You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

288 lines
11 KiB

/*******************************************************************************************
*
* raylib [audio] example - fft spectrum visualizer
*
* Example complexity rating: [★★★☆] 3/4
*
* Example originally created with raylib 6.0, last time updated with raylib 5.6-dev
*
* Inspired by Inigo Quilez's https://www.shadertoy.com/
* Resources/specification: https://gist.github.com/soulthreads/2efe50da4be1fb5f7ab60ff14ca434b8
*
* Example created by created by IANN (@meisei4) reviewed by Ramon Santamaria (@raysan5)
*
* Example licensed under an unmodified zlib/libpng license, which is an OSI-certified,
* BSD-like license that allows static linking with closed source software
*
* Copyright (c) 2025 IANN (@meisei4)
*
********************************************************************************************/
#include "raylib.h"
#include "raymath.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#if defined(PLATFORM_DESKTOP)
#define GLSL_VERSION 330
#else // PLATFORM_ANDROID, PLATFORM_WEB
#define GLSL_VERSION 100
#endif
#define MONO 1
#define SAMPLE_RATE 44100
#define SAMPLE_RATE_F 44100.0f
#define FFT_WINDOW_SIZE 1024
#define BUFFER_SIZE 512
#define PER_SAMPLE_BIT_DEPTH 16
#define AUDIO_STREAM_RING_BUFFER_SIZE (FFT_WINDOW_SIZE*2)
#define EFFECTIVE_SAMPLE_RATE (SAMPLE_RATE_F*0.5f)
#define WINDOW_TIME ((double)FFT_WINDOW_SIZE/(double)EFFECTIVE_SAMPLE_RATE)
#define FFT_HISTORICAL_SMOOTHING_DUR 2.0f
#define MIN_DECIBELS (-100.0f) // https://developer.mozilla.org/en-US/docs/Web/API/AnalyserNode/minDecibels
#define MAX_DECIBELS (-30.0f) // https://developer.mozilla.org/en-US/docs/Web/API/AnalyserNode/maxDecibels
#define INVERSE_DECIBEL_RANGE (1.0f/(MAX_DECIBELS - MIN_DECIBELS))
#define DB_TO_LINEAR_SCALE (20.0f/2.302585092994046f)
#define SMOOTHING_TIME_CONSTANT 0.8f // https://developer.mozilla.org/en-US/docs/Web/API/AnalyserNode/smoothingTimeConstant
#define TEXTURE_HEIGHT 1
#define FFT_ROW 0
#define UNUSED_CHANNEL 0.0f
typedef struct FFTComplex { float real, imaginary; } FFTComplex;
typedef struct FFTData {
FFTComplex *spectrum;
FFTComplex *workBuffer;
float *prevMagnitudes;
float (*fftHistory)[BUFFER_SIZE];
int fftHistoryLen;
int historyPos;
double lastFftTime;
float tapbackPos;
} FFTData;
static void CaptureFrame(FFTData *fftData, const float *audioSamples);
static void RenderFrame(const FFTData *fftData, Image *fftImage);
static void CooleyTukeyFFTSlow(FFTComplex *spectrum, int n);
//------------------------------------------------------------------------------------
// Program main entry point
//------------------------------------------------------------------------------------
int main(void)
{
// Initialization
//----------------------------------------------------------------------------------- ---
const int screenWidth = 800;
const int screenHeight = 450;
InitWindow(screenWidth, screenHeight, "raylib [audio] example - fft spectrum visualizer");
Image fftImage = GenImageColor(BUFFER_SIZE, TEXTURE_HEIGHT, WHITE);
Texture2D fftTexture = LoadTextureFromImage(fftImage);
RenderTexture2D bufferA = LoadRenderTexture(screenWidth, screenHeight);
Vector2 iResolution = { (float)screenWidth, (float)screenHeight };
Shader shader = LoadShader(0, TextFormat("resources/shaders/glsl%i/fft.fs", GLSL_VERSION));
int iResolutionLocation = GetShaderLocation(shader, "iResolution");
int iChannel0Location = GetShaderLocation(shader, "iChannel0");
SetShaderValue(shader, iResolutionLocation, &iResolution, SHADER_UNIFORM_VEC2);
SetShaderValueTexture(shader, iChannel0Location, fftTexture);
InitAudioDevice();
SetAudioStreamBufferSizeDefault(AUDIO_STREAM_RING_BUFFER_SIZE);
// WARNING: Memory out-of-bounds on PLATFORM_WEB
Wave wav = LoadWave("resources/country.mp3");
WaveFormat(&wav, SAMPLE_RATE, PER_SAMPLE_BIT_DEPTH, MONO);
AudioStream audioStream = LoadAudioStream(SAMPLE_RATE, PER_SAMPLE_BIT_DEPTH, MONO);
PlayAudioStream(audioStream);
int fftHistoryLen = (int)ceilf(FFT_HISTORICAL_SMOOTHING_DUR/WINDOW_TIME) + 1;
FFTData fft = {
.spectrum = RL_CALLOC(sizeof(FFTComplex), FFT_WINDOW_SIZE),
.workBuffer = RL_CALLOC(sizeof(FFTComplex), FFT_WINDOW_SIZE),
.prevMagnitudes = RL_CALLOC(BUFFER_SIZE, sizeof(float)),
.fftHistory = RL_CALLOC(fftHistoryLen, sizeof(float[BUFFER_SIZE])),
.fftHistoryLen = fftHistoryLen,
.historyPos = 0,
.lastFftTime = 0.0,
.tapbackPos = 0.01f
};
size_t wavCursor = 0;
const short *wavPCM16 = wav.data;
short chunkSamples[AUDIO_STREAM_RING_BUFFER_SIZE] = { 0 };
float audioSamples[FFT_WINDOW_SIZE] = { 0 };
SetTargetFPS(60);
//----------------------------------------------------------------------------------
// Main game loop
while (!WindowShouldClose()) // Detect window close button or ESC key
{
// Update
//----------------------------------------------------------------------------------
while (IsAudioStreamProcessed(audioStream))
{
for (int i = 0; i < AUDIO_STREAM_RING_BUFFER_SIZE; i++)
{
int left = (wav.channels == 2)? wavPCM16[wavCursor*2 + 0] : wavPCM16[wavCursor];
int right = (wav.channels == 2)? wavPCM16[wavCursor*2 + 1] : left;
chunkSamples[i] = (short)((left + right)/2);
if (++wavCursor >= wav.frameCount) wavCursor = 0;
}
UpdateAudioStream(audioStream, chunkSamples, AUDIO_STREAM_RING_BUFFER_SIZE);
for (int i = 0; i < FFT_WINDOW_SIZE; i++) audioSamples[i] = (chunkSamples[i*2] + chunkSamples[i*2 + 1])*0.5f/32767.0f;
}
CaptureFrame(&fft, audioSamples);
RenderFrame(&fft, &fftImage);
UpdateTexture(fftTexture, fftImage.data);
//------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
BeginDrawing();
ClearBackground(RAYWHITE);
BeginShaderMode(shader);
SetShaderValueTexture(shader, iChannel0Location, fftTexture);
DrawTextureRec(bufferA.texture,
(Rectangle){ 0, 0, (float)screenWidth, (float)-screenHeight },
(Vector2){ 0, 0 }, WHITE);
EndShaderMode();
EndDrawing();
//------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
UnloadShader(shader);
UnloadRenderTexture(bufferA);
UnloadTexture(fftTexture);
UnloadImage(fftImage);
UnloadAudioStream(audioStream);
UnloadWave(wav);
CloseAudioDevice();
RL_FREE(fft.spectrum);
RL_FREE(fft.workBuffer);
RL_FREE(fft.prevMagnitudes);
RL_FREE(fft.fftHistory);
CloseWindow(); // Close window and OpenGL context
//----------------------------------------------------------------------------------
return 0;
}
// Cooley–Tukey FFT https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm#Data_reordering,_bit_reversal,_and_in-place_algorithms
static void CooleyTukeyFFTSlow(FFTComplex *spectrum, int n)
{
int j = 0;
for (int i = 1; i < n - 1; i++)
{
int bit = n >> 1;
while (j >= bit)
{
j -= bit;
bit >>= 1;
}
j += bit;
if (i < j)
{
FFTComplex temp = spectrum[i];
spectrum[i] = spectrum[j];
spectrum[j] = temp;
}
}
for (int len = 2; len <= n; len <<= 1)
{
float angle = -2.0f*PI/len;
FFTComplex twiddleUnit = { cosf(angle), sinf(angle) };
for (int i = 0; i < n; i += len)
{
FFTComplex twiddleCurrent = { 1.0f, 0.0f };
for (int j = 0; j < len/2; j++)
{
FFTComplex even = spectrum[i + j];
FFTComplex odd = spectrum[i + j + len/2];
FFTComplex twiddledOdd = {
odd.real*twiddleCurrent.real - odd.imaginary*twiddleCurrent.imaginary,
odd.real*twiddleCurrent.imaginary + odd.imaginary*twiddleCurrent.real
};
spectrum[i + j].real = even.real + twiddledOdd.real;
spectrum[i + j].imaginary = even.imaginary + twiddledOdd.imaginary;
spectrum[i + j + len/2].real = even.real - twiddledOdd.real;
spectrum[i + j + len/2].imaginary = even.imaginary - twiddledOdd.imaginary;
float twiddleRealNext = twiddleCurrent.real*twiddleUnit.real - twiddleCurrent.imaginary*twiddleUnit.imaginary;
twiddleCurrent.imaginary = twiddleCurrent.real*twiddleUnit.imaginary + twiddleCurrent.imaginary*twiddleUnit.real;
twiddleCurrent.real = twiddleRealNext;
}
}
}
}
static void CaptureFrame(FFTData *fftData, const float *audioSamples)
{
for (int i = 0; i < FFT_WINDOW_SIZE; i++)
{
float x = (2.0f*PI*i)/(FFT_WINDOW_SIZE - 1.0f);
float blackmanWeight = 0.42f - 0.5f*cosf(x) + 0.08f*cosf(2.0f*x); // https://en.wikipedia.org/wiki/Window_function#Blackman_window
fftData->workBuffer[i].real = audioSamples[i]*blackmanWeight;
fftData->workBuffer[i].imaginary = 0.0f;
}
CooleyTukeyFFTSlow(fftData->workBuffer, FFT_WINDOW_SIZE);
memcpy(fftData->spectrum, fftData->workBuffer, sizeof(FFTComplex)*FFT_WINDOW_SIZE);
float smoothedSpectrum[BUFFER_SIZE];
for (int bin = 0; bin < BUFFER_SIZE; bin++)
{
float re = fftData->workBuffer[bin].real;
float im = fftData->workBuffer[bin].imaginary;
float linearMagnitude = sqrtf(re*re + im*im)/FFT_WINDOW_SIZE;
float smoothedMagnitude = SMOOTHING_TIME_CONSTANT*fftData->prevMagnitudes[bin] + (1.0f - SMOOTHING_TIME_CONSTANT)*linearMagnitude;
fftData->prevMagnitudes[bin] = smoothedMagnitude;
float db = logf(fmaxf(smoothedMagnitude, 1e-40f))*DB_TO_LINEAR_SCALE;
float normalized = (db - MIN_DECIBELS)*INVERSE_DECIBEL_RANGE;
smoothedSpectrum[bin] = Clamp(normalized, 0.0f, 1.0f);
}
fftData->lastFftTime = GetTime();
memcpy(fftData->fftHistory[fftData->historyPos], smoothedSpectrum, sizeof(smoothedSpectrum));
fftData->historyPos = (fftData->historyPos + 1) % fftData->fftHistoryLen;
}
static void RenderFrame(const FFTData *fftData, Image *fftImage)
{
double framesSinceTapback = floor(fftData->tapbackPos/WINDOW_TIME);
framesSinceTapback = Clamp(framesSinceTapback, 0.0, fftData->fftHistoryLen - 1);
int historyPosition = (fftData->historyPos - 1 - (int)framesSinceTapback) % fftData->fftHistoryLen;
if (historyPosition < 0)
historyPosition += fftData->fftHistoryLen;
const float *amplitude = fftData->fftHistory[historyPosition];
for (int bin = 0; bin < BUFFER_SIZE; bin++) {
ImageDrawPixel(fftImage, bin, FFT_ROW, ColorFromNormalized((Vector4){ amplitude[bin], UNUSED_CHANNEL, UNUSED_CHANNEL, UNUSED_CHANNEL }));
}
}