].g = (unsigned char)((float)((pixel & 0b0000111100000000) >> 8)*(255/15));
pixels[i].b = (unsigned char)((float)((pixel & 0b0000000011110000) >> 4)*(255/15));
pixels[i].a = (unsigned char)((float)(pixel & 0b0000000000001111)*(255/15));
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8:
{
pixels[i].r = ((unsigned char *)image.data)[k];
pixels[i].g = ((unsigned char *)image.data)[k + 1];
pixels[i].b = ((unsigned char *)image.data)[k + 2];
pixels[i].a = ((unsigned char *)image.data)[k + 3];
k += 4;
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8:
{
pixels[i].r = (unsigned char)((unsigned char *)image.data)[k];
pixels[i].g = (unsigned char)((unsigned char *)image.data)[k + 1];
pixels[i].b = (unsigned char)((unsigned char *)image.data)[k + 2];
pixels[i].a = 255;
k += 3;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32:
{
pixels[i].r = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].g = 0;
pixels[i].b = 0;
pixels[i].a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32:
{
pixels[i].r = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].g = (unsigned char)(((float *)image.data)[k + 1]*255.0f);
pixels[i].b = (unsigned char)(((float *)image.data)[k + 2]*255.0f);
pixels[i].a = 255;
k += 3;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32:
{
pixels[i].r = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].g = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].b = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].a = (unsigned char)(((float *)image.data)[k]*255.0f);
k += 4;
} break;
case PIXELFORMAT_UNCOMPRESSED_R16:
{
pixels[i].r = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[k])*255.0f);
pixels[i].g = 0;
pixels[i].b = 0;
pixels[i].a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16:
{
pixels[i].r = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[k])*255.0f);
pixels[i].g = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[k + 1])*255.0f);
pixels[i].b = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[k + 2])*255.0f);
pixels[i].a = 255;
k += 3;
} break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16:
{
pixels[i].r = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[k])*255.0f);
pixels[i].g = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[k])*255.0f);
pixels[i].b = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[k])*255.0f);
pixels[i].a = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[k])*255.0f);
k += 4;
} break;
default: break;
}
}
}
return pixels;
}
// Load colors palette from image as a Color array (RGBA - 32bit)
// NOTE: Memory allocated should be freed using UnloadImagePalette()
Color *LoadImagePalette(Image image, int maxPaletteSize, int *colorCount)
{
#define COLOR_EQUAL(col1, col2) ((col1.r == col2.r)&&(col1.g == col2.g)&&(col1.b == col2.b)&&(col1.a == col2.a))
int palCount = 0;
Color *palette = NULL;
Color *pixels = LoadImageColors(image);
if (pixels != NULL)
{
palette = (Color *)RL_MALLOC(maxPaletteSize*sizeof(Color));
for (int i = 0; i < maxPaletteSize; i++) palette[i] = BLANK; // Set all colors to BLANK
for (int i = 0; i < image.width*image.height; i++)
{
if (pixels[i].a > 0)
{
bool colorInPalette = false;
// Check if the color is already on palette
for (int j = 0; j < maxPaletteSize; j++)
{
if (COLOR_EQUAL(pixels[i], palette[j]))
{
colorInPalette = true;
break;
}
}
// Store color if not on the palette
if (!colorInPalette)
{
palette[palCount] = pixels[i]; // Add pixels[i] to palette
palCount++;
// We reached the limit of colors supported by palette
if (palCount >= maxPaletteSize)
{
i = image.width*image.height; // Finish palette get
TRACELOG(LOG_WARNING, "IMAGE: Palette is greater than %i colors", maxPaletteSize);
}
}
}
}
UnloadImageColors(pixels);
}
*colorCount = palCount;
return palette;
}
// Unload color data loaded with LoadImageColors()
void UnloadImageColors(Color *colors)
{
RL_FREE(colors);
}
// Unload colors palette loaded with LoadImagePalette()
void UnloadImagePalette(Color *colors)
{
RL_FREE(colors);
}
// Get image alpha border rectangle
// NOTE: Threshold is defined as a percentage: 0.0f -> 1.0f
Rectangle GetImageAlphaBorder(Image image, float threshold)
{
Rectangle crop = { 0 };
Color *pixels = LoadImageColors(image);
if (pixels != NULL)
{
int xMin = 65536; // Define a big enough number
int xMax = 0;
int yMin = 65536;
int yMax = 0;
for (int y = 0; y < image.height; y++)
{
for (int x = 0; x < image.width; x++)
{
if (pixels[y*image.width + x].a > (unsigned char)(threshold*255.0f))
{
if (x < xMin) xMin = x;
if (x > xMax) xMax = x;
if (y < yMin) yMin = y;
if (y > yMax) yMax = y;
}
}
}
// Check for empty blank image
if ((xMin != 65536) && (xMax != 65536))
{
crop = (Rectangle){ (float)xMin, (float)yMin, (float)((xMax + 1) - xMin), (float)((yMax + 1) - yMin) };
}
UnloadImageColors(pixels);
}
return crop;
}
// Get image pixel color at (x, y) position
Color GetImageColor(Image image, int x, int y)
{
Color color = { 0 };
if ((x >=0) && (x < image.width) && (y >= 0) && (y < image.height))
{
switch (image.format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE:
{
color.r = ((unsigned char *)image.data)[y*image.width + x];
color.g = ((unsigned char *)image.data)[y*image.width + x];
color.b = ((unsigned char *)image.data)[y*image.width + x];
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
{
color.r = ((unsigned char *)image.data)[(y*image.width + x)*2];
color.g = ((unsigned char *)image.data)[(y*image.width + x)*2];
color.b = ((unsigned char *)image.data)[(y*image.width + x)*2];
color.a = ((unsigned char *)image.data)[(y*image.width + x)*2 + 1];
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
unsigned short pixel = ((unsigned short *)image.data)[y*image.width + x];
color.r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31));
color.g = (unsigned char)((float)((pixel & 0b0000011111000000) >> 6)*(255/31));
color.b = (unsigned char)((float)((pixel & 0b0000000000111110) >> 1)*(255/31));
color.a = (unsigned char)((pixel & 0b0000000000000001)*255);
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
{
unsigned short pixel = ((unsigned short *)image.data)[y*image.width + x];
color.r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31));
color.g = (unsigned char)((float)((pixel & 0b0000011111100000) >> 5)*(255/63));
color.b = (unsigned char)((float)(pixel & 0b0000000000011111)*(255/31));
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
unsigned short pixel = ((unsigned short *)image.data)[y*image.width + x];
color.r = (unsigned char)((float)((pixel & 0b1111000000000000) >> 12)*(255/15));
color.g = (unsigned char)((float)((pixel & 0b0000111100000000) >> 8)*(255/15));
color.b = (unsigned char)((float)((pixel & 0b0000000011110000) >> 4)*(255/15));
color.a = (unsigned char)((float)(pixel & 0b0000000000001111)*(255/15));
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8:
{
color.r = ((unsigned char *)image.data)[(y*image.width + x)*4];
color.g = ((unsigned char *)image.data)[(y*image.width + x)*4 + 1];
color.b = ((unsigned char *)image.data)[(y*image.width + x)*4 + 2];
color.a = ((unsigned char *)image.data)[(y*image.width + x)*4 + 3];
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8:
{
color.r = (unsigned char)((unsigned char *)image.data)[(y*image.width + x)*3];
color.g = (unsigned char)((unsigned char *)image.data)[(y*image.width + x)*3 + 1];
color.b = (unsigned char)((unsigned char *)image.data)[(y*image.width + x)*3 + 2];
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32:
{
color.r = (unsigned char)(((float *)image.data)[y*image.width + x]*255.0f);
color.g = 0;
color.b = 0;
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32:
{
color.r = (unsigned char)(((float *)image.data)[(y*image.width + x)*3]*255.0f);
color.g = (unsigned char)(((float *)image.data)[(y*image.width + x)*3 + 1]*255.0f);
color.b = (unsigned char)(((float *)image.data)[(y*image.width + x)*3 + 2]*255.0f);
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32:
{
color.r = (unsigned char)(((float *)image.data)[(y*image.width + x)*4]*255.0f);
color.g = (unsigned char)(((float *)image.data)[(y*image.width + x)*4]*255.0f);
color.b = (unsigned char)(((float *)image.data)[(y*image.width + x)*4]*255.0f);
color.a = (unsigned char)(((float *)image.data)[(y*image.width + x)*4]*255.0f);
} break;
case PIXELFORMAT_UNCOMPRESSED_R16:
{
color.r = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[y*image.width + x])*255.0f);
color.g = 0;
color.b = 0;
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16:
{
color.r = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[(y*image.width + x)*3])*255.0f);
color.g = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[(y*image.width + x)*3 + 1])*255.0f);
color.b = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[(y*image.width + x)*3 + 2])*255.0f);
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16:
{
color.r = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[(y*image.width + x)*4])*255.0f);
color.g = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[(y*image.width + x)*4])*255.0f);
color.b = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[(y*image.width + x)*4])*255.0f);
color.a = (unsigned char)(HalfToFloat(((unsigned short *)image.data)[(y*image.width + x)*4])*255.0f);
} break;
default: TRACELOG(LOG_WARNING, "Compressed image format does not support color reading"); break;
}
}
else TRACELOG(LOG_WARNING, "Requested image pixel (%i, %i) out of bounds", x, y);
return color;
}
//------------------------------------------------------------------------------------
// Image drawing functions
//------------------------------------------------------------------------------------
// Clear image background with given color
void ImageClearBackground(Image *dst, Color color)
{
// Security check to avoid program crash
if ((dst->data == NULL) || (dst->width == 0) || (dst->height == 0)) return;
// Fill in first pixel based on image format
ImageDrawPixel(dst, 0, 0, color);
unsigned char *pSrcPixel = (unsigned char *)dst->data;
int bytesPerPixel = GetPixelDataSize(1, 1, dst->format);
// Repeat the first pixel data throughout the image
for (int i = 1; i < dst->width*dst->height; i++)
{
memcpy(pSrcPixel + i*bytesPerPixel, pSrcPixel, bytesPerPixel);
}
}
// Draw pixel within an image
// NOTE: Compressed image formats not supported
void ImageDrawPixel(Image *dst, int x, int y, Color color)
{
// Security check to avoid program crash
if ((dst->data == NULL) || (x < 0) || (x >= dst->width) || (y < 0) || (y >= dst->height)) return;
switch (dst->format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE:
{
// NOTE: Calculate grayscale equivalent color
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
unsigned char gray = (unsigned char)((coln.x*0.299f + coln.y*0.587f + coln.z*0.114f)*255.0f);
((unsigned char *)dst->data)[y*dst->width + x] = gray;
} break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
{
// NOTE: Calculate grayscale equivalent color
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
unsigned char gray = (unsigned char)((coln.x*0.299f + coln.y*0.587f + coln.z*0.114f)*255.0f);
((unsigned char *)dst->data)[(y*dst->width + x)*2] = gray;
((unsigned char *)dst->data)[(y*dst->width + x)*2 + 1] = color.a;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
{
// NOTE: Calculate R5G6B5 equivalent color
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
unsigned char r = (unsigned char)(round(coln.x*31.0f));
unsigned char g = (unsigned char)(round(coln.y*63.0f));
unsigned char b = (unsigned char)(round(coln.z*31.0f));
((unsigned short *)dst->data)[y*dst->width + x] = (unsigned short)r << 11 | (unsigned short)g << 5 | (unsigned short)b;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
// NOTE: Calculate R5G5B5A1 equivalent color
Vector4 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f, (float)color.a/255.0f };
unsigned char r = (unsigned char)(round(coln.x*31.0f));
unsigned char g = (unsigned char)(round(coln.y*31.0f));
unsigned char b = (unsigned char)(round(coln.z*31.0f));
unsigned char a = (coln.w > ((float)PIXELFORMAT_UNCOMPRESSED_R5G5B5A1_ALPHA_THRESHOLD/255.0f))? 1 : 0;
((unsigned short *)dst->data)[y*dst->width + x] = (unsigned short)r << 11 | (unsigned short)g << 6 | (unsigned short)b << 1 | (unsigned short)a;
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
// NOTE: Calculate R5G5B5A1 equivalent color
Vector4 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f, (float)color.a/255.0f };
unsigned char r = (unsigned char)(round(coln.x*15.0f));
unsigned char g = (unsigned char)(round(coln.y*15.0f));
unsigned char b = (unsigned char)(round(coln.z*15.0f));
unsigned char a = (unsigned char)(round(coln.w*15.0f));
((unsigned short *)dst->data)[y*dst->width + x] = (unsigned short)r << 12 | (unsigned short)g << 8 | (unsigned short)b << 4 | (unsigned short)a;
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8:
{
((unsigned char *)dst->data)[(y*dst->width + x)*3] = color.r;
((unsigned char *)dst->data)[(y*dst->width + x)*3 + 1] = color.g;
((unsigned char *)dst->data)[(y*dst->width + x)*3 + 2] = color.b;
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8:
{
((unsigned char *)dst->data)[(y*dst->width + x)*4] = color.r;
((unsigned char *)dst->data)[(y*dst->width + x)*4 + 1] = color.g;
((unsigned char *)dst->data)[(y*dst->width + x)*4 + 2] = color.b;
((unsigned char *)dst->data)[(y*dst->width + x)*4 + 3] = color.a;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32:
{
// NOTE: Calculate grayscale equivalent color (normalized to 32bit)
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
((float *)dst->data)[y*dst->width + x] = coln.x*0.299f + coln.y*0.587f + coln.z*0.114f;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32:
{
// NOTE: Calculate R32G32B32 equivalent color (normalized to 32bit)
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
((float *)dst->data)[(y*dst->width + x)*3] = coln.x;
((float *)dst->data)[(y*dst->width + x)*3 + 1] = coln.y;
((float *)dst->data)[(y*dst->width + x)*3 + 2] = coln.z;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32:
{
// NOTE: Calculate R32G32B32A32 equivalent color (normalized to 32bit)
Vector4 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f, (float)color.a/255.0f };
((float *)dst->data)[(y*dst->width + x)*4] = coln.x;
((float *)dst->data)[(y*dst->width + x)*4 + 1] = coln.y;
((float *)dst->data)[(y*dst->width + x)*4 + 2] = coln.z;
((float *)dst->data)[(y*dst->width + x)*4 + 3] = coln.w;
} break;
case PIXELFORMAT_UNCOMPRESSED_R16:
{
// NOTE: Calculate grayscale equivalent color (normalized to 32bit)
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
((unsigned short*)dst->data)[y*dst->width + x] = FloatToHalf(coln.x*0.299f + coln.y*0.587f + coln.z*0.114f);
} break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16:
{
// NOTE: Calculate R32G32B32 equivalent color (normalized to 32bit)
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
((unsigned short *)dst->data)[(y*dst->width + x)*3] = FloatToHalf(coln.x);
((unsigned short *)dst->data)[(y*dst->width + x)*3 + 1] = FloatToHalf(coln.y);
((unsigned short *)dst->data)[(y*dst->width + x)*3 + 2] = FloatToHalf(coln.z);
} break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16:
{
// NOTE: Calculate R32G32B32A32 equivalent color (normalized to 32bit)
Vector4 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f, (float)color.a/255.0f };
((unsigned short *)dst->data)[(y*dst->width + x)*4] = FloatToHalf(coln.x);
((unsigned short *)dst->data)[(y*dst->width + x)*4 + 1] = FloatToHalf(coln.y);
((unsigned short *)dst->data)[(y*dst->width + x)*4 + 2] = FloatToHalf(coln.z);
((unsigned short *)dst->data)[(y*dst->width + x)*4 + 3] = FloatToHalf(coln.w);
} break;
default: break;
}
}
// Draw pixel within an image (Vector version)
void ImageDrawPixelV(Image *dst, Vector2 position, Color color)
{
ImageDrawPixel(dst, (int)position.x, (int)position.y, color);
}
// Draw line within an image
void ImageDrawLine(Image *dst, int startPosX, int startPosY, int endPosX, int endPosY, Color color)
{
// Using Bresenham's algorithm as described in
// Drawing Lines with Pixels - Joshua Scott - March 2012
// https://classic.csunplugged.org/wp-content/uploads/2014/12/Lines.pdf
int changeInX = (endPosX - startPosX);
int absChangeInX = (changeInX < 0)? -changeInX : changeInX;
int changeInY = (endPosY - startPosY);
int absChangeInY = (changeInY < 0)? -changeInY : changeInY;
int startU, startV, endU, stepV; // Substitutions, either U = X, V = Y or vice versa. See loop at end of function
//int endV; // Not needed but left for better understanding, check code below
int A, B, P; // See linked paper above, explained down in the main loop
int reversedXY = (absChangeInY < absChangeInX);
if (reversedXY)
{
A = 2*absChangeInY;
B = A - 2*absChangeInX;
P = A - absChangeInX;
if (changeInX > 0)
{
startU = startPosX;
startV = startPosY;
endU = endPosX;
//endV = endPosY;
}
else
{
startU = endPosX;
startV = endPosY;
endU = startPosX;
//endV = startPosY;
// Since start and end are reversed
changeInX = -changeInX;
changeInY = -changeInY;
}
stepV = (changeInY < 0)? -1 : 1;
ImageDrawPixel(dst, startU, startV, color); // At this point they are correctly ordered...
}
else
{
A = 2*absChangeInX;
B = A - 2*absChangeInY;
P = A - absChangeInY;
if (changeInY > 0)
{
startU = startPosY;
startV = startPosX;
endU = endPosY;
//endV = endPosX;
}
else
{
startU = endPosY;
startV = endPosX;
endU = startPosY;
//endV = startPosX;
// Since start and end are reversed
changeInX = -changeInX;
changeInY = -changeInY;
}
stepV = (changeInX < 0)? -1 : 1;
ImageDrawPixel(dst, startV, startU, color); // ... but need to be reversed here. Repeated in the main loop below
}
// We already drew the start point. If we started at startU + 0, the line would be crooked and too short
for (int u = startU + 1, v = startV; u <= endU; u++)
{
if (P >= 0)
{
v += stepV; // Adjusts whenever we stray too far from the direct line. Details in the linked paper above
P += B; // Remembers that we corrected our path
}
else P += A; // Remembers how far we are from the direct line
if (reversedXY) ImageDrawPixel(dst, u, v, color);
else ImageDrawPixel(dst, v, u, color);
}
}
// Draw line within an image (Vector version)
void ImageDrawLineV(Image *dst, Vector2 start, Vector2 end, Color color)
{
ImageDrawLine(dst, (int)start.x, (int)start.y, (int)end.x, (int)end.y, color);
}
// Draw circle within an image
void ImageDrawCircle(Image* dst, int centerX, int centerY, int radius, Color color)
{
int x = 0;
int y = radius;
int decesionParameter = 3 - 2*radius;
while (y >= x)
{
ImageDrawRectangle(dst, centerX - x, centerY + y, x*2, 1, color);
ImageDrawRectangle(dst, centerX - x, centerY - y, x*2, 1, color);
ImageDrawRectangle(dst, centerX - y, centerY + x, y*2, 1, color);
ImageDrawRectangle(dst, centerX - y, centerY - x, y*2, 1, color);
x++;
if (decesionParameter > 0)
{
y--;
decesionParameter = decesionParameter + 4*(x - y) + 10;
}
else decesionParameter = decesionParameter + 4*x + 6;
}
}
// Draw circle within an image (Vector version)
void ImageDrawCircleV(Image* dst, Vector2 center, int radius, Color color)
{
ImageDrawCircle(dst, (int)center.x, (int)center.y, radius, color);
}
// Draw circle outline within an image
void ImageDrawCircleLines(Image *dst, int centerX, int centerY, int radius, Color color)
{
int x = 0;
int y = radius;
int decesionParameter = 3 - 2*radius;
while (y >= x)
{
ImageDrawPixel(dst, centerX + x, centerY + y, color);
ImageDrawPixel(dst, centerX - x, centerY + y, color);
ImageDrawPixel(dst, centerX + x, centerY - y, color);
ImageDrawPixel(dst, centerX - x, centerY - y, color);
ImageDrawPixel(dst, centerX + y, centerY + x, color);
ImageDrawPixel(dst, centerX - y, centerY + x, color);
ImageDrawPixel(dst, centerX + y, centerY - x, color);
ImageDrawPixel(dst, centerX - y, centerY - x, color);
x++;
if (decesionParameter > 0)
{
y--;
decesionParameter = decesionParameter + 4*(x - y) + 10;
}
else decesionParameter = decesionParameter + 4*x + 6;
}
}
// Draw circle outline within an image (Vector version)
void ImageDrawCircleLinesV(Image *dst, Vector2 center, int radius, Color color)
{
ImageDrawCircleLines(dst, (int)center.x, (int)center.y, radius, color);
}
// Draw rectangle within an image
void ImageDrawRectangle(Image *dst, int posX, int posY, int width, int height, Color color)
{
ImageDrawRectangleRec(dst, (Rectangle){ (float)posX, (float)posY, (float)width, (float)height }, color);
}
// Draw rectangle within an image (Vector version)
void ImageDrawRectangleV(Image *dst, Vector2 position, Vector2 size, Color color)
{
ImageDrawRectangle(dst, (int)position.x, (int)position.y, (int)size.x, (int)size.y, color);
}
// Draw rectangle within an image
void ImageDrawRectangleRec(Image *dst, Rectangle rec, Color color)
{
// Security check to avoid program crash
if ((dst->data == NULL) || (dst->width == 0) || (dst->height == 0)) return;
// Security check to avoid drawing out of bounds in case of bad user data
if (rec.x < 0) { rec.width += rec.x; rec.x = 0; }
if (rec.y < 0) { rec.height += rec.y; rec.y = 0; }
if (rec.width < 0) rec.width = 0;
if (rec.height < 0) rec.height = 0;
// Clamp the size the the image bounds
if ((rec.x + rec.width) >= dst->width) rec.width = dst->width - rec.x;
if ((rec.y + rec.height) >= dst->height) rec.height = dst->height - rec.y;
// Check if the rect is even inside the image
if ((rec.x >= dst->width) || (rec.y >= dst->height)) return;
if (((rec.x + rec.width) <= 0) || (rec.y + rec.height <= 0)) return;
int sy = (int)rec.y;
int sx = (int)rec.x;
int bytesPerPixel = GetPixelDataSize(1, 1, dst->format);
// Fill in the first pixel of the first row based on image format
ImageDrawPixel(dst, sx, sy, color);
int bytesOffset = ((sy*dst->width) + sx)*bytesPerPixel;
unsigned char *pSrcPixel = (unsigned char *)dst->data + bytesOffset;
// Repeat the first pixel data throughout the row
for (int x = 1; x < (int)rec.width; x++)
{
memcpy(pSrcPixel + x*bytesPerPixel, pSrcPixel, bytesPerPixel);
}
// Repeat the first row data for all other rows
int bytesPerRow = bytesPerPixel*(int)rec.width;
for (int y = 1; y < (int)rec.height; y++)
{
memcpy(pSrcPixel + (y*dst->width)*bytesPerPixel, pSrcPixel, bytesPerRow);
}
}
// Draw rectangle lines within an image
void ImageDrawRectangleLines(Image *dst, Rectangle rec, int thick, Color color)
{
ImageDrawRectangle(dst, (int)rec.x, (int)rec.y, (int)rec.width, thick, color);
ImageDrawRectangle(dst, (int)rec.x, (int)(rec.y + thick), thick, (int)(rec.height - thick*2), color);
ImageDrawRectangle(dst, (int)(rec.x + rec.width - thick), (int)(rec.y + thick), thick, (int)(rec.height - thick*2), color);
ImageDrawRectangle(dst, (int)rec.x, (int)(rec.y + rec.height - thick), (int)rec.width, thick, color);
}
// Draw an image (source) within an image (destination)
// NOTE: Color tint is applied to source image
void ImageDraw(Image *dst, Image src, Rectangle srcRec, Rectangle dstRec, Color tint)
{
// Security check to avoid program crash
if ((dst->data == NULL) || (dst->width == 0) || (dst->height == 0) ||
(src.data == NULL) || (src.width == 0) || (src.height == 0)) return;
if (dst->mipmaps > 1) TRACELOG(LOG_WARNING, "Image drawing only applied to base mipmap level");
if (dst->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image drawing not supported for compressed formats");
else
{
Image srcMod = { 0 }; // Source copy (in case it was required)
Image *srcPtr = &src; // Pointer to source image
bool useSrcMod = false; // Track source copy required
// Source rectangle out-of-bounds security checks
if (srcRec.x < 0) { srcRec.width += srcRec.x; srcRec.x = 0; }
if (srcRec.y < 0) { srcRec.height += srcRec.y; srcRec.y = 0; }
if ((srcRec.x + srcRec.width) > src.width) srcRec.width = src.width - srcRec.x;
if ((srcRec.y + srcRec.height) > src.height) srcRec.height = src.height - srcRec.y;
// Check if source rectangle needs to be resized to destination rectangle
// In that case, we make a copy of source, and we apply all required transform
if (((int)srcRec.width != (int)dstRec.width) || ((int)srcRec.height != (int)dstRec.height))
{
srcMod = ImageFromImage(src, srcRec); // Create image from another image
ImageResize(&srcMod, (int)dstRec.width, (int)dstRec.height); // Resize to destination rectangle
srcRec = (Rectangle){ 0, 0, (float)srcMod.width, (float)srcMod.height };
srcPtr = &srcMod;
useSrcMod = true;
}
// Destination rectangle out-of-bounds security checks
if (dstRec.x < 0)
{
srcRec.x -= dstRec.x;
srcRec.width += dstRec.x;
dstRec.x = 0;
}
else if ((dstRec.x + srcRec.width) > dst->width) srcRec.width = dst->width - dstRec.x;
if (dstRec.y < 0)
{
srcRec.y -= dstRec.y;
srcRec.height += dstRec.y;
dstRec.y = 0;
}
else if ((dstRec.y + srcRec.height) > dst->height) srcRec.height = dst->height - dstRec.y;
if (dst->width < srcRec.width) srcRec.width = (float)dst->width;
if (dst->height < srcRec.height) srcRec.height = (float)dst->height;
// This blitting method is quite fast! The process followed is:
// for every pixel -> [get_src_format/get_dst_format -> blend -> format_to_dst]
// Some optimization ideas:
// [x] Avoid creating source copy if not required (no resize required)
// [x] Optimize ImageResize() for pixel format (alternative: ImageResizeNN())
// [x] Optimize ColorAlphaBlend() to avoid processing (alpha = 0) and (alpha = 1)
// [x] Optimize ColorAlphaBlend() for faster operations (maybe avoiding divs?)
// [x] Consider fast path: no alpha blending required cases (src has no alpha)
// [x] Consider fast path: same src/dst format with no alpha -> direct line copy
// [-] GetPixelColor(): Get Vector4 instead of Color, easier for ColorAlphaBlend()
// [ ] Support f32bit channels drawing
// TODO: Support PIXELFORMAT_UNCOMPRESSED_R32, PIXELFORMAT_UNCOMPRESSED_R32G32B32, PIXELFORMAT_UNCOMPRESSED_R32G32B32A32 and 16-bit equivalents
Color colSrc, colDst, blend;
bool blendRequired = true;
// Fast path: Avoid blend if source has no alpha to blend
if ((tint.a == 255) && ((srcPtr->format == PIXELFORMAT_UNCOMPRESSED_GRAYSCALE) || (srcPtr->format == PIXELFORMAT_UNCOMPRESSED_R8G8B8) || (srcPtr->format == PIXELFORMAT_UNCOMPRESSED_R5G6B5))) blendRequired = false;
int strideDst = GetPixelDataSize(dst->width, 1, dst->format);
int bytesPerPixelDst = strideDst/(dst->width);
int strideSrc = GetPixelDataSize(srcPtr->width, 1, srcPtr->format);
int bytesPerPixelSrc = strideSrc/(srcPtr->width);
unsigned char *pSrcBase = (unsigned char *)srcPtr->data + ((int)srcRec.y*srcPtr->width + (int)srcRec.x)*bytesPerPixelSrc;
unsigned char *pDstBase = (unsigned char *)dst->data + ((int)dstRec.y*dst->width + (int)dstRec.x)*bytesPerPixelDst;
for (int y = 0; y < (int)srcRec.height; y++)
{
unsigned char *pSrc = pSrcBase;
unsigned char *pDst = pDstBase;
// Fast path: Avoid moving pixel by pixel if no blend required and same format
if (!blendRequired && (srcPtr->format == dst->format)) memcpy(pDst, pSrc, (int)(srcRec.width)*bytesPerPixelSrc);
else
{
for (int x = 0; x < (int)srcRec.width; x++)
{
colSrc = GetPixelColor(pSrc, srcPtr->format);
colDst = GetPixelColor(pDst, dst->format);
// Fast path: Avoid blend if source has no alpha to blend
if (blendRequired) blend = ColorAlphaBlend(colDst, colSrc, tint);
else blend = colSrc;
SetPixelColor(pDst, blend, dst->format);
pDst += bytesPerPixelDst;
pSrc += bytesPerPixelSrc;
}
}
pSrcBase += strideSrc;
pDstBase += strideDst;
}
if (useSrcMod) UnloadImage(srcMod); // Unload source modified image
}
}
// Draw text (default font) within an image (destination)
void ImageDrawText(Image *dst, const char *text, int posX, int posY, int fontSize, Color color)
{
#if defined(SUPPORT_MODULE_RTEXT) && defined(SUPPORT_DEFAULT_FONT)
// Make sure default font is loaded to be used on image text drawing
if (GetFontDefault().texture.id == 0) LoadFontDefault();
Vector2 position = { (float)posX, (float)posY };
ImageDrawTextEx(dst, GetFontDefault(), text, position, (float)fontSize, 1.0f, color); // WARNING: Module required: rtext
#else
TRACELOG(LOG_WARNING, "IMAGE: ImageDrawText() requires module: rtext");
#endif
}
// Draw text (custom sprite font) within an image (destination)
void ImageDrawTextEx(Image *dst, Font font, const char *text, Vector2 position, float fontSize, float spacing, Color tint)
{
Image imText = ImageTextEx(font, text, fontSize, spacing, tint);
Rectangle srcRec = { 0.0f, 0.0f, (float)imText.width, (float)imText.height };
Rectangle dstRec = { position.x, position.y, (float)imText.width, (float)imText.height };
ImageDraw(dst, imText, srcRec, dstRec, WHITE);
UnloadImage(imText);
}
//------------------------------------------------------------------------------------
// Texture loading functions
//------------------------------------------------------------------------------------
// Load texture from file into GPU memory (VRAM)
Texture2D LoadTexture(const char *fileName)
{
Texture2D texture = { 0 };
Image image = LoadImage(fileName);
if (image.data != NULL)
{
texture = LoadTextureFromImage(image);
UnloadImage(image);
}
return texture;
}
// Load a texture from image data
// NOTE: image is not unloaded, it must be done manually
Texture2D LoadTextureFromImage(Image image)
{
Texture2D texture = { 0 };
if ((image.width != 0) && (image.height != 0))
{
texture.id = rlLoadTexture(image.data, image.width, image.height, image.format, image.mipmaps);
}
else TRACELOG(LOG_WARNING, "IMAGE: Data is not valid to load texture");
texture.width = image.width;
texture.height = image.height;
texture.mipmaps = image.mipmaps;
texture.format = image.format;
return texture;
}
// Load cubemap from image, multiple image cubemap layouts supported
TextureCubemap LoadTextureCubemap(Image image, int layout)
{
TextureCubemap cubemap = { 0 };
if (layout == CUBEMAP_LAYOUT_AUTO_DETECT) // Try to automatically guess layout type
{
// Check image width/height to determine the type of cubemap provided
if (image.width > image.height)
{
if ((image.width/6) == image.height) { layout = CUBEMAP_LAYOUT_LINE_HORIZONTAL; cubemap.width = image.width/6; }
else if ((image.width/4) == (image.height/3)) { layout = CUBEMAP_LAYOUT_CROSS_FOUR_BY_THREE; cubemap.width = image.width/4; }
else if (image.width >= (int)((float)image.height*1.85f)) { layout = CUBEMAP_LAYOUT_PANORAMA; cubemap.width = image.width/4; }
}
else if (image.height > image.width)
{
if ((image.height/6) == image.width) { layout = CUBEMAP_LAYOUT_LINE_VERTICAL; cubemap.width = image.height/6; }
else if ((image.width/3) == (image.height/4)) { layout = CUBEMAP_LAYOUT_CROSS_THREE_BY_FOUR; cubemap.width = image.width/3; }
}
}
else
{
if (layout == CUBEMAP_LAYOUT_LINE_VERTICAL) cubemap.width = image.height/6;
if (layout == CUBEMAP_LAYOUT_LINE_HORIZONTAL) cubemap.width = image.width/6;
if (layout == CUBEMAP_LAYOUT_CROSS_THREE_BY_FOUR) cubemap.width = image.width/3;
if (layout == CUBEMAP_LAYOUT_CROSS_FOUR_BY_THREE) cubemap.width = image.width/4;
if (layout == CUBEMAP_LAYOUT_PANORAMA) cubemap.width = image.width/4;
}
cubemap.height = cubemap.width;
// Layout provided or already auto-detected
if (layout != CUBEMAP_LAYOUT_AUTO_DETECT)
{
int size = cubemap.width;
Image faces = { 0 }; // Vertical column image
Rectangle faceRecs[6] = { 0 }; // Face source rectangles
for (int i = 0; i < 6; i++) faceRecs[i] = (Rectangle){ 0, 0, (float)size, (float)size };
if (layout == CUBEMAP_LAYOUT_LINE_VERTICAL)
{
faces = ImageCopy(image); // Image data already follows expected convention
}
else if (layout == CUBEMAP_LAYOUT_PANORAMA)
{
// TODO: Convert panorama image to square faces...
// Ref: https://github.com/denivip/panorama/blob/master/panorama.cpp
}
else
{
if (layout == CUBEMAP_LAYOUT_LINE_HORIZONTAL) for (int i = 0; i < 6; i++) faceRecs[i].x = (float)size*i;
else if (layout == CUBEMAP_LAYOUT_CROSS_THREE_BY_FOUR)
{
faceRecs[0].x = (float)size; faceRecs[0].y = (float)size;
faceRecs[1].x = (float)size; faceRecs[1].y = (float)size*3;
faceRecs[2].x = (float)size; faceRecs[2].y = 0;
faceRecs[3].x = (float)size; faceRecs[3].y = (float)size*2;
faceRecs[4].x = 0; faceRecs[4].y = (float)size;
faceRecs[5].x = (float)size*2; faceRecs[5].y = (float)size;
}
else if (layout == CUBEMAP_LAYOUT_CROSS_FOUR_BY_THREE)
{
faceRecs[0].x = (float)size*2; faceRecs[0].y = (float)size;
faceRecs[1].x = 0; faceRecs[1].y = (float)size;
faceRecs[2].x = (float)size; faceRecs[2].y = 0;
faceRecs[3].x = (float)size; faceRecs[3].y = (float)size*2;
faceRecs[4].x = (float)size; faceRecs[4].y = (float)size;
faceRecs[5].x = (float)size*3; faceRecs[5].y = (float)size;
}
// Convert image data to 6 faces in a vertical column, that's the optimum layout for loading
faces = GenImageColor(size, size*6, MAGENTA);
ImageFormat(&faces, image.format);
// NOTE: Image formatting does not work with compressed textures
for (int i = 0; i < 6; i++) ImageDraw(&faces, image, faceRecs[i], (Rectangle){ 0, (float)size*i, (float)size, (float)size }, WHITE);
}
// NOTE: Cubemap data is expected to be provided as 6 images in a single data array,
// one after the other (that's a vertical image), following convention: +X, -X, +Y, -Y, +Z, -Z
cubemap.id = rlLoadTextureCubemap(faces.data, size, faces.format);
if (cubemap.id != 0)
{
cubemap.format = faces.format;
cubemap.mipmaps = 1;
}
else TRACELOG(LOG_WARNING, "IMAGE: Failed to load cubemap image");
UnloadImage(faces);
}
else TRACELOG(LOG_WARNING, "IMAGE: Failed to detect cubemap image layout");
return cubemap;
}
// Load texture for rendering (framebuffer)
// NOTE: Render texture is loaded by default with RGBA color attachment and depth RenderBuffer
RenderTexture2D LoadRenderTexture(int width, int height)
{
RenderTexture2D target = { 0 };
target.id = rlLoadFramebuffer(); // Load an empty framebuffer
if (target.id > 0)
{
rlEnableFramebuffer(target.id);
// Create color texture (default to RGBA)
target.texture.id = rlLoadTexture(NULL, width, height, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8, 1);
target.texture.width = width;
target.texture.height = height;
target.texture.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
target.texture.mipmaps = 1;
// Create depth renderbuffer/texture
target.depth.id = rlLoadTextureDepth(width, height, true);
target.depth.width = width;
target.depth.height = height;
target.depth.format = 19; //DEPTH_COMPONENT_24BIT?
target.depth.mipmaps = 1;
// Attach color texture and depth renderbuffer/texture to FBO
rlFramebufferAttach(target.id, target.texture.id, RL_ATTACHMENT_COLOR_CHANNEL0, RL_ATTACHMENT_TEXTURE2D, 0);
rlFramebufferAttach(target.id, target.depth.id, RL_ATTACHMENT_DEPTH, RL_ATTACHMENT_RENDERBUFFER, 0);
// Check if fbo is complete with attachments (valid)
if (rlFramebufferComplete(target.id)) TRACELOG(LOG_INFO, "FBO: [ID %i] Framebuffer object created successfully", target.id);
rlDisableFramebuffer();
}
else TRACELOG(LOG_WARNING, "FBO: Framebuffer object can not be created");
return target;
}
// Check if a texture is ready
bool IsTextureReady(Texture2D texture)
{
bool result = false;
// TODO: Validate maximum texture size supported by GPU?
if ((texture.id > 0) && // Validate OpenGL id
(texture.width > 0) &&
(texture.height > 0) && // Validate texture size
(texture.format > 0) && // Validate texture pixel format
(texture.mipmaps > 0)) result = true; // Validate texture mipmaps (at least 1 for basic mipmap level)
return result;
}
// Unload texture from GPU memory (VRAM)
void UnloadTexture(Texture2D texture)
{
if (texture.id > 0)
{
rlUnloadTexture(texture.id);
TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Unloaded texture data from VRAM (GPU)", texture.id);
}
}
// Check if a render texture is ready
bool IsRenderTextureReady(RenderTexture2D target)
{
bool result = false;
if ((target.id > 0) && // Validate OpenGL id
IsTextureReady(target.depth) && // Validate FBO depth texture/renderbuffer
IsTextureReady(target.texture)) result = true; // Validate FBO texture
return result;
}
// Unload render texture from GPU memory (VRAM)
void UnloadRenderTexture(RenderTexture2D target)
{
if (target.id > 0)
{
if (target.texture.id > 0)
{
// Color texture attached to FBO is deleted
rlUnloadTexture(target.texture.id);
}
// NOTE: Depth texture/renderbuffer is automatically
// queried and deleted before deleting framebuffer
rlUnloadFramebuffer(target.id);
}
}
// Update GPU texture with new data
// NOTE: pixels data must match texture.format
void UpdateTexture(Texture2D texture, const void *pixels)
{
rlUpdateTexture(texture.id, 0, 0, texture.width, texture.height, texture.format, pixels);
}
// Update GPU texture rectangle with new data
// NOTE: pixels data must match texture.format
void UpdateTextureRec(Texture2D texture, Rectangle rec, const void *pixels)
{
rlUpdateTexture(texture.id, (int)rec.x, (int)rec.y, (int)rec.width, (int)rec.height, texture.format, pixels);
}
//------------------------------------------------------------------------------------
// Texture configuration functions
//------------------------------------------------------------------------------------
// Generate GPU mipmaps for a texture
void GenTextureMipmaps(Texture2D *texture)
{
// NOTE: NPOT textures support check inside function
// On WebGL (OpenGL ES 2.0) NPOT textures support is limited
rlGenTextureMipmaps(texture->id, texture->width, texture->height, texture->format, &texture->mipmaps);
}
// Set texture scaling filter mode
void SetTextureFilter(Texture2D texture, int filter)
{
switch (filter)
{
case TEXTURE_FILTER_POINT:
{
if (texture.mipmaps > 1)
{
// RL_TEXTURE_FILTER_MIP_NEAREST - tex filter: POINT, mipmaps filter: POINT (sharp switching between mipmaps)
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_TEXTURE_FILTER_MIP_NEAREST);
// RL_TEXTURE_FILTER_NEAREST - tex filter: POINT (no filter), no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_TEXTURE_FILTER_NEAREST);
}
else
{
// RL_TEXTURE_FILTER_NEAREST - tex filter: POINT (no filter), no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_TEXTURE_FILTER_NEAREST);
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_TEXTURE_FILTER_NEAREST);
}
} break;
case TEXTURE_FILTER_BILINEAR:
{
if (texture.mipmaps > 1)
{
// RL_TEXTURE_FILTER_LINEAR_MIP_NEAREST - tex filter: BILINEAR, mipmaps filter: POINT (sharp switching between mipmaps)
// Alternative: RL_TEXTURE_FILTER_NEAREST_MIP_LINEAR - tex filter: POINT, mipmaps filter: BILINEAR (smooth transition between mipmaps)
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_TEXTURE_FILTER_LINEAR_MIP_NEAREST);
// RL_TEXTURE_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_TEXTURE_FILTER_LINEAR);
}
else
{
// RL_TEXTURE_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_TEXTURE_FILTER_LINEAR);
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_TEXTURE_FILTER_LINEAR);
}
} break;
case TEXTURE_FILTER_TRILINEAR:
{
if (texture.mipmaps > 1)
{
// RL_TEXTURE_FILTER_MIP_LINEAR - tex filter: BILINEAR, mipmaps filter: BILINEAR (smooth transition between mipmaps)
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_TEXTURE_FILTER_MIP_LINEAR);
// RL_TEXTURE_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_TEXTURE_FILTER_LINEAR);
}
else
{
TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] No mipmaps available for TRILINEAR texture filtering", texture.id);
// RL_TEXTURE_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_TEXTURE_FILTER_LINEAR);
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_TEXTURE_FILTER_LINEAR);
}
} break;
case TEXTURE_FILTER_ANISOTROPIC_4X: rlTextureParameters(texture.id, RL_TEXTURE_FILTER_ANISOTROPIC, 4); break;
case TEXTURE_FILTER_ANISOTROPIC_8X: rlTextureParameters(texture.id, RL_TEXTURE_FILTER_ANISOTROPIC, 8); break;
case TEXTURE_FILTER_ANISOTROPIC_16X: rlTextureParameters(texture.id, RL_TEXTURE_FILTER_ANISOTROPIC, 16); break;
default: break;
}
}
// Set texture wrapping mode
void SetTextureWrap(Texture2D texture, int wrap)
{
switch (wrap)
{
case TEXTURE_WRAP_REPEAT:
{
// NOTE: It only works if NPOT textures are supported, i.e. OpenGL ES 2.0 could not support it
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_TEXTURE_WRAP_REPEAT);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_TEXTURE_WRAP_REPEAT);
} break;
case TEXTURE_WRAP_CLAMP:
{
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_TEXTURE_WRAP_CLAMP);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_TEXTURE_WRAP_CLAMP);
} break;
case TEXTURE_WRAP_MIRROR_REPEAT:
{
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_TEXTURE_WRAP_MIRROR_REPEAT);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_TEXTURE_WRAP_MIRROR_REPEAT);
} break;
case TEXTURE_WRAP_MIRROR_CLAMP:
{
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_TEXTURE_WRAP_MIRROR_CLAMP);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_TEXTURE_WRAP_MIRROR_CLAMP);
} break;
default: break;
}
}
//------------------------------------------------------------------------------------
// Texture drawing functions
//------------------------------------------------------------------------------------
// Draw a texture
void DrawTexture(Texture2D texture, int posX, int posY, Color tint)
{
DrawTextureEx(texture, (Vector2){ (float)posX, (float)posY }, 0.0f, 1.0f, tint);
}
// Draw a texture with position defined as Vector2
void DrawTextureV(Texture2D texture, Vector2 position, Color tint)
{
DrawTextureEx(texture, position, 0, 1.0f, tint);
}
// Draw a texture with extended parameters
void DrawTextureEx(Texture2D texture, Vector2 position, float rotation, float scale, Color tint)
{
Rectangle source = { 0.0f, 0.0f, (float)texture.width, (float)texture.height };
Rectangle dest = { position.x, position.y, (float)texture.width*scale, (float)texture.height*scale };
Vector2 origin = { 0.0f, 0.0f };
DrawTexturePro(texture, source, dest, origin, rotation, tint);
}
// Draw a part of a texture (defined by a rectangle)
void DrawTextureRec(Texture2D texture, Rectangle source, Vector2 position, Color tint)
{
Rectangle dest = { position.x, position.y, fabsf(source.width), fabsf(source.height) };
Vector2 origin = { 0.0f, 0.0f };
DrawTexturePro(texture, source, dest, origin, 0.0f, tint);
}
// Draw a part of a texture (defined by a rectangle) with 'pro' parameters
// NOTE: origin is relative to destination rectangle size
void DrawTexturePro(Texture2D texture, Rectangle source, Rectangle dest, Vector2 origin, float rotation, Color tint)
{
// Check if texture is valid
if (texture.id > 0)
{
float width = (float)texture.width;
float height = (float)texture.height;
bool flipX = false;
if (source.width < 0) { flipX = true; source.width *= -1; }
if (source.height < 0) source.y -= source.height;
Vector2 topLeft = { 0 };
Vector2 topRight = { 0 };
Vector2 bottomLeft = { 0 };
Vector2 bottomRight = { 0 };
// Only calculate rotation if needed
if (rotation == 0.0f)
{
float x = dest.x - origin.x;
float y = dest.y - origin.y;
topLeft = (Vector2){ x, y };
topRight = (Vector2){ x + dest.width, y };
bottomLeft = (Vector2){ x, y + dest.height };
bottomRight = (Vector2){ x + dest.width, y + dest.height };
}
else
{
float sinRotation = sinf(rotation*DEG2RAD);
float cosRotation = cosf(rotation*DEG2RAD);
float x = dest.x;
float y = dest.y;
float dx = -origin.x;
float dy = -origin.y;
topLeft.x = x + dx*cosRotation - dy*sinRotation;
topLeft.y = y + dx*sinRotation + dy*cosRotation;
topRight.x = x + (dx + dest.width)*cosRotation - dy*sinRotation;
topRight.y = y + (dx + dest.width)*sinRotation + dy*cosRotation;
bottomLeft.x = x + dx*cosRotation - (dy + dest.height)*sinRotation;
bottomLeft.y = y + dx*sinRotation + (dy + dest.height)*cosRotation;
bottomRight.x = x + (dx + dest.width)*cosRotation - (dy + dest.height)*sinRotation;
bottomRight.y = y + (dx + dest.width)*sinRotation + (dy + dest.height)*cosRotation;
}
rlSetTexture(texture.id);
rlBegin(RL_QUADS);
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
rlNormal3f(0.0f, 0.0f, 1.0f); // Normal vector pointing towards viewer
// Top-left corner for texture and quad
if (flipX) rlTexCoord2f((source.x + source.width)/width, source.y/height);
else rlTexCoord2f(source.x/width, source.y/height);
rlVertex2f(topLeft.x, topLeft.y);
// Bottom-left corner for texture and quad
if (flipX) rlTexCoord2f((source.x + source.width)/width, (source.y + source.height)/height);
else rlTexCoord2f(source.x/width, (source.y + source.height)/height);
rlVertex2f(bottomLeft.x, bottomLeft.y);
// Bottom-right corner for texture and quad
if (flipX) rlTexCoord2f(source.x/width, (source.y + source.height)/height);
else rlTexCoord2f((source.x + source.width)/width, (source.y + source.height)/height);
rlVertex2f(bottomRight.x, bottomRight.y);
// Top-right corner for texture and quad
if (flipX) rlTexCoord2f(source.x/width, source.y/height);
else rlTexCoord2f((source.x + source.width)/width, source.y/height);
rlVertex2f(topRight.x, topRight.y);
rlEnd();
rlSetTexture(0);
// NOTE: Vertex position can be transformed using matrices
// but the process is way more costly than just calculating
// the vertex positions manually, like done above
// I leave here the old implementation for educational purposes,
// just in case someone wants to do some performance test
/*
rlSetTexture(texture.id);
rlPushMatrix();
rlTranslatef(dest.x, dest.y, 0.0f);
if (rotation != 0.0f) rlRotatef(rotation, 0.0f, 0.0f, 1.0f);
rlTranslatef(-origin.x, -origin.y, 0.0f);
rlBegin(RL_QUADS);
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
rlNormal3f(0.0f, 0.0f, 1.0f); // Normal vector pointing towards viewer
// Bottom-left corner for texture and quad
if (flipX) rlTexCoord2f((source.x + source.width)/width, source.y/height);
else rlTexCoord2f(source.x/width, source.y/height);
rlVertex2f(0.0f, 0.0f);
// Bottom-right corner for texture and quad
if (flipX) rlTexCoord2f((source.x + source.width)/width, (source.y + source.height)/height);
else rlTexCoord2f(source.x/width, (source.y + source.height)/height);
rlVertex2f(0.0f, dest.height);
// Top-right corner for texture and quad
if (flipX) rlTexCoord2f(source.x/width, (source.y + source.height)/height);
else rlTexCoord2f((source.x + source.width)/width, (source.y + source.height)/height);
rlVertex2f(dest.width, dest.height);
// Top-left corner for texture and quad
if (flipX) rlTexCoord2f(source.x/width, source.y/height);
else rlTexCoord2f((source.x + source.width)/width, source.y/height);
rlVertex2f(dest.width, 0.0f);
rlEnd();
rlPopMatrix();
rlSetTexture(0);
*/
}
}
// Draws a texture (or part of it) that stretches or shrinks nicely using n-patch info
void DrawTextureNPatch(Texture2D texture, NPatchInfo nPatchInfo, Rectangle dest, Vector2 origin, float rotation, Color tint)
{
if (texture.id > 0)
{
float width = (float)texture.width;
float height = (float)texture.height;
float patchWidth = ((int)dest.width <= 0)? 0.0f : dest.width;
float patchHeight = ((int)dest.height <= 0)? 0.0f : dest.height;
if (nPatchInfo.source.width < 0) nPatchInfo.source.x -= nPatchInfo.source.width;
if (nPatchInfo.source.height < 0) nPatchInfo.source.y -= nPatchInfo.source.height;
if (nPatchInfo.layout == NPATCH_THREE_PATCH_HORIZONTAL) patchHeight = nPatchInfo.source.height;
if (nPatchInfo.layout == NPATCH_THREE_PATCH_VERTICAL) patchWidth = nPatchInfo.source.width;
bool drawCenter = true;
bool drawMiddle = true;
float leftBorder = (float)nPatchInfo.left;
float topBorder = (float)nPatchInfo.top;
float rightBorder = (float)nPatchInfo.right;
float bottomBorder = (float)nPatchInfo.bottom;
// Adjust the lateral (left and right) border widths in case patchWidth < texture.width
if (patchWidth <= (leftBorder + rightBorder) && nPatchInfo.layout != NPATCH_THREE_PATCH_VERTICAL)
{
drawCenter = false;
leftBorder = (leftBorder/(leftBorder + rightBorder))*patchWidth;
rightBorder = patchWidth - leftBorder;
}
// Adjust the lateral (top and bottom) border heights in case patchHeight < texture.height
if (patchHeight <= (topBorder + bottomBorder) && nPatchInfo.layout != NPATCH_THREE_PATCH_HORIZONTAL)
{
drawMiddle = false;
topBorder = (topBorder/(topBorder + bottomBorder))*patchHeight;
bottomBorder = patchHeight - topBorder;
}
Vector2 vertA, vertB, vertC, vertD;
vertA.x = 0.0f; // outer left
vertA.y = 0.0f; // outer top
vertB.x = leftBorder; // inner left
vertB.y = topBorder; // inner top
vertC.x = patchWidth - rightBorder; // inner right
vertC.y = patchHeight - bottomBorder; // inner bottom
vertD.x = patchWidth; // outer right
vertD.y = patchHeight; // outer bottom
Vector2 coordA, coordB, coordC, coordD;
coordA.x = nPatchInfo.source.x/width;
coordA.y = nPatchInfo.source.y/height;
coordB.x = (nPatchInfo.source.x + leftBorder)/width;
coordB.y = (nPatchInfo.source.y + topBorder)/height;
coordC.x = (nPatchInfo.source.x + nPatchInfo.source.width - rightBorder)/width;
coordC.y = (nPatchInfo.source.y + nPatchInfo.source.height - bottomBorder)/height;
coordD.x = (nPatchInfo.source.x + nPatchInfo.source.width)/width;
coordD.y = (nPatchInfo.source.y + nPatchInfo.source.height)/height;
rlSetTexture(texture.id);
rlPushMatrix();
rlTranslatef(dest.x, dest.y, 0.0f);
rlRotatef(rotation, 0.0f, 0.0f, 1.0f);
rlTranslatef(-origin.x, -origin.y, 0.0f);
rlBegin(RL_QUADS);
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
rlNormal3f(0.0f, 0.0f, 1.0f); // Normal vector pointing towards viewer
if (nPatchInfo.layout == NPATCH_NINE_PATCH)
{
// ------------------------------------------------------------
// TOP-LEFT QUAD
rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordA.y); rlVertex2f(vertA.x, vertA.y); // Top-left corner for texture and quad
if (drawCenter)
{
// TOP-CENTER QUAD
rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-left corner for texture and quad
}
// TOP-RIGHT QUAD
rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordA.y); rlVertex2f(vertD.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-left corner for texture and quad
if (drawMiddle)
{
// ------------------------------------------------------------
// MIDDLE-LEFT QUAD
rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Top-left corner for texture and quad
if (drawCenter)
{
// MIDDLE-CENTER QUAD
rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Top-right corner for texture and quad
rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Top-left corner for texture and quad
}
// MIDDLE-RIGHT QUAD
rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Top-right corner for texture and quad
rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Top-left corner for texture and quad
}
// ------------------------------------------------------------
// BOTTOM-LEFT QUAD
rlTexCoord2f(coordA.x, coordD.y); rlVertex2f(vertA.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Top-left corner for texture and quad
if (drawCenter)
{
// BOTTOM-CENTER QUAD
rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Top-right corner for texture and quad
rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Top-left corner for texture and quad
}
// BOTTOM-RIGHT QUAD
rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordD.y); rlVertex2f(vertD.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Top-right corner for texture and quad
rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Top-left corner for texture and quad
}
else if (nPatchInfo.layout == NPATCH_THREE_PATCH_VERTICAL)
{
// TOP QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordA.y); rlVertex2f(vertD.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordA.y); rlVertex2f(vertA.x, vertA.y); // Top-left corner for texture and quad
if (drawCenter)
{
// MIDDLE QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Top-left corner for texture and quad
}
// BOTTOM QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordA.x, coordD.y); rlVertex2f(vertA.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordD.y); rlVertex2f(vertD.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Top-left corner for texture and quad
}
else if (nPatchInfo.layout == NPATCH_THREE_PATCH_HORIZONTAL)
{
// LEFT QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordA.x, coordD.y); rlVertex2f(vertA.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordA.y); rlVertex2f(vertA.x, vertA.y); // Top-left corner for texture and quad
if (drawCenter)
{
// CENTER QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-left corner for texture and quad
}
// RIGHT QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordD.y); rlVertex2f(vertD.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordA.y); rlVertex2f(vertD.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-left corner for texture and quad
}
rlEnd();
rlPopMatrix();
rlSetTexture(0);
}
}
// Check if two colors are equal
bool ColorIsEqual(Color col1, Color col2)
{
bool result = false;
if ((col1.r == col2.r) && (col1.g == col2.g) && (col1.b == col2.b) && (col1.a == col2.a)) result = true;
return result;
}
// Get color with alpha applied, alpha goes from 0.0f to 1.0f
Color Fade(Color color, float alpha)
{
Color result = color;
if (alpha < 0.0f) alpha = 0.0f;
else if (alpha > 1.0f) alpha = 1.0f;
result.a = (unsigned char)(255.0f*alpha);
return result;
}
// Get hexadecimal value for a Color
int ColorToInt(Color color)
{
int result = (((int)color.r << 24) | ((int)color.g << 16) | ((int)color.b << 8) | (int)color.a);
return result;
}
// Get color normalized as float [0..1]
Vector4 ColorNormalize(Color color)
{
Vector4 result;
result.x = (float)color.r/255.0f;
result.y = (float)color.g/255.0f;
result.z = (float)color.b/255.0f;
result.w = (float)color.a/255.0f;
return result;
}
// Get color from normalized values [0..1]
Color ColorFromNormalized(Vector4 normalized)
{
Color result;
result.r = (unsigned char)(normalized.x*255.0f);
result.g = (unsigned char)(normalized.y*255.0f);
result.b = (unsigned char)(normalized.z*255.0f);
result.a = (unsigned char)(normalized.w*255.0f);
return result;
}
// Get HSV values for a Color
// NOTE: Hue is returned as degrees [0..360]
Vector3 ColorToHSV(Color color)
{
Vector3 hsv = { 0 };
Vector3 rgb = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
float min, max, delta;
min = rgb.x < rgb.y? rgb.x : rgb.y;
min = min < rgb.z? min : rgb.z;
max = rgb.x > rgb.y? rgb.x : rgb.y;
max = max > rgb.z? max : rgb.z;
hsv.z = max; // Value
delta = max - min;
if (delta < 0.00001f)
{
hsv.y = 0.0f;
hsv.x = 0.0f; // Undefined, maybe NAN?
return hsv;
}
if (max > 0.0f)
{
// NOTE: If max is 0, this divide would cause a crash
hsv.y = (delta/max); // Saturation
}
else
{
// NOTE: If max is 0, then r = g = b = 0, s = 0, h is undefined
hsv.y = 0.0f;
hsv.x = NAN; // Undefined
return hsv;
}
// NOTE: Comparing float values could not work properly
if (rgb.x >= max) hsv.x = (rgb.y - rgb.z)/delta; // Between yellow & magenta
else
{
if (rgb.y >= max) hsv.x = 2.0f + (rgb.z - rgb.x)/delta; // Between cyan & yellow
else hsv.x = 4.0f + (rgb.x - rgb.y)/delta; // Between magenta & cyan
}
hsv.x *= 60.0f; // Convert to degrees
if (hsv.x < 0.0f) hsv.x += 360.0f;
return hsv;
}
// Get a Color from HSV values
// Implementation reference: https://en.wikipedia.org/wiki/HSL_and_HSV#Alternative_HSV_conversion
// NOTE: Color->HSV->Color conversion will not yield exactly the same color due to rounding errors
// Hue is provided in degrees: [0..360]
// Saturation/Value are provided normalized: [0.0f..1.0f]
Color ColorFromHSV(float hue, float saturation, float value)
{
Color color = { 0, 0, 0, 255 };
// Red channel
float k = fmodf((5.0f + hue/60.0f), 6);
float t = 4.0f - k;
k = (t < k)? t : k;
k = (k < 1)? k : 1;
k = (k > 0)? k : 0;
color.r = (unsigned char)((value - value*saturation*k)*255.0f);
// Green channel
k = fmodf((3.0f + hue/60.0f), 6);
t = 4.0f - k;
k = (t < k)? t : k;
k = (k < 1)? k : 1;
k = (k > 0)? k : 0;
color.g = (unsigned char)((value - value*saturation*k)*255.0f);
// Blue channel
k = fmodf((1.0f + hue/60.0f), 6);
t = 4.0f - k;
k = (t < k)? t : k;
k = (k < 1)? k : 1;
k = (k > 0)? k : 0;
color.b = (unsigned char)((value - value*saturation*k)*255.0f);
return color;
}
// Get color multiplied with another color
Color ColorTint(Color color, Color tint)
{
Color result = color;
float cR = (float)tint.r/255;
float cG = (float)tint.g/255;
float cB = (float)tint.b/255;
float cA = (float)tint.a/255;
unsigned char r = (unsigned char)(((float)color.r/255*cR)*255.0f);
unsigned char g = (unsigned char)(((float)color.g/255*cG)*255.0f);
unsigned char b = (unsigned char)(((float)color.b/255*cB)*255.0f);
unsigned char a = (unsigned char)(((float)color.a/255*cA)*255.0f);
result.r = r;
result.g = g;
result.b = b;
result.a = a;
return result;
}
// Get color with brightness correction, brightness factor goes from -1.0f to 1.0f
Color ColorBrightness(Color color, float factor)
{
Color result = color;
if (factor > 1.0f) factor = 1.0f;
else if (factor < -1.0f) factor = -1.0f;
float red = (float)color.r;
float green = (float)color.g;
float blue = (float)color.b;
if (factor < 0.0f)
{
factor = 1.0f + factor;
red *= factor;
green *= factor;
blue *= factor;
}
else
{
red = (255 - red)*factor + red;
green = (255 - green)*factor + green;
blue = (255 - blue)*factor + blue;
}
result.r = (unsigned char)red;
result.g = (unsigned char)green;
result.b = (unsigned char)blue;
return result;
}
// Get color with contrast correction
// NOTE: Contrast values between -1.0f and 1.0f
Color ColorContrast(Color color, float contrast)
{
Color result = color;
if (contrast < -1.0f) contrast = -1.0f;
else if (contrast > 1.0f) contrast = 1.0f;
contrast = (1.0f + contrast);
contrast *= contrast;
float pR = (float)color.r/255.0f;
pR -= 0.5f;
pR *= contrast;
pR += 0.5f;
pR *= 255;
if (pR < 0) pR = 0;
else if (pR > 255) pR = 255;
float pG = (float)color.g/255.0f;
pG -= 0.5f;
pG *= contrast;
pG += 0.5f;
pG *= 255;
if (pG < 0) pG = 0;
else if (pG > 255) pG = 255;
float pB = (float)color.b/255.0f;
pB -= 0.5f;
pB *= contrast;
pB += 0.5f;
pB *= 255;
if (pB < 0) pB = 0;
else if (pB > 255) pB = 255;
result.r = (unsigned char)pR;
result.g = (unsigned char)pG;
result.b = (unsigned char)pB;
return result;
}
// Get color with alpha applied, alpha goes from 0.0f to 1.0f
Color ColorAlpha(Color color, float alpha)
{
Color result = color;
if (alpha < 0.0f) alpha = 0.0f;
else if (alpha > 1.0f) alpha = 1.0f;
result.a = (unsigned char)(255.0f*alpha);
return result;
}
// Get src alpha-blended into dst color with tint
Color ColorAlphaBlend(Color dst, Color src, Color tint)
{
Color out = WHITE;
// Apply color tint to source color
src.r = (unsigned char)(((unsigned int)src.r*((unsigned int)tint.r+1)) >> 8);
src.g = (unsigned char)(((unsigned int)src.g*((unsigned int)tint.g+1)) >> 8);
src.b = (unsigned char)(((unsigned int)src.b*((unsigned int)tint.b+1)) >> 8);
src.a = (unsigned char)(((unsigned int)src.a*((unsigned int)tint.a+1)) >> 8);
//#define COLORALPHABLEND_FLOAT
#define COLORALPHABLEND_INTEGERS
#if defined(COLORALPHABLEND_INTEGERS)
if (src.a == 0) out = dst;
else if (src.a == 255) out = src;
else
{
unsigned int alpha = (unsigned int)src.a + 1; // We are shifting by 8 (dividing by 256), so we need to take that excess into account
out.a = (unsigned char)(((unsigned int)alpha*256 + (unsigned int)dst.a*(256 - alpha)) >> 8);
if (out.a > 0)
{
out.r = (unsigned char)((((unsigned int)src.r*alpha*256 + (unsigned int)dst.r*(unsigned int)dst.a*(256 - alpha))/out.a) >> 8);
out.g = (unsigned char)((((unsigned int)src.g*alpha*256 + (unsigned int)dst.g*(unsigned int)dst.a*(256 - alpha))/out.a) >> 8);
out.b = (unsigned char)((((unsigned int)src.b*alpha*256 + (unsigned int)dst.b*(unsigned int)dst.a*(256 - alpha))/out.a) >> 8);
}
}
#endif
#if defined(COLORALPHABLEND_FLOAT)
if (src.a == 0) out = dst;
else if (src.a == 255) out = src;
else
{
Vector4 fdst = ColorNormalize(dst);
Vector4 fsrc = ColorNormalize(src);
Vector4 ftint = ColorNormalize(tint);
Vector4 fout = { 0 };
fout.w = fsrc.w + fdst.w*(1.0f - fsrc.w);
if (fout.w > 0.0f)
{
fout.x = (fsrc.x*fsrc.w + fdst.x*fdst.w*(1 - fsrc.w))/fout.w;
fout.y = (fsrc.y*fsrc.w + fdst.y*fdst.w*(1 - fsrc.w))/fout.w;
fout.z = (fsrc.z*fsrc.w + fdst.z*fdst.w*(1 - fsrc.w))/fout.w;
}
out = (Color){ (unsigned char)(fout.x*255.0f), (unsigned char)(fout.y*255.0f), (unsigned char)(fout.z*255.0f), (unsigned char)(fout.w*255.0f) };
}
#endif
return out;
}
// Get a Color struct from hexadecimal value
Color GetColor(unsigned int hexValue)
{
Color color;
color.r = (unsigned char)(hexValue >> 24) & 0xFF;
color.g = (unsigned char)(hexValue >> 16) & 0xFF;
color.b = (unsigned char)(hexValue >> 8) & 0xFF;
color.a = (unsigned char)hexValue & 0xFF;
return color;
}
// Get color from a pixel from certain format
Color GetPixelColor(void *srcPtr, int format)
{
Color color = { 0 };
switch (format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: color = (Color){ ((unsigned char *)srcPtr)[0], ((unsigned char *)srcPtr)[0], ((unsigned char *)srcPtr)[0], 255 }; break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA: color = (Color){ ((unsigned char *)srcPtr)[0], ((unsigned char *)srcPtr)[0], ((unsigned char *)srcPtr)[0], ((unsigned char *)srcPtr)[1] }; break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
{
color.r = (unsigned char)((((unsigned short *)srcPtr)[0] >> 11)*255/31);
color.g = (unsigned char)(((((unsigned short *)srcPtr)[0] >> 5) & 0b0000000000111111)*255/63);
color.b = (unsigned char)((((unsigned short *)srcPtr)[0] & 0b0000000000011111)*255/31);
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
color.r = (unsigned char)((((unsigned short *)srcPtr)[0] >> 11)*255/31);
color.g = (unsigned char)(((((unsigned short *)srcPtr)[0] >> 6) & 0b0000000000011111)*255/31);
color.b = (unsigned char)((((unsigned short *)srcPtr)[0] & 0b0000000000011111)*255/31);
color.a = (((unsigned short *)srcPtr)[0] & 0b0000000000000001)? 255 : 0;
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
color.r = (unsigned char)((((unsigned short *)srcPtr)[0] >> 12)*255/15);
color.g = (unsigned char)(((((unsigned short *)srcPtr)[0] >> 8) & 0b0000000000001111)*255/15);
color.b = (unsigned char)(((((unsigned short *)srcPtr)[0] >> 4) & 0b0000000000001111)*255/15);
color.a = (unsigned char)((((unsigned short *)srcPtr)[0] & 0b0000000000001111)*255/15);
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: color = (Color){ ((unsigned char *)srcPtr)[0], ((unsigned char *)srcPtr)[1], ((unsigned char *)srcPtr)[2], ((unsigned char *)srcPtr)[3] }; break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8: color = (Color){ ((unsigned char *)srcPtr)[0], ((unsigned char *)srcPtr)[1], ((unsigned char *)srcPtr)[2], 255 }; break;
case PIXELFORMAT_UNCOMPRESSED_R32:
{
// NOTE: Pixel normalized float value is converted to [0..255]
color.r = (unsigned char)(((float *)srcPtr)[0]*255.0f);
color.g = (unsigned char)(((float *)srcPtr)[0]*255.0f);
color.b = (unsigned char)(((float *)srcPtr)[0]*255.0f);
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32:
{
// NOTE: Pixel normalized float value is converted to [0..255]
color.r = (unsigned char)(((float *)srcPtr)[0]*255.0f);
color.g = (unsigned char)(((float *)srcPtr)[1]*255.0f);
color.b = (unsigned char)(((float *)srcPtr)[2]*255.0f);
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32:
{
// NOTE: Pixel normalized float value is converted to [0..255]
color.r = (unsigned char)(((float *)srcPtr)[0]*255.0f);
color.g = (unsigned char)(((float *)srcPtr)[1]*255.0f);
color.b = (unsigned char)(((float *)srcPtr)[2]*255.0f);
color.a = (unsigned char)(((float *)srcPtr)[3]*255.0f);
} break;
case PIXELFORMAT_UNCOMPRESSED_R16:
{
// NOTE: Pixel normalized float value is converted to [0..255]
color.r = (unsigned char)(HalfToFloat(((unsigned short *)srcPtr)[0])*255.0f);
color.g = (unsigned char)(HalfToFloat(((unsigned short *)srcPtr)[0])*255.0f);
color.b = (unsigned char)(HalfToFloat(((unsigned short *)srcPtr)[0])*255.0f);
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16:
{
// NOTE: Pixel normalized float value is converted to [0..255]
color.r = (unsigned char)(HalfToFloat(((unsigned short *)srcPtr)[0])*255.0f);
color.g = (unsigned char)(HalfToFloat(((unsigned short *)srcPtr)[1])*255.0f);
color.b = (unsigned char)(HalfToFloat(((unsigned short *)srcPtr)[2])*255.0f);
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16:
{
// NOTE: Pixel normalized float value is converted to [0..255]
color.r = (unsigned char)(HalfToFloat(((unsigned short *)srcPtr)[0])*255.0f);
color.g = (unsigned char)(HalfToFloat(((unsigned short *)srcPtr)[1])*255.0f);
color.b = (unsigned char)(HalfToFloat(((unsigned short *)srcPtr)[2])*255.0f);
color.a = (unsigned char)(HalfToFloat(((unsigned short *)srcPtr)[3])*255.0f);
} break;
default: break;
}
return color;
}
// Set pixel color formatted into destination pointer
void SetPixelColor(void *dstPtr, Color color, int format)
{
switch (format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE:
{
// NOTE: Calculate grayscale equivalent color
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
unsigned char gray = (unsigned char)((coln.x*0.299f + coln.y*0.587f + coln.z*0.114f)*255.0f);
((unsigned char *)dstPtr)[0] = gray;
} break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
{
// NOTE: Calculate grayscale equivalent color
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
unsigned char gray = (unsigned char)((coln.x*0.299f + coln.y*0.587f + coln.z*0.114f)*255.0f);
((unsigned char *)dstPtr)[0] = gray;
((unsigned char *)dstPtr)[1] = color.a;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
{
// NOTE: Calculate R5G6B5 equivalent color
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
unsigned char r = (unsigned char)(round(coln.x*31.0f));
unsigned char g = (unsigned char)(round(coln.y*63.0f));
unsigned char b = (unsigned char)(round(coln.z*31.0f));
((unsigned short *)dstPtr)[0] = (unsigned short)r << 11 | (unsigned short)g << 5 | (unsigned short)b;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
// NOTE: Calculate R5G5B5A1 equivalent color
Vector4 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f, (float)color.a/255.0f };
unsigned char r = (unsigned char)(round(coln.x*31.0f));
unsigned char g = (unsigned char)(round(coln.y*31.0f));
unsigned char b = (unsigned char)(round(coln.z*31.0f));
unsigned char a = (coln.w > ((float)PIXELFORMAT_UNCOMPRESSED_R5G5B5A1_ALPHA_THRESHOLD/255.0f))? 1 : 0;
((unsigned short *)dstPtr)[0] = (unsigned short)r << 11 | (unsigned short)g << 6 | (unsigned short)b << 1 | (unsigned short)a;
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
// NOTE: Calculate R5G5B5A1 equivalent color
Vector4 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f, (float)color.a/255.0f };
unsigned char r = (unsigned char)(round(coln.x*15.0f));
unsigned char g = (unsigned char)(round(coln.y*15.0f));
unsigned char b = (unsigned char)(round(coln.z*15.0f));
unsigned char a = (unsigned char)(round(coln.w*15.0f));
((unsigned short *)dstPtr)[0] = (unsigned short)r << 12 | (unsigned short)g << 8 | (unsigned short)b << 4 | (unsigned short)a;
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8:
{
((unsigned char *)dstPtr)[0] = color.r;
((unsigned char *)dstPtr)[1] = color.g;
((unsigned char *)dstPtr)[2] = color.b;
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8:
{
((unsigned char *)dstPtr)[0] = color.r;
((unsigned char *)dstPtr)[1] = color.g;
((unsigned char *)dstPtr)[2] = color.b;
((unsigned char *)dstPtr)[3] = color.a;
} break;
default: break;
}
}
// Get pixel data size in bytes for certain format
// NOTE: Size can be requested for Image or Texture data
int GetPixelDataSize(int width, int height, int format)
{
int dataSize = 0; // Size in bytes
int bpp = 0; // Bits per pixel
switch (format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: bpp = 8; break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4: bpp = 16; break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: bpp = 32; break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8: bpp = 24; break;
case PIXELFORMAT_UNCOMPRESSED_R32: bpp = 32; break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32: bpp = 32*3; break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: bpp = 32*4; break;
case PIXELFORMAT_UNCOMPRESSED_R16: bpp = 16; break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16: bpp = 16*3; break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16: bpp = 16*4; break;
case PIXELFORMAT_COMPRESSED_DXT1_RGB:
case PIXELFORMAT_COMPRESSED_DXT1_RGBA:
case PIXELFORMAT_COMPRESSED_ETC1_RGB:
case PIXELFORMAT_COMPRESSED_ETC2_RGB:
case PIXELFORMAT_COMPRESSED_PVRT_RGB:
case PIXELFORMAT_COMPRESSED_PVRT_RGBA: bpp = 4; break;
case PIXELFORMAT_COMPRESSED_DXT3_RGBA:
case PIXELFORMAT_COMPRESSED_DXT5_RGBA:
case PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA:
case PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA: bpp = 8; break;
case PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA: bpp = 2; break;
default: break;
}
dataSize = width*height*bpp/8; // Total data size in bytes
// Most compressed formats works on 4x4 blocks,
// if texture is smaller, minimum dataSize is 8 or 16
if ((width < 4) && (height < 4))
{
if ((format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) && (format < PIXELFORMAT_COMPRESSED_DXT3_RGBA)) dataSize = 8;
else if ((format >= PIXELFORMAT_COMPRESSED_DXT3_RGBA) && (format < PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA)) dataSize = 16;
}
return dataSize;
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
// Convert half-float (stored as unsigned short) to float
// REF: https://stackoverflow.com/questions/1659440/32-bit-to-16-bit-floating-point-conversion/60047308#60047308
static float HalfToFloat(unsigned short x)
{
float result = 0.0f;
const unsigned int e = (x & 0x7C00) >> 10; // Exponent
const unsigned int m = (x & 0x03FF) << 13; // Mantissa
const float fm = (float)m;
const unsigned int v = (*(unsigned int*)&fm) >> 23; // Evil log2 bit hack to count leading zeros in denormalized format
const unsigned int r = (x & 0x8000) << 16 | (e != 0)*((e + 112) << 23 | m) | ((e == 0)&(m != 0))*((v - 37) << 23 | ((m << (150 - v)) & 0x007FE000)); // sign : normalized : denormalized
result = *(float *)&r;
return result;
}
// Convert float to half-float (stored as unsigned short)
static unsigned short FloatToHalf(float x)
{
unsigned short result = 0;
const unsigned int b = (*(unsigned int*) & x) + 0x00001000; // Round-to-nearest-even: add last bit after truncated mantissa
const unsigned int e = (b & 0x7F800000) >> 23; // Exponent
const unsigned int m = b & 0x007FFFFF; // Mantissa; in line below: 0x007FF000 = 0x00800000-0x00001000 = decimal indicator flag - initial rounding
result = (b & 0x80000000) >> 16 | (e > 112)*((((e - 112) << 10) & 0x7C00) | m >> 13) | ((e < 113) & (e > 101))*((((0x007FF000 + m) >> (125 - e)) + 1) >> 1) | (e > 143)*0x7FFF; // sign : normalized : denormalized : saturate
return result;
}
// Get pixel data from image as Vector4 array (float normalized)
static Vector4 *LoadImageDataNormalized(Image image)
{
Vector4 *pixels = (Vector4 *)RL_MALLOC(image.width*image.height*sizeof(Vector4));
if (image.format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "IMAGE: Pixel data retrieval not supported for compressed image formats");
else
{
for (int i = 0, k = 0; i < image.width*image.height; i++)
{
switch (image.format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE:
{
pixels[i].x = (float)((unsigned char *)image.data)[i]/255.0f;
pixels[i].y = (float)((unsigned char *)image.data)[i]/255.0f;
pixels[i].z = (float)((unsigned char *)image.data)[i]/255.0f;
pixels[i].w = 1.0f;
} break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
{
pixels[i].x = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].y = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].z = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].w = (float)((unsigned char *)image.data)[k + 1]/255.0f;
k += 2;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].x = (float)((pixel & 0b1111100000000000) >> 11)*(1.0f/31);
pixels[i].y = (float)((pixel & 0b0000011111000000) >> 6)*(1.0f/31);
pixels[i].z = (float)((pixel & 0b0000000000111110) >> 1)*(1.0f/31);
pixels[i].w = ((pixel & 0b0000000000000001) == 0)? 0.0f : 1.0f;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].x = (float)((pixel & 0b1111100000000000) >> 11)*(1.0f/31);
pixels[i].y = (float)((pixel & 0b0000011111100000) >> 5)*(1.0f/63);
pixels[i].z = (float)(pixel & 0b0000000000011111)*(1.0f/31);
pixels[i].w = 1.0f;
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].x = (float)((pixel & 0b1111000000000000) >> 12)*(1.0f/15);
pixels[i].y = (float)((pixel & 0b0000111100000000) >> 8)*(1.0f/15);
pixels[i].z = (float)((pixel & 0b0000000011110000) >> 4)*(1.0f/15);
pixels[i].w = (float)(pixel & 0b0000000000001111)*(1.0f/15);
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8:
{
pixels[i].x = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].y = (float)((unsigned char *)image.data)[k + 1]/255.0f;
pixels[i].z = (float)((unsigned char *)image.data)[k + 2]/255.0f;
pixels[i].w = (float)((unsigned char *)image.data)[k + 3]/255.0f;
k += 4;
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8:
{
pixels[i].x = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].y = (float)((unsigned char *)image.data)[k + 1]/255.0f;
pixels[i].z = (float)((unsigned char *)image.data)[k + 2]/255.0f;
pixels[i].w = 1.0f;
k += 3;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32:
{
pixels[i].x = ((float *)image.data)[k];
pixels[i].y = 0.0f;
pixels[i].z = 0.0f;
pixels[i].w = 1.0f;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32:
{
pixels[i].x = ((float *)image.data)[k];
pixels[i].y = ((float *)image.data)[k + 1];
pixels[i].z = ((float *)image.data)[k + 2];
pixels[i].w = 1.0f;
k += 3;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32:
{
pixels[i].x = ((float *)image.data)[k];
pixels[i].y = ((float *)image.data)[k + 1];
pixels[i].z = ((float *)image.data)[k + 2];
pixels[i].w = ((float *)image.data)[k + 3];
k += 4;
} break;
case PIXELFORMAT_UNCOMPRESSED_R16:
{
pixels[i].x = HalfToFloat(((unsigned short *)image.data)[k]);
pixels[i].y = 0.0f;
pixels[i].z = 0.0f;
pixels[i].w = 1.0f;
} break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16:
{
pixels[i].x = HalfToFloat(((unsigned short *)image.data)[k]);
pixels[i].y = HalfToFloat(((unsigned short *)image.data)[k + 1]);
pixels[i].z = HalfToFloat(((unsigned short *)image.data)[k + 2]);
pixels[i].w = 1.0f;
k += 3;
} break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16:
{
pixels[i].x = HalfToFloat(((unsigned short *)image.data)[k]);
pixels[i].y = HalfToFloat(((unsigned short *)image.data)[k + 1]);
pixels[i].z = HalfToFloat(((unsigned short *)image.data)[k + 2]);
pixels[i].w = HalfToFloat(((unsigned short *)image.data)[k + 3]);
k += 4;
} break;
default: break;
}
}
}
return pixels;
}
#endif // SUPPORT_MODULE_RTEXTURES