|
// jar_xm.h
|
|
//
|
|
// ORIGINAL LICENSE - FOR LIBXM:
|
|
//
|
|
// Author: Romain "Artefact2" Dalmaso <artefact2@gmail.com>
|
|
// Contributor: Dan Spencer <dan@atomicpotato.net>
|
|
// Repackaged into jar_xm.h By: Joshua Adam Reisenauer <kd7tck@gmail.com>
|
|
// This program is free software. It comes without any warranty, to the
|
|
// extent permitted by applicable law. You can redistribute it and/or
|
|
// modify it under the terms of the Do What The Fuck You Want To Public
|
|
// License, Version 2, as published by Sam Hocevar. See
|
|
// http://sam.zoy.org/wtfpl/COPYING for more details.
|
|
//
|
|
// HISTORY:
|
|
// v0.1.0 2016-02-22 jar_xm.h - development by Joshua Reisenauer, MAR 2016
|
|
// v0.2.1 2021-03-07 m4ntr0n1c: Fix clipping noise for "bad" xm's (they will always clip), avoid clip noise and just put a ceiling)
|
|
// v0.2.2 2021-03-09 m4ntr0n1c: Add complete debug solution (raylib.h must be included)
|
|
// v0.2.3 2021-03-11 m4ntr0n1c: Fix tempo, bpm and volume on song stop / start / restart / loop
|
|
// v0.2.4 2021-03-17 m4ntr0n1c: Sanitize code for readability
|
|
// v0.2.5 2021-03-22 m4ntr0n1c: Minor adjustments
|
|
// v0.2.6 2021-04-01 m4ntr0n1c: Minor fixes and optimisation
|
|
// v0.3.0 2021-04-03 m4ntr0n1c: Addition of Stereo sample support, Linear Interpolation and Ramping now addressable options in code
|
|
// v0.3.1 2021-04-04 m4ntr0n1c: Volume effects column adjustments, sample offset handling adjustments
|
|
//
|
|
// USAGE:
|
|
//
|
|
// In ONE source file, put:
|
|
//
|
|
// #define JAR_XM_IMPLEMENTATION
|
|
// #include "jar_xm.h"
|
|
//
|
|
// Other source files should just include jar_xm.h
|
|
//
|
|
// SAMPLE CODE:
|
|
//
|
|
// jar_xm_context_t *musicptr;
|
|
// float musicBuffer[48000 / 60];
|
|
// int intro_load(void)
|
|
// {
|
|
// jar_xm_create_context_from_file(&musicptr, 48000, "Song.XM");
|
|
// return 1;
|
|
// }
|
|
// int intro_unload(void)
|
|
// {
|
|
// jar_xm_free_context(musicptr);
|
|
// return 1;
|
|
// }
|
|
// int intro_tick(long counter)
|
|
// {
|
|
// jar_xm_generate_samples(musicptr, musicBuffer, (48000 / 60) / 2);
|
|
// if(IsKeyDown(KEY_ENTER))
|
|
// return 1;
|
|
// return 0;
|
|
// }
|
|
//
|
|
#ifndef INCLUDE_JAR_XM_H
|
|
#define INCLUDE_JAR_XM_H
|
|
|
|
#include <stdint.h>
|
|
|
|
#define JAR_XM_DEBUG 0
|
|
#define JAR_XM_DEFENSIVE 1
|
|
//#define JAR_XM_RAYLIB 0 // set to 0 to disable the RayLib visualizer extension
|
|
|
|
// Allow custom memory allocators
|
|
#ifndef JARXM_MALLOC
|
|
#define JARXM_MALLOC(sz) malloc(sz)
|
|
#endif
|
|
#ifndef JARXM_FREE
|
|
#define JARXM_FREE(p) free(p)
|
|
#endif
|
|
|
|
//-------------------------------------------------------------------------------
|
|
struct jar_xm_context_s;
|
|
typedef struct jar_xm_context_s jar_xm_context_t;
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
//** Create a XM context.
|
|
// * @param moddata the contents of the module
|
|
// * @param rate play rate in Hz, recommended value of 48000
|
|
// * @returns 0 on success
|
|
// * @returns 1 if module data is not sane
|
|
// * @returns 2 if memory allocation failed
|
|
// * @returns 3 unable to open input file
|
|
// * @returns 4 fseek() failed
|
|
// * @returns 5 fread() failed
|
|
// * @returns 6 unkown error
|
|
// * @deprecated This function is unsafe!
|
|
// * @see jar_xm_create_context_safe()
|
|
int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename);
|
|
|
|
//** Create a XM context.
|
|
// * @param moddata the contents of the module
|
|
// * @param rate play rate in Hz, recommended value of 48000
|
|
// * @returns 0 on success
|
|
// * @returns 1 if module data is not sane
|
|
// * @returns 2 if memory allocation failed
|
|
// * @deprecated This function is unsafe!
|
|
// * @see jar_xm_create_context_safe()
|
|
int jar_xm_create_context(jar_xm_context_t** ctx, const char* moddata, uint32_t rate);
|
|
|
|
//** Create a XM context.
|
|
// * @param moddata the contents of the module
|
|
// * @param moddata_length the length of the contents of the module, in bytes
|
|
// * @param rate play rate in Hz, recommended value of 48000
|
|
// * @returns 0 on success
|
|
// * @returns 1 if module data is not sane
|
|
// * @returns 2 if memory allocation failed
|
|
int jar_xm_create_context_safe(jar_xm_context_t** ctx, const char* moddata, size_t moddata_length, uint32_t rate);
|
|
|
|
//** Free a XM context created by jar_xm_create_context(). */
|
|
void jar_xm_free_context(jar_xm_context_t* ctx);
|
|
|
|
//** Play the module and put the sound samples in an output buffer.
|
|
// * @param output buffer of 2*numsamples elements (A left and right value for each sample)
|
|
// * @param numsamples number of samples to generate
|
|
void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples);
|
|
|
|
//** Play the module, resample from float to 16 bit, and put the sound samples in an output buffer.
|
|
// * @param output buffer of 2*numsamples elements (A left and right value for each sample)
|
|
// * @param numsamples number of samples to generate
|
|
void jar_xm_generate_samples_16bit(jar_xm_context_t* ctx, short* output, size_t numsamples) {
|
|
float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float));
|
|
jar_xm_generate_samples(ctx, musicBuffer, numsamples);
|
|
|
|
if(output){
|
|
for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 32767.0f); // scale sample to signed small int
|
|
}
|
|
JARXM_FREE(musicBuffer);
|
|
}
|
|
|
|
//** Play the module, resample from float to 8 bit, and put the sound samples in an output buffer.
|
|
// * @param output buffer of 2*numsamples elements (A left and right value for each sample)
|
|
// * @param numsamples number of samples to generate
|
|
void jar_xm_generate_samples_8bit(jar_xm_context_t* ctx, char* output, size_t numsamples) {
|
|
float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float));
|
|
jar_xm_generate_samples(ctx, musicBuffer, numsamples);
|
|
|
|
if(output){
|
|
for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 127.0f); // scale sample to signed 8 bit
|
|
}
|
|
JARXM_FREE(musicBuffer);
|
|
}
|
|
|
|
//** Set the maximum number of times a module can loop. After the specified number of loops, calls to jar_xm_generate_samples will only generate silence. You can control the current number of loops with jar_xm_get_loop_count().
|
|
// * @param loopcnt maximum number of loops. Use 0 to loop indefinitely.
|
|
void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt);
|
|
|
|
//** Get the loop count of the currently playing module. This value is 0 when the module is still playing, 1 when the module has looped once, etc.
|
|
uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx);
|
|
|
|
//** Mute or unmute a channel.
|
|
// * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...).
|
|
// * @return whether the channel was muted.
|
|
bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t, bool);
|
|
|
|
//** Mute or unmute an instrument.
|
|
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
|
|
// * @return whether the instrument was muted.
|
|
bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t, bool);
|
|
|
|
//** Get the module name as a NUL-terminated string.
|
|
const char* jar_xm_get_module_name(jar_xm_context_t* ctx);
|
|
|
|
//** Get the tracker name as a NUL-terminated string.
|
|
const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx);
|
|
|
|
//** Get the number of channels.
|
|
uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx);
|
|
|
|
//** Get the module length (in patterns).
|
|
uint16_t jar_xm_get_module_length(jar_xm_context_t*);
|
|
|
|
//** Get the number of patterns.
|
|
uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx);
|
|
|
|
//** Get the number of rows of a pattern.
|
|
// * @note Pattern numbers go from 0 to jar_xm_get_number_of_patterns(...)-1.
|
|
uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t);
|
|
|
|
//** Get the number of instruments.
|
|
uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx);
|
|
|
|
//** Get the number of samples of an instrument.
|
|
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
|
|
uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t);
|
|
|
|
//** Get the current module speed.
|
|
// * @param bpm will receive the current BPM
|
|
// * @param tempo will receive the current tempo (ticks per line)
|
|
void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo);
|
|
|
|
//** Get the current position in the module being played.
|
|
// * @param pattern_index if not NULL, will receive the current pattern index in the POT (pattern order table)
|
|
// * @param pattern if not NULL, will receive the current pattern number
|
|
// * @param row if not NULL, will receive the current row
|
|
// * @param samples if not NULL, will receive the total number of
|
|
// * generated samples (divide by sample rate to get seconds of generated audio)
|
|
void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples);
|
|
|
|
//** Get the latest time (in number of generated samples) when a particular instrument was triggered in any channel.
|
|
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
|
|
uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t);
|
|
|
|
//** Get the latest time (in number of generated samples) when a particular sample was triggered in any channel.
|
|
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
|
|
// * @note Sample numbers go from 0 to jar_xm_get_nubmer_of_samples(...,instr)-1.
|
|
uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample);
|
|
|
|
//** Get the latest time (in number of generated samples) when any instrument was triggered in a given channel.
|
|
// * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...).
|
|
uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t);
|
|
|
|
//** Get the number of remaining samples. Divide by 2 to get the number of individual LR data samples.
|
|
// * @note This is the remaining number of samples before the loop starts module again, or halts if on last pass.
|
|
// * @note This function is very slow and should only be run once, if at all.
|
|
uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
//-------------------------------------------------------------------------------
|
|
|
|
#ifdef JAR_XM_IMPLEMENTATION
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#if JAR_XM_DEBUG //JAR_XM_DEBUG defined as 0
|
|
#include <stdio.h>
|
|
#define DEBUG(fmt, ...) do { \
|
|
fprintf(stderr, "%s(): " fmt "\n", __func__, __VA_ARGS__); \
|
|
fflush(stderr); \
|
|
} while(0)
|
|
#else
|
|
#define DEBUG(...)
|
|
#endif
|
|
|
|
#if jar_xm_BIG_ENDIAN
|
|
#error "Big endian platforms are not yet supported, sorry"
|
|
/* Make sure the compiler stops, even if #error is ignored */
|
|
extern int __fail[-1];
|
|
#endif
|
|
|
|
/* ----- XM constants ----- */
|
|
#define SAMPLE_NAME_LENGTH 22
|
|
#define INSTRUMENT_NAME_LENGTH 22
|
|
#define MODULE_NAME_LENGTH 20
|
|
#define TRACKER_NAME_LENGTH 20
|
|
#define PATTERN_ORDER_TABLE_LENGTH 256
|
|
#define NUM_NOTES 96 // from 1 to 96, where 1 = C-0
|
|
#define NUM_ENVELOPE_POINTS 12 // to be verified if 12 is the max
|
|
#define MAX_NUM_ROWS 256
|
|
|
|
#define jar_xm_SAMPLE_RAMPING_POINTS 8
|
|
|
|
/* ----- Data types ----- */
|
|
|
|
enum jar_xm_waveform_type_e {
|
|
jar_xm_SINE_WAVEFORM = 0,
|
|
jar_xm_RAMP_DOWN_WAVEFORM = 1,
|
|
jar_xm_SQUARE_WAVEFORM = 2,
|
|
jar_xm_RANDOM_WAVEFORM = 3,
|
|
jar_xm_RAMP_UP_WAVEFORM = 4,
|
|
};
|
|
typedef enum jar_xm_waveform_type_e jar_xm_waveform_type_t;
|
|
|
|
enum jar_xm_loop_type_e {
|
|
jar_xm_NO_LOOP,
|
|
jar_xm_FORWARD_LOOP,
|
|
jar_xm_PING_PONG_LOOP,
|
|
};
|
|
typedef enum jar_xm_loop_type_e jar_xm_loop_type_t;
|
|
|
|
enum jar_xm_frequency_type_e {
|
|
jar_xm_LINEAR_FREQUENCIES,
|
|
jar_xm_AMIGA_FREQUENCIES,
|
|
};
|
|
typedef enum jar_xm_frequency_type_e jar_xm_frequency_type_t;
|
|
|
|
struct jar_xm_envelope_point_s {
|
|
uint16_t frame;
|
|
uint16_t value;
|
|
};
|
|
typedef struct jar_xm_envelope_point_s jar_xm_envelope_point_t;
|
|
|
|
struct jar_xm_envelope_s {
|
|
jar_xm_envelope_point_t points[NUM_ENVELOPE_POINTS];
|
|
uint8_t num_points;
|
|
uint8_t sustain_point;
|
|
uint8_t loop_start_point;
|
|
uint8_t loop_end_point;
|
|
bool enabled;
|
|
bool sustain_enabled;
|
|
bool loop_enabled;
|
|
};
|
|
typedef struct jar_xm_envelope_s jar_xm_envelope_t;
|
|
|
|
struct jar_xm_sample_s {
|
|
char name[SAMPLE_NAME_LENGTH + 1];
|
|
int8_t bits; /* Either 8 or 16 */
|
|
int8_t stereo;
|
|
uint32_t length;
|
|
uint32_t loop_start;
|
|
uint32_t loop_length;
|
|
uint32_t loop_end;
|
|
float volume;
|
|
int8_t finetune;
|
|
jar_xm_loop_type_t loop_type;
|
|
float panning;
|
|
int8_t relative_note;
|
|
uint64_t latest_trigger;
|
|
|
|
float* data;
|
|
};
|
|
typedef struct jar_xm_sample_s jar_xm_sample_t;
|
|
|
|
struct jar_xm_instrument_s {
|
|
char name[INSTRUMENT_NAME_LENGTH + 1];
|
|
uint16_t num_samples;
|
|
uint8_t sample_of_notes[NUM_NOTES];
|
|
jar_xm_envelope_t volume_envelope;
|
|
jar_xm_envelope_t panning_envelope;
|
|
jar_xm_waveform_type_t vibrato_type;
|
|
uint8_t vibrato_sweep;
|
|
uint8_t vibrato_depth;
|
|
uint8_t vibrato_rate;
|
|
uint16_t volume_fadeout;
|
|
uint64_t latest_trigger;
|
|
bool muted;
|
|
|
|
jar_xm_sample_t* samples;
|
|
};
|
|
typedef struct jar_xm_instrument_s jar_xm_instrument_t;
|
|
|
|
struct jar_xm_pattern_slot_s {
|
|
uint8_t note; /* 1-96, 97 = Key Off note */
|
|
uint8_t instrument; /* 1-128 */
|
|
uint8_t volume_column;
|
|
uint8_t effect_type;
|
|
uint8_t effect_param;
|
|
};
|
|
typedef struct jar_xm_pattern_slot_s jar_xm_pattern_slot_t;
|
|
|
|
struct jar_xm_pattern_s {
|
|
uint16_t num_rows;
|
|
jar_xm_pattern_slot_t* slots; /* Array of size num_rows * num_channels */
|
|
};
|
|
typedef struct jar_xm_pattern_s jar_xm_pattern_t;
|
|
|
|
struct jar_xm_module_s {
|
|
char name[MODULE_NAME_LENGTH + 1];
|
|
char trackername[TRACKER_NAME_LENGTH + 1];
|
|
uint16_t length;
|
|
uint16_t restart_position;
|
|
uint16_t num_channels;
|
|
uint16_t num_patterns;
|
|
uint16_t num_instruments;
|
|
uint16_t linear_interpolation;
|
|
uint16_t ramping;
|
|
jar_xm_frequency_type_t frequency_type;
|
|
uint8_t pattern_table[PATTERN_ORDER_TABLE_LENGTH];
|
|
|
|
jar_xm_pattern_t* patterns;
|
|
jar_xm_instrument_t* instruments; /* Instrument 1 has index 0, instrument 2 has index 1, etc. */
|
|
};
|
|
typedef struct jar_xm_module_s jar_xm_module_t;
|
|
|
|
struct jar_xm_channel_context_s {
|
|
float note;
|
|
float orig_note; /* The original note before effect modifications, as read in the pattern. */
|
|
jar_xm_instrument_t* instrument; /* Could be NULL */
|
|
jar_xm_sample_t* sample; /* Could be NULL */
|
|
jar_xm_pattern_slot_t* current;
|
|
|
|
float sample_position;
|
|
float period;
|
|
float frequency;
|
|
float step;
|
|
bool ping; /* For ping-pong samples: true is -->, false is <-- */
|
|
|
|
float volume; /* Ideally between 0 (muted) and 1 (loudest) */
|
|
float panning; /* Between 0 (left) and 1 (right); 0.5 is centered */
|
|
|
|
uint16_t autovibrato_ticks;
|
|
|
|
bool sustained;
|
|
float fadeout_volume;
|
|
float volume_envelope_volume;
|
|
float panning_envelope_panning;
|
|
uint16_t volume_envelope_frame_count;
|
|
uint16_t panning_envelope_frame_count;
|
|
|
|
float autovibrato_note_offset;
|
|
|
|
bool arp_in_progress;
|
|
uint8_t arp_note_offset;
|
|
uint8_t volume_slide_param;
|
|
uint8_t fine_volume_slide_param;
|
|
uint8_t global_volume_slide_param;
|
|
uint8_t panning_slide_param;
|
|
uint8_t portamento_up_param;
|
|
uint8_t portamento_down_param;
|
|
uint8_t fine_portamento_up_param;
|
|
uint8_t fine_portamento_down_param;
|
|
uint8_t extra_fine_portamento_up_param;
|
|
uint8_t extra_fine_portamento_down_param;
|
|
uint8_t tone_portamento_param;
|
|
float tone_portamento_target_period;
|
|
uint8_t multi_retrig_param;
|
|
uint8_t note_delay_param;
|
|
uint8_t pattern_loop_origin; /* Where to restart a E6y loop */
|
|
uint8_t pattern_loop_count; /* How many loop passes have been done */
|
|
bool vibrato_in_progress;
|
|
jar_xm_waveform_type_t vibrato_waveform;
|
|
bool vibrato_waveform_retrigger; /* True if a new note retriggers the waveform */
|
|
uint8_t vibrato_param;
|
|
uint16_t vibrato_ticks; /* Position in the waveform */
|
|
float vibrato_note_offset;
|
|
jar_xm_waveform_type_t tremolo_waveform;
|
|
bool tremolo_waveform_retrigger;
|
|
uint8_t tremolo_param;
|
|
uint8_t tremolo_ticks;
|
|
float tremolo_volume;
|
|
uint8_t tremor_param;
|
|
bool tremor_on;
|
|
|
|
uint64_t latest_trigger;
|
|
bool muted;
|
|
|
|
//* These values are updated at the end of each tick, to save a couple of float operations on every generated sample.
|
|
float target_panning;
|
|
float target_volume;
|
|
|
|
unsigned long frame_count;
|
|
float end_of_previous_sample_left[jar_xm_SAMPLE_RAMPING_POINTS];
|
|
float end_of_previous_sample_right[jar_xm_SAMPLE_RAMPING_POINTS];
|
|
float curr_left;
|
|
float curr_right;
|
|
|
|
float actual_panning;
|
|
float actual_volume;
|
|
};
|
|
typedef struct jar_xm_channel_context_s jar_xm_channel_context_t;
|
|
|
|
struct jar_xm_context_s {
|
|
void* allocated_memory;
|
|
jar_xm_module_t module;
|
|
uint32_t rate;
|
|
|
|
uint16_t default_tempo; // Number of ticks per row
|
|
uint16_t default_bpm;
|
|
float default_global_volume;
|
|
|
|
uint16_t tempo; // Number of ticks per row
|
|
uint16_t bpm;
|
|
float global_volume;
|
|
|
|
float volume_ramp; /* How much is a channel final volume allowed to change per sample; this is used to avoid abrubt volume changes which manifest as "clicks" in the generated sound. */
|
|
float panning_ramp; /* Same for panning. */
|
|
|
|
uint8_t current_table_index;
|
|
uint8_t current_row;
|
|
uint16_t current_tick; /* Can go below 255, with high tempo and a pattern delay */
|
|
float remaining_samples_in_tick;
|
|
uint64_t generated_samples;
|
|
|
|
bool position_jump;
|
|
bool pattern_break;
|
|
uint8_t jump_dest;
|
|
uint8_t jump_row;
|
|
|
|
uint16_t extra_ticks; /* Extra ticks to be played before going to the next row - Used for EEy effect */
|
|
|
|
uint8_t* row_loop_count; /* Array of size MAX_NUM_ROWS * module_length */
|
|
uint8_t loop_count;
|
|
uint8_t max_loop_count;
|
|
|
|
jar_xm_channel_context_t* channels;
|
|
};
|
|
|
|
#if JAR_XM_DEFENSIVE
|
|
|
|
//** Check the module data for errors/inconsistencies.
|
|
// * @returns 0 if everything looks OK. Module should be safe to load.
|
|
int jar_xm_check_sanity_preload(const char*, size_t);
|
|
|
|
//** Check a loaded module for errors/inconsistencies.
|
|
// * @returns 0 if everything looks OK.
|
|
int jar_xm_check_sanity_postload(jar_xm_context_t*);
|
|
|
|
#endif
|
|
|
|
//** Get the number of bytes needed to store the module data in a dynamically allocated blank context.
|
|
// * Things that are dynamically allocated:
|
|
// * - sample data
|
|
// * - sample structures in instruments
|
|
// * - pattern data
|
|
// * - row loop count arrays
|
|
// * - pattern structures in module
|
|
// * - instrument structures in module
|
|
// * - channel contexts
|
|
// * - context structure itself
|
|
// * @returns 0 if everything looks OK.
|
|
size_t jar_xm_get_memory_needed_for_context(const char*, size_t);
|
|
|
|
//** Populate the context from module data.
|
|
// * @returns pointer to the memory pool
|
|
char* jar_xm_load_module(jar_xm_context_t*, const char*, size_t, char*);
|
|
|
|
int jar_xm_create_context(jar_xm_context_t** ctxp, const char* moddata, uint32_t rate) {
|
|
return jar_xm_create_context_safe(ctxp, moddata, SIZE_MAX, rate);
|
|
}
|
|
|
|
#define ALIGN(x, b) (((x) + ((b) - 1)) & ~((b) - 1))
|
|
#define ALIGN_PTR(x, b) (void*)(((uintptr_t)(x) + ((b) - 1)) & ~((b) - 1))
|
|
int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, size_t moddata_length, uint32_t rate) {
|
|
#if JAR_XM_DEFENSIVE
|
|
int ret;
|
|
#endif
|
|
size_t bytes_needed;
|
|
char* mempool;
|
|
jar_xm_context_t* ctx;
|
|
|
|
#if JAR_XM_DEFENSIVE
|
|
if((ret = jar_xm_check_sanity_preload(moddata, moddata_length))) {
|
|
DEBUG("jar_xm_check_sanity_preload() returned %i, module is not safe to load", ret);
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
bytes_needed = jar_xm_get_memory_needed_for_context(moddata, moddata_length);
|
|
mempool = JARXM_MALLOC(bytes_needed);
|
|
if(mempool == NULL && bytes_needed > 0) { /* JARXM_MALLOC() failed, trouble ahead */
|
|
DEBUG("call to JARXM_MALLOC() failed, returned %p", (void*)mempool);
|
|
return 2;
|
|
}
|
|
|
|
/* Initialize most of the fields to 0, 0.f, NULL or false depending on type */
|
|
memset(mempool, 0, bytes_needed);
|
|
|
|
ctx = (*ctxp = (jar_xm_context_t *)mempool);
|
|
ctx->allocated_memory = mempool; /* Keep original pointer for JARXM_FREE() */
|
|
mempool += sizeof(jar_xm_context_t);
|
|
|
|
ctx->rate = rate;
|
|
mempool = jar_xm_load_module(ctx, moddata, moddata_length, mempool);
|
|
mempool = ALIGN_PTR(mempool, 16);
|
|
|
|
ctx->channels = (jar_xm_channel_context_t*)mempool;
|
|
mempool += ctx->module.num_channels * sizeof(jar_xm_channel_context_t);
|
|
mempool = ALIGN_PTR(mempool, 16);
|
|
|
|
ctx->default_global_volume = 1.f;
|
|
ctx->global_volume = ctx->default_global_volume;
|
|
|
|
ctx->volume_ramp = (1.f / 128.f);
|
|
ctx->panning_ramp = (1.f / 128.f);
|
|
|
|
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
|
|
jar_xm_channel_context_t *ch = ctx->channels + i;
|
|
ch->ping = true;
|
|
ch->vibrato_waveform = jar_xm_SINE_WAVEFORM;
|
|
ch->vibrato_waveform_retrigger = true;
|
|
ch->tremolo_waveform = jar_xm_SINE_WAVEFORM;
|
|
ch->tremolo_waveform_retrigger = true;
|
|
ch->volume = ch->volume_envelope_volume = ch->fadeout_volume = 1.0f;
|
|
ch->panning = ch->panning_envelope_panning = .5f;
|
|
ch->actual_volume = .0f;
|
|
ch->actual_panning = .5f;
|
|
}
|
|
|
|
mempool = ALIGN_PTR(mempool, 16);
|
|
ctx->row_loop_count = (uint8_t *)mempool;
|
|
mempool += MAX_NUM_ROWS * sizeof(uint8_t);
|
|
|
|
#if JAR_XM_DEFENSIVE
|
|
if((ret = jar_xm_check_sanity_postload(ctx))) { DEBUG("jar_xm_check_sanity_postload() returned %i, module is not safe to play", ret);
|
|
jar_xm_free_context(ctx);
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
void jar_xm_free_context(jar_xm_context_t *ctx) {
|
|
if (ctx != NULL) { JARXM_FREE(ctx->allocated_memory); }
|
|
}
|
|
|
|
void jar_xm_set_max_loop_count(jar_xm_context_t *ctx, uint8_t loopcnt) {
|
|
ctx->max_loop_count = loopcnt;
|
|
}
|
|
|
|
uint8_t jar_xm_get_loop_count(jar_xm_context_t *ctx) {
|
|
return ctx->loop_count;
|
|
}
|
|
|
|
bool jar_xm_mute_channel(jar_xm_context_t *ctx, uint16_t channel, bool mute) {
|
|
bool old = ctx->channels[channel - 1].muted;
|
|
ctx->channels[channel - 1].muted = mute;
|
|
return old;
|
|
}
|
|
|
|
bool jar_xm_mute_instrument(jar_xm_context_t *ctx, uint16_t instr, bool mute) {
|
|
bool old = ctx->module.instruments[instr - 1].muted;
|
|
ctx->module.instruments[instr - 1].muted = mute;
|
|
return old;
|
|
}
|
|
|
|
const char* jar_xm_get_module_name(jar_xm_context_t *ctx) {
|
|
return ctx->module.name;
|
|
}
|
|
|
|
const char* jar_xm_get_tracker_name(jar_xm_context_t *ctx) {
|
|
return ctx->module.trackername;
|
|
}
|
|
|
|
uint16_t jar_xm_get_number_of_channels(jar_xm_context_t *ctx) {
|
|
return ctx->module.num_channels;
|
|
}
|
|
|
|
uint16_t jar_xm_get_module_length(jar_xm_context_t *ctx) {
|
|
return ctx->module.length;
|
|
}
|
|
|
|
uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t *ctx) {
|
|
return ctx->module.num_patterns;
|
|
}
|
|
|
|
uint16_t jar_xm_get_number_of_rows(jar_xm_context_t *ctx, uint16_t pattern) {
|
|
return ctx->module.patterns[pattern].num_rows;
|
|
}
|
|
|
|
uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t *ctx) {
|
|
return ctx->module.num_instruments;
|
|
}
|
|
|
|
uint16_t jar_xm_get_number_of_samples(jar_xm_context_t *ctx, uint16_t instrument) {
|
|
return ctx->module.instruments[instrument - 1].num_samples;
|
|
}
|
|
|
|
void jar_xm_get_playing_speed(jar_xm_context_t *ctx, uint16_t *bpm, uint16_t *tempo) {
|
|
if(bpm) *bpm = ctx->bpm;
|
|
if(tempo) *tempo = ctx->tempo;
|
|
}
|
|
|
|
void jar_xm_get_position(jar_xm_context_t *ctx, uint8_t *pattern_index, uint8_t *pattern, uint8_t *row, uint64_t *samples) {
|
|
if(pattern_index) *pattern_index = ctx->current_table_index;
|
|
if(pattern) *pattern = ctx->module.pattern_table[ctx->current_table_index];
|
|
if(row) *row = ctx->current_row;
|
|
if(samples) *samples = ctx->generated_samples;
|
|
}
|
|
|
|
uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t *ctx, uint16_t instr) {
|
|
return ctx->module.instruments[instr - 1].latest_trigger;
|
|
}
|
|
|
|
uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t *ctx, uint16_t instr, uint16_t sample) {
|
|
return ctx->module.instruments[instr - 1].samples[sample].latest_trigger;
|
|
}
|
|
|
|
uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t *ctx, uint16_t chn) {
|
|
return ctx->channels[chn - 1].latest_trigger;
|
|
}
|
|
|
|
//* .xm files are little-endian. (XXX: Are they really?)
|
|
|
|
//* Bound reader macros.
|
|
//* If we attempt to read the buffer out-of-bounds, pretend that the buffer is infinitely padded with zeroes.
|
|
#define READ_U8(offset) (((offset) < moddata_length) ? (*(uint8_t*)(moddata + (offset))) : 0)
|
|
#define READ_U16(offset) ((uint16_t)READ_U8(offset) | ((uint16_t)READ_U8((offset) + 1) << 8))
|
|
#define READ_U32(offset) ((uint32_t)READ_U16(offset) | ((uint32_t)READ_U16((offset) + 2) << 16))
|
|
#define READ_MEMCPY(ptr, offset, length) memcpy_pad(ptr, length, moddata, moddata_length, offset)
|
|
|
|
static void memcpy_pad(void *dst, size_t dst_len, const void *src, size_t src_len, size_t offset) {
|
|
uint8_t *dst_c = dst;
|
|
const uint8_t *src_c = src;
|
|
|
|
/* how many bytes can be copied without overrunning `src` */
|
|
size_t copy_bytes = (src_len >= offset) ? (src_len - offset) : 0;
|
|
copy_bytes = copy_bytes > dst_len ? dst_len : copy_bytes;
|
|
|
|
memcpy(dst_c, src_c + offset, copy_bytes);
|
|
/* padded bytes */
|
|
memset(dst_c + copy_bytes, 0, dst_len - copy_bytes);
|
|
}
|
|
|
|
#if JAR_XM_DEFENSIVE
|
|
|
|
int jar_xm_check_sanity_preload(const char* module, size_t module_length) {
|
|
if(module_length < 60) { return 4; }
|
|
if(memcmp("Extended Module: ", module, 17) != 0) { return 1; }
|
|
if(module[37] != 0x1A) { return 2; }
|
|
if(module[59] != 0x01 || module[58] != 0x04) { return 3; } /* Not XM 1.04 */
|
|
return 0;
|
|
}
|
|
|
|
int jar_xm_check_sanity_postload(jar_xm_context_t* ctx) {
|
|
/* Check the POT */
|
|
for(uint8_t i = 0; i < ctx->module.length; ++i) {
|
|
if(ctx->module.pattern_table[i] >= ctx->module.num_patterns) {
|
|
if(i+1 == ctx->module.length && ctx->module.length > 1) {
|
|
DEBUG("trimming invalid POT at pos %X", i);
|
|
--ctx->module.length;
|
|
} else {
|
|
DEBUG("module has invalid POT, pos %X references nonexistent pattern %X", i, ctx->module.pattern_table[i]);
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
size_t jar_xm_get_memory_needed_for_context(const char* moddata, size_t moddata_length) {
|
|
size_t memory_needed = 0;
|
|
size_t offset = 60; /* 60 = Skip the first header */
|
|
uint16_t num_channels;
|
|
uint16_t num_patterns;
|
|
uint16_t num_instruments;
|
|
|
|
/* Read the module header */
|
|
num_channels = READ_U16(offset + 8);
|
|
num_patterns = READ_U16(offset + 10);
|
|
memory_needed += num_patterns * sizeof(jar_xm_pattern_t);
|
|
memory_needed = ALIGN(memory_needed, 16);
|
|
num_instruments = READ_U16(offset + 12);
|
|
memory_needed += num_instruments * sizeof(jar_xm_instrument_t);
|
|
memory_needed = ALIGN(memory_needed, 16);
|
|
memory_needed += MAX_NUM_ROWS * READ_U16(offset + 4) * sizeof(uint8_t); /* Module length */
|
|
|
|
offset += READ_U32(offset); /* Header size */
|
|
|
|
/* Read pattern headers */
|
|
for(uint16_t i = 0; i < num_patterns; ++i) {
|
|
uint16_t num_rows;
|
|
num_rows = READ_U16(offset + 5);
|
|
memory_needed += num_rows * num_channels * sizeof(jar_xm_pattern_slot_t);
|
|
offset += READ_U32(offset) + READ_U16(offset + 7); /* Pattern header length + packed pattern data size */
|
|
}
|
|
memory_needed = ALIGN(memory_needed, 16);
|
|
|
|
/* Read instrument headers */
|
|
for(uint16_t i = 0; i < num_instruments; ++i) {
|
|
uint16_t num_samples;
|
|
uint32_t sample_header_size = 0;
|
|
uint32_t sample_size_aggregate = 0;
|
|
num_samples = READ_U16(offset + 27);
|
|
memory_needed += num_samples * sizeof(jar_xm_sample_t);
|
|
if(num_samples > 0) { sample_header_size = READ_U32(offset + 29); }
|
|
|
|
offset += READ_U32(offset); /* Instrument header size */
|
|
for(uint16_t j = 0; j < num_samples; ++j) {
|
|
uint32_t sample_size;
|
|
uint8_t flags;
|
|
sample_size = READ_U32(offset);
|
|
flags = READ_U8(offset + 14);
|
|
sample_size_aggregate += sample_size;
|
|
|
|
if(flags & (1 << 4)) { /* 16 bit sample */
|
|
memory_needed += sample_size * (sizeof(float) >> 1);
|
|
} else { /* 8 bit sample */
|
|
memory_needed += sample_size * sizeof(float);
|
|
}
|
|
offset += sample_header_size;
|
|
}
|
|
offset += sample_size_aggregate;
|
|
}
|
|
|
|
memory_needed += num_channels * sizeof(jar_xm_channel_context_t);
|
|
memory_needed += sizeof(jar_xm_context_t);
|
|
return memory_needed;
|
|
}
|
|
|
|
char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t moddata_length, char* mempool) {
|
|
size_t offset = 0;
|
|
jar_xm_module_t* mod = &(ctx->module);
|
|
|
|
/* Read XM header */
|
|
READ_MEMCPY(mod->name, offset + 17, MODULE_NAME_LENGTH);
|
|
READ_MEMCPY(mod->trackername, offset + 38, TRACKER_NAME_LENGTH);
|
|
offset += 60;
|
|
|
|
/* Read module header */
|
|
uint32_t header_size = READ_U32(offset);
|
|
mod->length = READ_U16(offset + 4);
|
|
mod->restart_position = READ_U16(offset + 6);
|
|
mod->num_channels = READ_U16(offset + 8);
|
|
mod->num_patterns = READ_U16(offset + 10);
|
|
mod->num_instruments = READ_U16(offset + 12);
|
|
mod->patterns = (jar_xm_pattern_t*)mempool;
|
|
mod->linear_interpolation = 1; // Linear interpolation can be set after loading
|
|
mod->ramping = 1; // ramping can be set after loading
|
|
mempool += mod->num_patterns * sizeof(jar_xm_pattern_t);
|
|
mempool = ALIGN_PTR(mempool, 16);
|
|
mod->instruments = (jar_xm_instrument_t*)mempool;
|
|
mempool += mod->num_instruments * sizeof(jar_xm_instrument_t);
|
|
mempool = ALIGN_PTR(mempool, 16);
|
|
uint16_t flags = READ_U32(offset + 14);
|
|
mod->frequency_type = (flags & (1 << 0)) ? jar_xm_LINEAR_FREQUENCIES : jar_xm_AMIGA_FREQUENCIES;
|
|
ctx->default_tempo = READ_U16(offset + 16);
|
|
ctx->default_bpm = READ_U16(offset + 18);
|
|
ctx->tempo =ctx->default_tempo;
|
|
ctx->bpm = ctx->default_bpm;
|
|
|
|
READ_MEMCPY(mod->pattern_table, offset + 20, PATTERN_ORDER_TABLE_LENGTH);
|
|
offset += header_size;
|
|
|
|
/* Read patterns */
|
|
for(uint16_t i = 0; i < mod->num_patterns; ++i) {
|
|
uint16_t packed_patterndata_size = READ_U16(offset + 7);
|
|
jar_xm_pattern_t* pat = mod->patterns + i;
|
|
pat->num_rows = READ_U16(offset + 5);
|
|
pat->slots = (jar_xm_pattern_slot_t*)mempool;
|
|
mempool += mod->num_channels * pat->num_rows * sizeof(jar_xm_pattern_slot_t);
|
|
offset += READ_U32(offset); /* Pattern header length */
|
|
|
|
if(packed_patterndata_size == 0) { /* No pattern data is present */
|
|
memset(pat->slots, 0, sizeof(jar_xm_pattern_slot_t) * pat->num_rows * mod->num_channels);
|
|
} else {
|
|
/* This isn't your typical for loop */
|
|
for(uint16_t j = 0, k = 0; j < packed_patterndata_size; ++k) {
|
|
uint8_t note = READ_U8(offset + j);
|
|
jar_xm_pattern_slot_t* slot = pat->slots + k;
|
|
if(note & (1 << 7)) {
|
|
/* MSB is set, this is a compressed packet */
|
|
++j;
|
|
if(note & (1 << 0)) { /* Note follows */
|
|
slot->note = READ_U8(offset + j);
|
|
++j;
|
|
} else {
|
|
slot->note = 0;
|
|
}
|
|
if(note & (1 << 1)) { /* Instrument follows */
|
|
slot->instrument = READ_U8(offset + j);
|
|
++j;
|
|
} else {
|
|
slot->instrument = 0;
|
|
}
|
|
if(note & (1 << 2)) { /* Volume column follows */
|
|
slot->volume_column = READ_U8(offset + j);
|
|
++j;
|
|
} else {
|
|
slot->volume_column = 0;
|
|
}
|
|
if(note & (1 << 3)) { /* Effect follows */
|
|
slot->effect_type = READ_U8(offset + j);
|
|
++j;
|
|
} else {
|
|
slot->effect_type = 0;
|
|
}
|
|
if(note & (1 << 4)) { /* Effect parameter follows */
|
|
slot->effect_param = READ_U8(offset + j);
|
|
++j;
|
|
} else {
|
|
slot->effect_param = 0;
|
|
}
|
|
} else { /* Uncompressed packet */
|
|
slot->note = note;
|
|
slot->instrument = READ_U8(offset + j + 1);
|
|
slot->volume_column = READ_U8(offset + j + 2);
|
|
slot->effect_type = READ_U8(offset + j + 3);
|
|
slot->effect_param = READ_U8(offset + j + 4);
|
|
j += 5;
|
|
}
|
|
}
|
|
}
|
|
|
|
offset += packed_patterndata_size;
|
|
}
|
|
mempool = ALIGN_PTR(mempool, 16);
|
|
|
|
/* Read instruments */
|
|
for(uint16_t i = 0; i < ctx->module.num_instruments; ++i) {
|
|
uint32_t sample_header_size = 0;
|
|
jar_xm_instrument_t* instr = mod->instruments + i;
|
|
|
|
READ_MEMCPY(instr->name, offset + 4, INSTRUMENT_NAME_LENGTH);
|
|
instr->num_samples = READ_U16(offset + 27);
|
|
|
|
if(instr->num_samples > 0) {
|
|
/* Read extra header properties */
|
|
sample_header_size = READ_U32(offset + 29);
|
|
READ_MEMCPY(instr->sample_of_notes, offset + 33, NUM_NOTES);
|
|
|
|
instr->volume_envelope.num_points = READ_U8(offset + 225);
|
|
instr->panning_envelope.num_points = READ_U8(offset + 226);
|
|
|
|
for(uint8_t j = 0; j < instr->volume_envelope.num_points; ++j) {
|
|
instr->volume_envelope.points[j].frame = READ_U16(offset + 129 + 4 * j);
|
|
instr->volume_envelope.points[j].value = READ_U16(offset + 129 + 4 * j + 2);
|
|
}
|
|
|
|
for(uint8_t j = 0; j < instr->panning_envelope.num_points; ++j) {
|
|
instr->panning_envelope.points[j].frame = READ_U16(offset + 177 + 4 * j);
|
|
instr->panning_envelope.points[j].value = READ_U16(offset + 177 + 4 * j + 2);
|
|
}
|
|
|
|
instr->volume_envelope.sustain_point = READ_U8(offset + 227);
|
|
instr->volume_envelope.loop_start_point = READ_U8(offset + 228);
|
|
instr->volume_envelope.loop_end_point = READ_U8(offset + 229);
|
|
instr->panning_envelope.sustain_point = READ_U8(offset + 230);
|
|
instr->panning_envelope.loop_start_point = READ_U8(offset + 231);
|
|
instr->panning_envelope.loop_end_point = READ_U8(offset + 232);
|
|
|
|
uint8_t flags = READ_U8(offset + 233);
|
|
instr->volume_envelope.enabled = flags & (1 << 0);
|
|
instr->volume_envelope.sustain_enabled = flags & (1 << 1);
|
|
instr->volume_envelope.loop_enabled = flags & (1 << 2);
|
|
|
|
flags = READ_U8(offset + 234);
|
|
instr->panning_envelope.enabled = flags & (1 << 0);
|
|
instr->panning_envelope.sustain_enabled = flags & (1 << 1);
|
|
instr->panning_envelope.loop_enabled = flags & (1 << 2);
|
|
instr->vibrato_type = READ_U8(offset + 235);
|
|
if(instr->vibrato_type == 2) {
|
|
instr->vibrato_type = 1;
|
|
} else if(instr->vibrato_type == 1) {
|
|
instr->vibrato_type = 2;
|
|
}
|
|
instr->vibrato_sweep = READ_U8(offset + 236);
|
|
instr->vibrato_depth = READ_U8(offset + 237);
|
|
instr->vibrato_rate = READ_U8(offset + 238);
|
|
instr->volume_fadeout = READ_U16(offset + 239);
|
|
instr->samples = (jar_xm_sample_t*)mempool;
|
|
mempool += instr->num_samples * sizeof(jar_xm_sample_t);
|
|
} else {
|
|
instr->samples = NULL;
|
|
}
|
|
|
|
/* Instrument header size */
|
|
offset += READ_U32(offset);
|
|
|
|
for(int j = 0; j < instr->num_samples; ++j) {
|
|
/* Read sample header */
|
|
jar_xm_sample_t* sample = instr->samples + j;
|
|
|
|
sample->length = READ_U32(offset);
|
|
sample->loop_start = READ_U32(offset + 4);
|
|
sample->loop_length = READ_U32(offset + 8);
|
|
sample->loop_end = sample->loop_start + sample->loop_length;
|
|
sample->volume = (float)(READ_U8(offset + 12) << 2) / 256.f;
|
|
if (sample->volume > 1.0f) {sample->volume = 1.f;};
|
|
sample->finetune = (int8_t)READ_U8(offset + 13);
|
|
|
|
uint8_t flags = READ_U8(offset + 14);
|
|
switch (flags & 3) {
|
|
case 2:
|
|
case 3:
|
|
sample->loop_type = jar_xm_PING_PONG_LOOP;
|
|
case 1:
|
|
sample->loop_type = jar_xm_FORWARD_LOOP;
|
|
break;
|
|
default:
|
|
sample->loop_type = jar_xm_NO_LOOP;
|
|
break;
|
|
};
|
|
sample->bits = (flags & 0x10) ? 16 : 8;
|
|
sample->stereo = (flags & 0x20) ? 1 : 0;
|
|
sample->panning = (float)READ_U8(offset + 15) / 255.f;
|
|
sample->relative_note = (int8_t)READ_U8(offset + 16);
|
|
READ_MEMCPY(sample->name, 18, SAMPLE_NAME_LENGTH);
|
|
sample->data = (float*)mempool;
|
|
if(sample->bits == 16) {
|
|
/* 16 bit sample */
|
|
mempool += sample->length * (sizeof(float) >> 1);
|
|
sample->loop_start >>= 1;
|
|
sample->loop_length >>= 1;
|
|
sample->loop_end >>= 1;
|
|
sample->length >>= 1;
|
|
} else {
|
|
/* 8 bit sample */
|
|
mempool += sample->length * sizeof(float);
|
|
}
|
|
// Adjust loop points to reflect half of the reported length (stereo)
|
|
if (sample->stereo && sample->loop_type != jar_xm_NO_LOOP) {
|
|
div_t lstart = div(READ_U32(offset + 4), 2);
|
|
sample->loop_start = lstart.quot;
|
|
div_t llength = div(READ_U32(offset + 8), 2);
|
|
sample->loop_length = llength.quot;
|
|
sample->loop_end = sample->loop_start + sample->loop_length;
|
|
};
|
|
|
|
offset += sample_header_size;
|
|
}
|
|
|
|
// Read all samples and convert them to float values
|
|
for(int j = 0; j < instr->num_samples; ++j) {
|
|
/* Read sample data */
|
|
jar_xm_sample_t* sample = instr->samples + j;
|
|
int length = sample->length;
|
|
if (sample->stereo) {
|
|
// Since it is stereo, we cut the sample in half (treated as single channel)
|
|
div_t result = div(sample->length, 2);
|
|
if(sample->bits == 16) {
|
|
int16_t v = 0;
|
|
for(int k = 0; k < length; ++k) {
|
|
if (k == result.quot) { v = 0;};
|
|
v = v + (int16_t)READ_U16(offset + (k << 1));
|
|
sample->data[k] = (float) v / 32768.f ;//* sign;
|
|
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;};
|
|
}
|
|
offset += sample->length << 1;
|
|
} else {
|
|
int8_t v = 0;
|
|
for(int k = 0; k < length; ++k) {
|
|
if (k == result.quot) { v = 0;};
|
|
v = v + (int8_t)READ_U8(offset + k);
|
|
sample->data[k] = (float)v / 128.f ;//* sign;
|
|
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;};
|
|
}
|
|
offset += sample->length;
|
|
};
|
|
sample->length = result.quot;
|
|
} else {
|
|
if(sample->bits == 16) {
|
|
int16_t v = 0;
|
|
for(int k = 0; k < length; ++k) {
|
|
v = v + (int16_t)READ_U16(offset + (k << 1));
|
|
sample->data[k] = (float) v / 32768.f ;//* sign;
|
|
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;};
|
|
}
|
|
offset += sample->length << 1;
|
|
} else {
|
|
int8_t v = 0;
|
|
for(int k = 0; k < length; ++k) {
|
|
v = v + (int8_t)READ_U8(offset + k);
|
|
sample->data[k] = (float)v / 128.f ;//* sign;
|
|
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;};
|
|
}
|
|
offset += sample->length;
|
|
}
|
|
}
|
|
};
|
|
};
|
|
return mempool;
|
|
};
|
|
|
|
//-------------------------------------------------------------------------------
|
|
//THE FOLLOWING IS FOR PLAYING
|
|
static float jar_xm_waveform(jar_xm_waveform_type_t, uint8_t);
|
|
static void jar_xm_autovibrato(jar_xm_context_t*, jar_xm_channel_context_t*);
|
|
static void jar_xm_vibrato(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
|
|
static void jar_xm_tremolo(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
|
|
static void jar_xm_arpeggio(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
|
|
static void jar_xm_tone_portamento(jar_xm_context_t*, jar_xm_channel_context_t*);
|
|
static void jar_xm_pitch_slide(jar_xm_context_t*, jar_xm_channel_context_t*, float);
|
|
static void jar_xm_panning_slide(jar_xm_channel_context_t*, uint8_t);
|
|
static void jar_xm_volume_slide(jar_xm_channel_context_t*, uint8_t);
|
|
|
|
static float jar_xm_envelope_lerp(jar_xm_envelope_point_t*, jar_xm_envelope_point_t*, uint16_t);
|
|
static void jar_xm_envelope_tick(jar_xm_channel_context_t*, jar_xm_envelope_t*, uint16_t*, float*);
|
|
static void jar_xm_envelopes(jar_xm_channel_context_t*);
|
|
|
|
static float jar_xm_linear_period(float);
|
|
static float jar_xm_linear_frequency(float);
|
|
static float jar_xm_amiga_period(float);
|
|
static float jar_xm_amiga_frequency(float);
|
|
static float jar_xm_period(jar_xm_context_t*, float);
|
|
static float jar_xm_frequency(jar_xm_context_t*, float, float);
|
|
static void jar_xm_update_frequency(jar_xm_context_t*, jar_xm_channel_context_t*);
|
|
|
|
static void jar_xm_handle_note_and_instrument(jar_xm_context_t*, jar_xm_channel_context_t*, jar_xm_pattern_slot_t*);
|
|
static void jar_xm_trigger_note(jar_xm_context_t*, jar_xm_channel_context_t*, unsigned int flags);
|
|
static void jar_xm_cut_note(jar_xm_channel_context_t*);
|
|
static void jar_xm_key_off(jar_xm_channel_context_t*);
|
|
|
|
static void jar_xm_post_pattern_change(jar_xm_context_t*);
|
|
static void jar_xm_row(jar_xm_context_t*);
|
|
static void jar_xm_tick(jar_xm_context_t*);
|
|
|
|
static void jar_xm_next_of_sample(jar_xm_context_t*, jar_xm_channel_context_t*, int);
|
|
static void jar_xm_mixdown(jar_xm_context_t*, float*, float*);
|
|
|
|
#define jar_xm_TRIGGER_KEEP_VOLUME (1 << 0)
|
|
#define jar_xm_TRIGGER_KEEP_PERIOD (1 << 1)
|
|
#define jar_xm_TRIGGER_KEEP_SAMPLE_POSITION (1 << 2)
|
|
|
|
// C-2, C#2, D-2, D#2, E-2, F-2, F#2, G-2, G#2, A-2, A#2, B-2, C-3
|
|
static const uint16_t amiga_frequencies[] = { 1712, 1616, 1525, 1440, 1357, 1281, 1209, 1141, 1077, 1017, 961, 907, 856 };
|
|
|
|
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
|
|
static const float multi_retrig_add[] = { 0.f, -1.f, -2.f, -4.f, -8.f, -16.f, 0.f, 0.f, 0.f, 1.f, 2.f, 4.f, 8.f, 16.f, 0.f, 0.f };
|
|
|
|
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
|
|
static const float multi_retrig_multiply[] = { 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, .6666667f, .5f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.5f, 2.f };
|
|
|
|
#define jar_xm_CLAMP_UP1F(vol, limit) do { \
|
|
if((vol) > (limit)) (vol) = (limit); \
|
|
} while(0)
|
|
#define jar_xm_CLAMP_UP(vol) jar_xm_CLAMP_UP1F((vol), 1.f)
|
|
|
|
#define jar_xm_CLAMP_DOWN1F(vol, limit) do { \
|
|
if((vol) < (limit)) (vol) = (limit); \
|
|
} while(0)
|
|
#define jar_xm_CLAMP_DOWN(vol) jar_xm_CLAMP_DOWN1F((vol), .0f)
|
|
|
|
#define jar_xm_CLAMP2F(vol, up, down) do { \
|
|
if((vol) > (up)) (vol) = (up); \
|
|
else if((vol) < (down)) (vol) = (down); \
|
|
} while(0)
|
|
#define jar_xm_CLAMP(vol) jar_xm_CLAMP2F((vol), 1.f, .0f)
|
|
|
|
#define jar_xm_SLIDE_TOWARDS(val, goal, incr) do { \
|
|
if((val) > (goal)) { \
|
|
(val) -= (incr); \
|
|
jar_xm_CLAMP_DOWN1F((val), (goal)); \
|
|
} else if((val) < (goal)) { \
|
|
(val) += (incr); \
|
|
jar_xm_CLAMP_UP1F((val), (goal)); \
|
|
} \
|
|
} while(0)
|
|
|
|
#define jar_xm_LERP(u, v, t) ((u) + (t) * ((v) - (u)))
|
|
#define jar_xm_INVERSE_LERP(u, v, lerp) (((lerp) - (u)) / ((v) - (u)))
|
|
|
|
#define HAS_TONE_PORTAMENTO(s) ((s)->effect_type == 3 \
|
|
|| (s)->effect_type == 5 \
|
|
|| ((s)->volume_column >> 4) == 0xF)
|
|
#define HAS_ARPEGGIO(s) ((s)->effect_type == 0 \
|
|
&& (s)->effect_param != 0)
|
|
#define HAS_VIBRATO(s) ((s)->effect_type == 4 \
|
|
|| (s)->effect_param == 6 \
|
|
|| ((s)->volume_column >> 4) == 0xB)
|
|
#define NOTE_IS_VALID(n) ((n) > 0 && (n) < 97)
|
|
#define NOTE_OFF 97
|
|
|
|
static float jar_xm_waveform(jar_xm_waveform_type_t waveform, uint8_t step) {
|
|
static unsigned int next_rand = 24492;
|
|
step %= 0x40;
|
|
switch(waveform) {
|
|
case jar_xm_SINE_WAVEFORM: /* No SIN() table used, direct calculation. */
|
|
return -sinf(2.f * 3.141592f * (float)step / (float)0x40);
|
|
case jar_xm_RAMP_DOWN_WAVEFORM: /* Ramp down: 1.0f when step = 0; -1.0f when step = 0x40 */
|
|
return (float)(0x20 - step) / 0x20;
|
|
case jar_xm_SQUARE_WAVEFORM: /* Square with a 50% duty */
|
|
return (step >= 0x20) ? 1.f : -1.f;
|
|
case jar_xm_RANDOM_WAVEFORM: /* Use the POSIX.1-2001 example, just to be deterministic across different machines */
|
|
next_rand = next_rand * 1103515245 + 12345;
|
|
return (float)((next_rand >> 16) & 0x7FFF) / (float)0x4000 - 1.f;
|
|
case jar_xm_RAMP_UP_WAVEFORM: /* Ramp up: -1.f when step = 0; 1.f when step = 0x40 */
|
|
return (float)(step - 0x20) / 0x20;
|
|
default:
|
|
break;
|
|
}
|
|
return .0f;
|
|
}
|
|
|
|
static void jar_xm_autovibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
|
|
if(ch->instrument == NULL || ch->instrument->vibrato_depth == 0) return;
|
|
jar_xm_instrument_t* instr = ch->instrument;
|
|
float sweep = 1.f;
|
|
if(ch->autovibrato_ticks < instr->vibrato_sweep) { sweep = jar_xm_LERP(0.f, 1.f, (float)ch->autovibrato_ticks / (float)instr->vibrato_sweep); }
|
|
unsigned int step = ((ch->autovibrato_ticks++) * instr->vibrato_rate) >> 2;
|
|
ch->autovibrato_note_offset = .25f * jar_xm_waveform(instr->vibrato_type, step) * (float)instr->vibrato_depth / (float)0xF * sweep;
|
|
jar_xm_update_frequency(ctx, ch);
|
|
}
|
|
|
|
static void jar_xm_vibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) {
|
|
unsigned int step = pos * (param >> 4);
|
|
ch->vibrato_note_offset = 2.f * jar_xm_waveform(ch->vibrato_waveform, step) * (float)(param & 0x0F) / (float)0xF;
|
|
jar_xm_update_frequency(ctx, ch);
|
|
}
|
|
|
|
static void jar_xm_tremolo(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) {
|
|
unsigned int step = pos * (param >> 4);
|
|
ch->tremolo_volume = -1.f * jar_xm_waveform(ch->tremolo_waveform, step) * (float)(param & 0x0F) / (float)0xF;
|
|
}
|
|
|
|
static void jar_xm_arpeggio(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t tick) {
|
|
switch(tick % 3) {
|
|
case 0:
|
|
ch->arp_in_progress = false;
|
|
ch->arp_note_offset = 0;
|
|
break;
|
|
case 2:
|
|
ch->arp_in_progress = true;
|
|
ch->arp_note_offset = param >> 4;
|
|
break;
|
|
case 1:
|
|
ch->arp_in_progress = true;
|
|
ch->arp_note_offset = param & 0x0F;
|
|
break;
|
|
}
|
|
jar_xm_update_frequency(ctx, ch);
|
|
}
|
|
|
|
static void jar_xm_tone_portamento(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
|
|
/* 3xx called without a note, wait until we get an actual target note. */
|
|
if(ch->tone_portamento_target_period == 0.f) return; /* no value, exit */
|
|
if(ch->period != ch->tone_portamento_target_period) {
|
|
jar_xm_SLIDE_TOWARDS(ch->period, ch->tone_portamento_target_period, (ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES ? 4.f : 1.f) * ch->tone_portamento_param);
|
|
jar_xm_update_frequency(ctx, ch);
|
|
}
|
|
}
|
|
|
|
static void jar_xm_pitch_slide(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, float period_offset) {
|
|
/* Don't ask about the 4.f coefficient. I found mention of it nowhere. Found by ear. */
|
|
if(ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES) {period_offset *= 4.f; }
|
|
ch->period += period_offset;
|
|
jar_xm_CLAMP_DOWN(ch->period);
|
|
/* XXX: upper bound of period ? */
|
|
jar_xm_update_frequency(ctx, ch);
|
|
}
|
|
|
|
static void jar_xm_panning_slide(jar_xm_channel_context_t* ch, uint8_t rawval) {
|
|
if (rawval & 0xF0) {ch->panning += (float)((rawval & 0xF0 )>> 4) / (float)0xFF;};
|
|
if (rawval & 0x0F) {ch->panning -= (float)(rawval & 0x0F) / (float)0xFF;};
|
|
};
|
|
|
|
static void jar_xm_volume_slide(jar_xm_channel_context_t* ch, uint8_t rawval) {
|
|
if (rawval & 0xF0) {ch->volume += (float)((rawval & 0xF0) >> 4) / (float)0x40;};
|
|
if (rawval & 0x0F) {ch->volume -= (float)(rawval & 0x0F) / (float)0x40;};
|
|
};
|
|
|
|
static float jar_xm_envelope_lerp(jar_xm_envelope_point_t* a, jar_xm_envelope_point_t* b, uint16_t pos) {
|
|
/* Linear interpolation between two envelope points */
|
|
if(pos <= a->frame) return a->value;
|
|
else if(pos >= b->frame) return b->value;
|
|
else {
|
|
float p = (float)(pos - a->frame) / (float)(b->frame - a->frame);
|
|
return a->value * (1 - p) + b->value * p;
|
|
}
|
|
}
|
|
|
|
static void jar_xm_post_pattern_change(jar_xm_context_t* ctx) {
|
|
/* Loop if necessary */
|
|
if(ctx->current_table_index >= ctx->module.length) {
|
|
ctx->current_table_index = ctx->module.restart_position;
|
|
ctx->tempo =ctx->default_tempo; // reset to file default value
|
|
ctx->bpm = ctx->default_bpm; // reset to file default value
|
|
ctx->global_volume = ctx->default_global_volume; // reset to file default value
|
|
}
|
|
}
|
|
|
|
static float jar_xm_linear_period(float note) {
|
|
return 7680.f - note * 64.f;
|
|
}
|
|
|
|
static float jar_xm_linear_frequency(float period) {
|
|
return 8363.f * powf(2.f, (4608.f - period) / 768.f);
|
|
}
|
|
|
|
static float jar_xm_amiga_period(float note) {
|
|
unsigned int intnote = note;
|
|
uint8_t a = intnote % 12;
|
|
int8_t octave = note / 12.f - 2;
|
|
uint16_t p1 = amiga_frequencies[a], p2 = amiga_frequencies[a + 1];
|
|
if(octave > 0) {
|
|
p1 >>= octave;
|
|
p2 >>= octave;
|
|
} else if(octave < 0) {
|
|
p1 <<= -octave;
|
|
p2 <<= -octave;
|
|
}
|
|
return jar_xm_LERP(p1, p2, note - intnote);
|
|
}
|
|
|
|
static float jar_xm_amiga_frequency(float period) {
|
|
if(period == .0f) return .0f;
|
|
return 7093789.2f / (period * 2.f); /* This is the PAL value. (we could use the NTSC value also) */
|
|
}
|
|
|
|
static float jar_xm_period(jar_xm_context_t* ctx, float note) {
|
|
switch(ctx->module.frequency_type) {
|
|
case jar_xm_LINEAR_FREQUENCIES:
|
|
return jar_xm_linear_period(note);
|
|
case jar_xm_AMIGA_FREQUENCIES:
|
|
return jar_xm_amiga_period(note);
|
|
}
|
|
return .0f;
|
|
}
|
|
|
|
static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_offset) {
|
|
switch(ctx->module.frequency_type) {
|
|
case jar_xm_LINEAR_FREQUENCIES:
|
|
return jar_xm_linear_frequency(period - 64.f * note_offset);
|
|
case jar_xm_AMIGA_FREQUENCIES:
|
|
if(note_offset == 0) { return jar_xm_amiga_frequency(period); };
|
|
int8_t octave;
|
|
float note;
|
|
uint16_t p1, p2;
|
|
uint8_t a = octave = 0;
|
|
|
|
/* Find the octave of the current period */
|
|
if(period > amiga_frequencies[0]) {
|
|
--octave;
|
|
while(period > (amiga_frequencies[0] << -octave)) --octave;
|
|
} else if(period < amiga_frequencies[12]) {
|
|
++octave;
|
|
while(period < (amiga_frequencies[12] >> octave)) ++octave;
|
|
}
|
|
|
|
/* Find the smallest note closest to the current period */
|
|
for(uint8_t i = 0; i < 12; ++i) {
|
|
p1 = amiga_frequencies[i], p2 = amiga_frequencies[i + 1];
|
|
if(octave > 0) {
|
|
p1 >>= octave;
|
|
p2 >>= octave;
|
|
} else if(octave < 0) {
|
|
p1 <<= (-octave);
|
|
p2 <<= (-octave);
|
|
}
|
|
if(p2 <= period && period <= p1) {
|
|
a = i;
|
|
break;
|
|
}
|
|
}
|
|
if(JAR_XM_DEBUG && (p1 < period || p2 > period)) { DEBUG("%i <= %f <= %i should hold but doesn't, this is a bug", p2, period, p1); }
|
|
note = 12.f * (octave + 2) + a + jar_xm_INVERSE_LERP(p1, p2, period);
|
|
return jar_xm_amiga_frequency(jar_xm_amiga_period(note + note_offset));
|
|
}
|
|
|
|
return .0f;
|
|
}
|
|
|
|
static void jar_xm_update_frequency(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
|
|
ch->frequency = jar_xm_frequency( ctx, ch->period, (ch->arp_note_offset > 0 ? ch->arp_note_offset : ( ch->vibrato_note_offset + ch->autovibrato_note_offset )) );
|
|
ch->step = ch->frequency / ctx->rate;
|
|
}
|
|
|
|
static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, jar_xm_pattern_slot_t* s) {
|
|
jar_xm_module_t* mod = &(ctx->module);
|
|
if(s->instrument > 0) {
|
|
if(HAS_TONE_PORTAMENTO(ch->current) && ch->instrument != NULL && ch->sample != NULL) { /* Tone portamento in effect */
|
|
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION);
|
|
} else if(s->instrument > ctx->module.num_instruments) { /* Invalid instrument, Cut current note */
|
|
jar_xm_cut_note(ch);
|
|
ch->instrument = NULL;
|
|
ch->sample = NULL;
|
|
} else {
|
|
ch->instrument = ctx->module.instruments + (s->instrument - 1);
|
|
if(s->note == 0 && ch->sample != NULL) { /* Ghost instrument, trigger note */
|
|
/* Sample position is kept, but envelopes are reset */
|
|
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_SAMPLE_POSITION);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(NOTE_IS_VALID(s->note)) {
|
|
// note value is s->note -1
|
|
jar_xm_instrument_t* instr = ch->instrument;
|
|
if(HAS_TONE_PORTAMENTO(ch->current) && instr != NULL && ch->sample != NULL) {
|
|
/* Tone portamento in effect */
|
|
ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f;
|
|
ch->tone_portamento_target_period = jar_xm_period(ctx, ch->note);
|
|
} else if(instr == NULL || ch->instrument->num_samples == 0) { /* Issue on instrument */
|
|
jar_xm_cut_note(ch);
|
|
} else {
|
|
if(instr->sample_of_notes[s->note - 1] < instr->num_samples) {
|
|
if (mod->ramping) {
|
|
for(int i = 0; i < jar_xm_SAMPLE_RAMPING_POINTS; ++i) {
|
|
jar_xm_next_of_sample(ctx, ch, i);
|
|
}
|
|
ch->frame_count = 0;
|
|
};
|
|
ch->sample = instr->samples + instr->sample_of_notes[s->note - 1];
|
|
ch->orig_note = ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f;
|
|
if(s->instrument > 0) {
|
|
jar_xm_trigger_note(ctx, ch, 0);
|
|
} else { /* Ghost note: keep old volume */
|
|
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_VOLUME);
|
|
}
|
|
} else {
|
|
jar_xm_cut_note(ch);
|
|
}
|
|
}
|
|
} else if(s->note == NOTE_OFF) {
|
|
jar_xm_key_off(ch);
|
|
}
|
|
|
|
// Interpret Effect column
|
|
switch(s->effect_type) {
|
|
case 1: /* 1xx: Portamento up */
|
|
if(s->effect_param > 0) { ch->portamento_up_param = s->effect_param; }
|
|
break;
|
|
case 2: /* 2xx: Portamento down */
|
|
if(s->effect_param > 0) { ch->portamento_down_param = s->effect_param; }
|
|
break;
|
|
case 3: /* 3xx: Tone portamento */
|
|
if(s->effect_param > 0) { ch->tone_portamento_param = s->effect_param; }
|
|
break;
|
|
case 4: /* 4xy: Vibrato */
|
|
if(s->effect_param & 0x0F) { ch->vibrato_param = (ch->vibrato_param & 0xF0) | (s->effect_param & 0x0F); } /* Set vibrato depth */
|
|
if(s->effect_param >> 4) { ch->vibrato_param = (s->effect_param & 0xF0) | (ch->vibrato_param & 0x0F); } /* Set vibrato speed */
|
|
break;
|
|
case 5: /* 5xy: Tone portamento + Volume slide */
|
|
if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; }
|
|
break;
|
|
case 6: /* 6xy: Vibrato + Volume slide */
|
|
if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; }
|
|
break;
|
|
case 7: /* 7xy: Tremolo */
|
|
if(s->effect_param & 0x0F) { ch->tremolo_param = (ch->tremolo_param & 0xF0) | (s->effect_param & 0x0F); } /* Set tremolo depth */
|
|
if(s->effect_param >> 4) { ch->tremolo_param = (s->effect_param & 0xF0) | (ch->tremolo_param & 0x0F); } /* Set tremolo speed */
|
|
break;
|
|
case 8: /* 8xx: Set panning */
|
|
ch->panning = (float)s->effect_param / 255.f;
|
|
break;
|
|
case 9: /* 9xx: Sample offset */
|
|
if(ch->sample != 0) { //&& NOTE_IS_VALID(s->note)) {
|
|
uint32_t final_offset = s->effect_param << (ch->sample->bits == 16 ? 7 : 8);
|
|
switch (ch->sample->loop_type) {
|
|
case jar_xm_NO_LOOP:
|
|
if(final_offset >= ch->sample->length) { /* Pretend the sample dosen't loop and is done playing */
|
|
ch->sample_position = -1;
|
|
} else {
|
|
ch->sample_position = final_offset;
|
|
}
|
|
break;
|
|
case jar_xm_FORWARD_LOOP:
|
|
if (final_offset >= ch->sample->loop_end) {
|
|
ch->sample_position -= ch->sample->loop_length;
|
|
} else if(final_offset >= ch->sample->length) {
|
|
ch->sample_position = ch->sample->loop_start;
|
|
} else {
|
|
ch->sample_position = final_offset;
|
|
}
|
|
break;
|
|
case jar_xm_PING_PONG_LOOP:
|
|
if(final_offset >= ch->sample->loop_end) {
|
|
ch->ping = false;
|
|
ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position;
|
|
} else if(final_offset >= ch->sample->length) {
|
|
ch->ping = false;
|
|
ch->sample_position -= ch->sample->length - 1;
|
|
} else {
|
|
ch->sample_position = final_offset;
|
|
};
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case 0xA: /* Axy: Volume slide */
|
|
if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; }
|
|
break;
|
|
case 0xB: /* Bxx: Position jump */
|
|
if(s->effect_param < ctx->module.length) {
|
|
ctx->position_jump = true;
|
|
ctx->jump_dest = s->effect_param;
|
|
}
|
|
break;
|
|
case 0xC: /* Cxx: Set volume */
|
|
ch->volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40;
|
|
break;
|
|
case 0xD: /* Dxx: Pattern break */
|
|
/* Jump after playing this line */
|
|
ctx->pattern_break = true;
|
|
ctx->jump_row = (s->effect_param >> 4) * 10 + (s->effect_param & 0x0F);
|
|
break;
|
|
case 0xE: /* EXy: Extended command */
|
|
switch(s->effect_param >> 4) {
|
|
case 1: /* E1y: Fine portamento up */
|
|
if(s->effect_param & 0x0F) { ch->fine_portamento_up_param = s->effect_param & 0x0F; }
|
|
jar_xm_pitch_slide(ctx, ch, -ch->fine_portamento_up_param);
|
|
break;
|
|
case 2: /* E2y: Fine portamento down */
|
|
if(s->effect_param & 0x0F) { ch->fine_portamento_down_param = s->effect_param & 0x0F; }
|
|
jar_xm_pitch_slide(ctx, ch, ch->fine_portamento_down_param);
|
|
break;
|
|
case 4: /* E4y: Set vibrato control */
|
|
ch->vibrato_waveform = s->effect_param & 3;
|
|
ch->vibrato_waveform_retrigger = !((s->effect_param >> 2) & 1);
|
|
break;
|
|
case 5: /* E5y: Set finetune */
|
|
if(NOTE_IS_VALID(ch->current->note) && ch->sample != NULL) {
|
|
ch->note = ch->current->note + ch->sample->relative_note + (float)(((s->effect_param & 0x0F) - 8) << 4) / 128.f - 1.f;
|
|
ch->period = jar_xm_period(ctx, ch->note);
|
|
jar_xm_update_frequency(ctx, ch);
|
|
}
|
|
break;
|
|
case 6: /* E6y: Pattern loop */
|
|
if(s->effect_param & 0x0F) {
|
|
if((s->effect_param & 0x0F) == ch->pattern_loop_count) { /* Loop is over */
|
|
ch->pattern_loop_count = 0;
|
|
ctx->position_jump = false;
|
|
} else { /* Jump to the beginning of the loop */
|
|
ch->pattern_loop_count++;
|
|
ctx->position_jump = true;
|
|
ctx->jump_row = ch->pattern_loop_origin;
|
|
ctx->jump_dest = ctx->current_table_index;
|
|
}
|
|
} else {
|
|
ch->pattern_loop_origin = ctx->current_row; /* Set loop start point */
|
|
ctx->jump_row = ch->pattern_loop_origin; /* Replicate FT2 E60 bug */
|
|
}
|
|
break;
|
|
case 7: /* E7y: Set tremolo control */
|
|
ch->tremolo_waveform = s->effect_param & 3;
|
|
ch->tremolo_waveform_retrigger = !((s->effect_param >> 2) & 1);
|
|
break;
|
|
case 0xA: /* EAy: Fine volume slide up */
|
|
if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; }
|
|
jar_xm_volume_slide(ch, ch->fine_volume_slide_param << 4);
|
|
break;
|
|
case 0xB: /* EBy: Fine volume slide down */
|
|
if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; }
|
|
jar_xm_volume_slide(ch, ch->fine_volume_slide_param);
|
|
break;
|
|
case 0xD: /* EDy: Note delay */
|
|
/* XXX: figure this out better. EDx triggers the note even when there no note and no instrument. But ED0 acts like like a ghost note, EDx (x != 0) does not. */
|
|
if(s->note == 0 && s->instrument == 0) {
|
|
unsigned int flags = jar_xm_TRIGGER_KEEP_VOLUME;
|
|
if(ch->current->effect_param & 0x0F) {
|
|
ch->note = ch->orig_note;
|
|
jar_xm_trigger_note(ctx, ch, flags);
|
|
} else {
|
|
jar_xm_trigger_note(ctx, ch, flags | jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION );
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 0xE: /* EEy: Pattern delay */
|
|
ctx->extra_ticks = (ch->current->effect_param & 0x0F) * ctx->tempo;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 0xF: /* Fxx: Set tempo/BPM */
|
|
if(s->effect_param > 0) {
|
|
if(s->effect_param <= 0x1F) { // First 32 possible values adjust the ticks (goes into tempo)
|
|
ctx->tempo = s->effect_param;
|
|
} else { //32 and greater values adjust the BPM
|
|
ctx->bpm = s->effect_param;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 16: /* Gxx: Set global volume */
|
|
ctx->global_volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40;
|
|
break;
|
|
case 17: /* Hxy: Global volume slide */
|
|
if(s->effect_param > 0) { ch->global_volume_slide_param = s->effect_param; }
|
|
break;
|
|
case 21: /* Lxx: Set envelope position */
|
|
ch->volume_envelope_frame_count = s->effect_param;
|
|
ch->panning_envelope_frame_count = s->effect_param;
|
|
break;
|
|
case 25: /* Pxy: Panning slide */
|
|
if(s->effect_param > 0) { ch->panning_slide_param = s->effect_param; }
|
|
break;
|
|
case 27: /* Rxy: Multi retrig note */
|
|
if(s->effect_param > 0) {
|
|
if((s->effect_param >> 4) == 0) { /* Keep previous x value */
|
|
ch->multi_retrig_param = (ch->multi_retrig_param & 0xF0) | (s->effect_param & 0x0F);
|
|
} else {
|
|
ch->multi_retrig_param = s->effect_param;
|
|
}
|
|
}
|
|
break;
|
|
case 29: /* Txy: Tremor */
|
|
if(s->effect_param > 0) { ch->tremor_param = s->effect_param; } /* Tremor x and y params are not separately kept in memory, unlike Rxy */
|
|
break;
|
|
case 33: /* Xxy: Extra stuff */
|
|
switch(s->effect_param >> 4) {
|
|
case 1: /* X1y: Extra fine portamento up */
|
|
if(s->effect_param & 0x0F) { ch->extra_fine_portamento_up_param = s->effect_param & 0x0F; }
|
|
jar_xm_pitch_slide(ctx, ch, -1.0f * ch->extra_fine_portamento_up_param);
|
|
break;
|
|
case 2: /* X2y: Extra fine portamento down */
|
|
if(s->effect_param & 0x0F) { ch->extra_fine_portamento_down_param = s->effect_param & 0x0F; }
|
|
jar_xm_pitch_slide(ctx, ch, ch->extra_fine_portamento_down_param);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void jar_xm_trigger_note(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, unsigned int flags) {
|
|
if (!(flags & jar_xm_TRIGGER_KEEP_SAMPLE_POSITION)) {
|
|
ch->sample_position = 0.f;
|
|
ch->ping = true;
|
|
};
|
|
|
|
if (!(flags & jar_xm_TRIGGER_KEEP_VOLUME)) {
|
|
if(ch->sample != NULL) {
|
|
ch->volume = ch->sample->volume;
|
|
};
|
|
};
|
|
ch->panning = ch->sample->panning;
|
|
ch->sustained = true;
|
|
ch->fadeout_volume = ch->volume_envelope_volume = 1.0f;
|
|
ch->panning_envelope_panning = .5f;
|
|
ch->volume_envelope_frame_count = ch->panning_envelope_frame_count = 0;
|
|
ch->vibrato_note_offset = 0.f;
|
|
ch->tremolo_volume = 0.f;
|
|
ch->tremor_on = false;
|
|
ch->autovibrato_ticks = 0;
|
|
|
|
if(ch->vibrato_waveform_retrigger) { ch->vibrato_ticks = 0; } /* XXX: should the waveform itself also be reset to sine? */
|
|
if(ch->tremolo_waveform_retrigger) { ch->tremolo_ticks = 0; }
|
|
if(!(flags & jar_xm_TRIGGER_KEEP_PERIOD)) {
|
|
ch->period = jar_xm_period(ctx, ch->note);
|
|
jar_xm_update_frequency(ctx, ch);
|
|
}
|
|
ch->latest_trigger = ctx->generated_samples;
|
|
if(ch->instrument != NULL) { ch->instrument->latest_trigger = ctx->generated_samples; }
|
|
if(ch->sample != NULL) { ch->sample->latest_trigger = ctx->generated_samples; }
|
|
}
|
|
|
|
static void jar_xm_cut_note(jar_xm_channel_context_t* ch) {
|
|
ch->volume = .0f; /* NB: this is not the same as Key Off */
|
|
// ch->curr_left = .0f;
|
|
// ch->curr_right = .0f;
|
|
}
|
|
|
|
static void jar_xm_key_off(jar_xm_channel_context_t* ch) {
|
|
ch->sustained = false; /* Key Off */
|
|
if(ch->instrument == NULL || !ch->instrument->volume_envelope.enabled) { jar_xm_cut_note(ch); } /* If no volume envelope is used, also cut the note */
|
|
}
|
|
|
|
static void jar_xm_row(jar_xm_context_t* ctx) {
|
|
if(ctx->position_jump) {
|
|
ctx->current_table_index = ctx->jump_dest;
|
|
ctx->current_row = ctx->jump_row;
|
|
ctx->position_jump = false;
|
|
ctx->pattern_break = false;
|
|
ctx->jump_row = 0;
|
|
jar_xm_post_pattern_change(ctx);
|
|
} else if(ctx->pattern_break) {
|
|
ctx->current_table_index++;
|
|
ctx->current_row = ctx->jump_row;
|
|
ctx->pattern_break = false;
|
|
ctx->jump_row = 0;
|
|
jar_xm_post_pattern_change(ctx);
|
|
}
|
|
jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index];
|
|
bool in_a_loop = false;
|
|
|
|
/* Read notes information for all channels into temporary pattern slot */
|
|
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
|
|
jar_xm_pattern_slot_t* s = cur->slots + ctx->current_row * ctx->module.num_channels + i;
|
|
jar_xm_channel_context_t* ch = ctx->channels + i;
|
|
ch->current = s;
|
|
// If there is no note delay effect (0xED) then...
|
|
if(s->effect_type != 0xE || s->effect_param >> 4 != 0xD) {
|
|
//********** Process the channel slot information **********
|
|
jar_xm_handle_note_and_instrument(ctx, ch, s);
|
|
} else {
|
|
// read the note delay information
|
|
ch->note_delay_param = s->effect_param & 0x0F;
|
|
}
|
|
if(!in_a_loop && ch->pattern_loop_count > 0) {
|
|
// clarify if in a loop or not
|
|
in_a_loop = true;
|
|
}
|
|
}
|
|
|
|
if(!in_a_loop) {
|
|
/* No E6y loop is in effect (or we are in the first pass) */
|
|
ctx->loop_count = (ctx->row_loop_count[MAX_NUM_ROWS * ctx->current_table_index + ctx->current_row]++);
|
|
}
|
|
|
|
/// Move to next row
|
|
ctx->current_row++; /* uint8 warning: can increment from 255 to 0, in which case it is still necessary to go the next pattern. */
|
|
if (!ctx->position_jump && !ctx->pattern_break && (ctx->current_row >= cur->num_rows || ctx->current_row == 0)) {
|
|
ctx->current_table_index++;
|
|
ctx->current_row = ctx->jump_row; /* This will be 0 most of the time, except when E60 is used */
|
|
ctx->jump_row = 0;
|
|
jar_xm_post_pattern_change(ctx);
|
|
}
|
|
}
|
|
|
|
static void jar_xm_envelope_tick(jar_xm_channel_context_t *ch, jar_xm_envelope_t *env, uint16_t *counter, float *outval) {
|
|
if(env->num_points < 2) {
|
|
if(env->num_points == 1) {
|
|
*outval = (float)env->points[0].value / (float)0x40;
|
|
if(*outval > 1) { *outval = 1; };
|
|
} else {;
|
|
return;
|
|
};
|
|
} else {
|
|
if(env->loop_enabled) {
|
|
uint16_t loop_start = env->points[env->loop_start_point].frame;
|
|
uint16_t loop_end = env->points[env->loop_end_point].frame;
|
|
uint16_t loop_length = loop_end - loop_start;
|
|
if(*counter >= loop_end) { *counter -= loop_length; };
|
|
};
|
|
for(uint8_t j = 0; j < (env->num_points - 1); ++j) {
|
|
if(env->points[j].frame <= *counter && env->points[j+1].frame >= *counter) {
|
|
*outval = jar_xm_envelope_lerp(env->points + j, env->points + j + 1, *counter) / (float)0x40;
|
|
break;
|
|
};
|
|
};
|
|
/* Make sure it is safe to increment frame count */
|
|
if(!ch->sustained || !env->sustain_enabled || *counter != env->points[env->sustain_point].frame) { (*counter)++; };
|
|
};
|
|
};
|
|
|
|
static void jar_xm_envelopes(jar_xm_channel_context_t *ch) {
|
|
if(ch->instrument != NULL) {
|
|
if(ch->instrument->volume_envelope.enabled) {
|
|
if(!ch->sustained) {
|
|
ch->fadeout_volume -= (float)ch->instrument->volume_fadeout / 65536.f;
|
|
jar_xm_CLAMP_DOWN(ch->fadeout_volume);
|
|
};
|
|
jar_xm_envelope_tick(ch, &(ch->instrument->volume_envelope), &(ch->volume_envelope_frame_count), &(ch->volume_envelope_volume));
|
|
};
|
|
if(ch->instrument->panning_envelope.enabled) {
|
|
jar_xm_envelope_tick(ch, &(ch->instrument->panning_envelope), &(ch->panning_envelope_frame_count), &(ch->panning_envelope_panning));
|
|
};
|
|
};
|
|
};
|
|
|
|
static void jar_xm_tick(jar_xm_context_t* ctx) {
|
|
if(ctx->current_tick == 0) {
|
|
jar_xm_row(ctx); // We have processed all ticks and we run the row
|
|
}
|
|
|
|
jar_xm_module_t* mod = &(ctx->module);
|
|
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
|
|
jar_xm_channel_context_t* ch = ctx->channels + i;
|
|
jar_xm_envelopes(ch);
|
|
jar_xm_autovibrato(ctx, ch);
|
|
if(ch->arp_in_progress && !HAS_ARPEGGIO(ch->current)) {
|
|
ch->arp_in_progress = false;
|
|
ch->arp_note_offset = 0;
|
|
jar_xm_update_frequency(ctx, ch);
|
|
}
|
|
if(ch->vibrato_in_progress && !HAS_VIBRATO(ch->current)) {
|
|
ch->vibrato_in_progress = false;
|
|
ch->vibrato_note_offset = 0.f;
|
|
jar_xm_update_frequency(ctx, ch);
|
|
}
|
|
|
|
// Effects in volumne column mostly handled on a per tick basis
|
|
switch(ch->current->volume_column & 0xF0) {
|
|
case 0x50: // Checks for volume = 64
|
|
if(ch->current->volume_column != 0x50) break;
|
|
case 0x10: // Set volume 0-15
|
|
case 0x20: // Set volume 16-32
|
|
case 0x30: // Set volume 32-48
|
|
case 0x40: // Set volume 48-64
|
|
ch->volume = (float)(ch->current->volume_column - 16) / 64.0f;
|
|
break;
|
|
case 0x60: // Volume slide down
|
|
jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F);
|
|
break;
|
|
case 0x70: // Volume slide up
|
|
jar_xm_volume_slide(ch, ch->current->volume_column << 4);
|
|
break;
|
|
case 0x80: // Fine volume slide down
|
|
jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F);
|
|
break;
|
|
case 0x90: // Fine volume slide up
|
|
jar_xm_volume_slide(ch, ch->current->volume_column << 4);
|
|
break;
|
|
case 0xA0: // Set vibrato speed
|
|
ch->vibrato_param = (ch->vibrato_param & 0x0F) | ((ch->current->volume_column & 0x0F) << 4);
|
|
break;
|
|
case 0xB0: // Vibrato
|
|
ch->vibrato_in_progress = false;
|
|
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
|
|
break;
|
|
case 0xC0: // Set panning
|
|
if(!ctx->current_tick ) {
|
|
ch->panning = (float)(ch->current->volume_column & 0x0F) / 15.0f;
|
|
}
|
|
break;
|
|
case 0xD0: // Panning slide left
|
|
jar_xm_panning_slide(ch, ch->current->volume_column & 0x0F);
|
|
break;
|
|
case 0xE0: // Panning slide right
|
|
jar_xm_panning_slide(ch, ch->current->volume_column << 4);
|
|
break;
|
|
case 0xF0: // Tone portamento
|
|
if(!ctx->current_tick ) {
|
|
if(ch->current->volume_column & 0x0F) { ch->tone_portamento_param = ((ch->current->volume_column & 0x0F) << 4) | (ch->current->volume_column & 0x0F); }
|
|
};
|
|
jar_xm_tone_portamento(ctx, ch);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Only some standard effects handled on a per tick basis
|
|
// see jar_xm_handle_note_and_instrument for all effects handling on a per row basis
|
|
switch(ch->current->effect_type) {
|
|
case 0: /* 0xy: Arpeggio */
|
|
if(ch->current->effect_param > 0) {
|
|
char arp_offset = ctx->tempo % 3;
|
|
switch(arp_offset) {
|
|
case 2: /* 0 -> x -> 0 -> y -> x -> ... */
|
|
if(ctx->current_tick == 1) {
|
|
ch->arp_in_progress = true;
|
|
ch->arp_note_offset = ch->current->effect_param >> 4;
|
|
jar_xm_update_frequency(ctx, ch);
|
|
break;
|
|
}
|
|
/* No break here, this is intended */
|
|
case 1: /* 0 -> 0 -> y -> x -> ... */
|
|
if(ctx->current_tick == 0) {
|
|
ch->arp_in_progress = false;
|
|
ch->arp_note_offset = 0;
|
|
jar_xm_update_frequency(ctx, ch);
|
|
break;
|
|
}
|
|
/* No break here, this is intended */
|
|
case 0: /* 0 -> y -> x -> ... */
|
|
jar_xm_arpeggio(ctx, ch, ch->current->effect_param, ctx->current_tick - arp_offset);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 1: /* 1xx: Portamento up */
|
|
if(ctx->current_tick == 0) break;
|
|
jar_xm_pitch_slide(ctx, ch, -ch->portamento_up_param);
|
|
break;
|
|
case 2: /* 2xx: Portamento down */
|
|
if(ctx->current_tick == 0) break;
|
|
jar_xm_pitch_slide(ctx, ch, ch->portamento_down_param);
|
|
break;
|
|
case 3: /* 3xx: Tone portamento */
|
|
if(ctx->current_tick == 0) break;
|
|
jar_xm_tone_portamento(ctx, ch);
|
|
break;
|
|
case 4: /* 4xy: Vibrato */
|
|
if(ctx->current_tick == 0) break;
|
|
ch->vibrato_in_progress = true;
|
|
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
|
|
break;
|
|
case 5: /* 5xy: Tone portamento + Volume slide */
|
|
if(ctx->current_tick == 0) break;
|
|
jar_xm_tone_portamento(ctx, ch);
|
|
jar_xm_volume_slide(ch, ch->volume_slide_param);
|
|
break;
|
|
case 6: /* 6xy: Vibrato + Volume slide */
|
|
if(ctx->current_tick == 0) break;
|
|
ch->vibrato_in_progress = true;
|
|
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
|
|
jar_xm_volume_slide(ch, ch->volume_slide_param);
|
|
break;
|
|
case 7: /* 7xy: Tremolo */
|
|
if(ctx->current_tick == 0) break;
|
|
jar_xm_tremolo(ctx, ch, ch->tremolo_param, ch->tremolo_ticks++);
|
|
break;
|
|
case 8: /* 8xy: Set panning */
|
|
break;
|
|
case 9: /* 9xy: Sample offset */
|
|
break;
|
|
case 0xA: /* Axy: Volume slide */
|
|
if(ctx->current_tick == 0) break;
|
|
jar_xm_volume_slide(ch, ch->volume_slide_param);
|
|
break;
|
|
case 0xE: /* EXy: Extended command */
|
|
switch(ch->current->effect_param >> 4) {
|
|
case 0x9: /* E9y: Retrigger note */
|
|
if(ctx->current_tick != 0 && ch->current->effect_param & 0x0F) {
|
|
if(!(ctx->current_tick % (ch->current->effect_param & 0x0F))) {
|
|
jar_xm_trigger_note(ctx, ch, 0);
|
|
jar_xm_envelopes(ch);
|
|
}
|
|
}
|
|
break;
|
|
case 0xC: /* ECy: Note cut */
|
|
if((ch->current->effect_param & 0x0F) == ctx->current_tick) {
|
|
jar_xm_cut_note(ch);
|
|
}
|
|
break;
|
|
case 0xD: /* EDy: Note delay */
|
|
if(ch->note_delay_param == ctx->current_tick) {
|
|
jar_xm_handle_note_and_instrument(ctx, ch, ch->current);
|
|
jar_xm_envelopes(ch);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case 16: /* Fxy: Set tempo/BPM */
|
|
break;
|
|
case 17: /* Hxy: Global volume slide */
|
|
if(ctx->current_tick == 0) break;
|
|
if((ch->global_volume_slide_param & 0xF0) && (ch->global_volume_slide_param & 0x0F)) { break; }; /* Invalid state */
|
|
if(ch->global_volume_slide_param & 0xF0) { /* Global slide up */
|
|
float f = (float)(ch->global_volume_slide_param >> 4) / (float)0x40;
|
|
ctx->global_volume += f;
|
|
jar_xm_CLAMP_UP(ctx->global_volume);
|
|
} else { /* Global slide down */
|
|
float f = (float)(ch->global_volume_slide_param & 0x0F) / (float)0x40;
|
|
ctx->global_volume -= f;
|
|
jar_xm_CLAMP_DOWN(ctx->global_volume);
|
|
};
|
|
break;
|
|
|
|
case 20: /* Kxx: Key off */
|
|
if(ctx->current_tick == ch->current->effect_param) { jar_xm_key_off(ch); };
|
|
break;
|
|
case 21: /* Lxx: Set envelope position */
|
|
break;
|
|
case 25: /* Pxy: Panning slide */
|
|
if(ctx->current_tick == 0) break;
|
|
jar_xm_panning_slide(ch, ch->panning_slide_param);
|
|
break;
|
|
case 27: /* Rxy: Multi retrig note */
|
|
if(ctx->current_tick == 0) break;
|
|
if(((ch->multi_retrig_param) & 0x0F) == 0) break;
|
|
if((ctx->current_tick % (ch->multi_retrig_param & 0x0F)) == 0) {
|
|
float v = ch->volume * multi_retrig_multiply[ch->multi_retrig_param >> 4]
|
|
+ multi_retrig_add[ch->multi_retrig_param >> 4];
|
|
jar_xm_CLAMP(v);
|
|
jar_xm_trigger_note(ctx, ch, 0);
|
|
ch->volume = v;
|
|
};
|
|
break;
|
|
|
|
case 29: /* Txy: Tremor */
|
|
if(ctx->current_tick == 0) break;
|
|
ch->tremor_on = ( (ctx->current_tick - 1) % ((ch->tremor_param >> 4) + (ch->tremor_param & 0x0F) + 2) > (ch->tremor_param >> 4) );
|
|
break;
|
|
default:
|
|
break;
|
|
};
|
|
|
|
float panning, volume;
|
|
panning = ch->panning + (ch->panning_envelope_panning - .5f) * (.5f - fabs(ch->panning - .5f)) * 2.0f;
|
|
if(ch->tremor_on) {
|
|
volume = .0f;
|
|
} else {
|
|
volume = ch->volume + ch->tremolo_volume;
|
|
jar_xm_CLAMP(volume);
|
|
volume *= ch->fadeout_volume * ch->volume_envelope_volume;
|
|
};
|
|
|
|
if (mod->ramping) {
|
|
ch->target_panning = panning;
|
|
ch->target_volume = volume;
|
|
} else {
|
|
ch->actual_panning = panning;
|
|
ch->actual_volume = volume;
|
|
};
|
|
};
|
|
|
|
ctx->current_tick++; // ok so we understand that ticks increment within the row
|
|
if(ctx->current_tick >= ctx->tempo + ctx->extra_ticks) {
|
|
// This means it reached the end of the row and we reset
|
|
ctx->current_tick = 0;
|
|
ctx->extra_ticks = 0;
|
|
};
|
|
|
|
// Number of ticks / second = BPM * 0.4
|
|
ctx->remaining_samples_in_tick += (float)ctx->rate / ((float)ctx->bpm * 0.4f);
|
|
};
|
|
|
|
static void jar_xm_next_of_sample(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, int previous) {
|
|
jar_xm_module_t* mod = &(ctx->module);
|
|
|
|
// ch->curr_left = 0.f;
|
|
// ch->curr_right = 0.f;
|
|
if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) {
|
|
ch->curr_left = 0.f;
|
|
ch->curr_right = 0.f;
|
|
if (mod->ramping) {
|
|
if (ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) {
|
|
if (previous > -1) {
|
|
ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
|
|
ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
|
|
} else {
|
|
ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
|
|
ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
|
|
};
|
|
};
|
|
};
|
|
return;
|
|
};
|
|
if(ch->sample->length == 0) {
|
|
return;
|
|
};
|
|
|
|
float t = 0.f;
|
|
uint32_t b = 0;
|
|
if(mod->linear_interpolation) {
|
|
b = ch->sample_position + 1;
|
|
t = ch->sample_position - (uint32_t)ch->sample_position; /* Cheaper than fmodf(., 1.f) */
|
|
};
|
|
|
|
float u_left, u_right;
|
|
u_left = ch->sample->data[(uint32_t)ch->sample_position];
|
|
if (ch->sample->stereo) {
|
|
u_right = ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length];
|
|
} else {
|
|
u_right = u_left;
|
|
};
|
|
float v_left = 0.f, v_right = 0.f;
|
|
switch(ch->sample->loop_type) {
|
|
case jar_xm_NO_LOOP:
|
|
if(mod->linear_interpolation) {
|
|
v_left = (b < ch->sample->length) ? ch->sample->data[b] : .0f;
|
|
if (ch->sample->stereo) {
|
|
v_right = (b < ch->sample->length) ? ch->sample->data[b + ch->sample->length] : .0f;
|
|
} else {
|
|
v_right = v_left;
|
|
};
|
|
};
|
|
ch->sample_position += ch->step;
|
|
if(ch->sample_position >= ch->sample->length) { ch->sample_position = -1; } // stop playing this sample
|
|
break;
|
|
case jar_xm_FORWARD_LOOP:
|
|
if(mod->linear_interpolation) {
|
|
v_left = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start : b ];
|
|
if (ch->sample->stereo) {
|
|
v_right = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start + ch->sample->length : b + ch->sample->length];
|
|
} else {
|
|
v_right = v_left;
|
|
};
|
|
};
|
|
ch->sample_position += ch->step;
|
|
if (ch->sample_position >= ch->sample->loop_end) {
|
|
ch->sample_position -= ch->sample->loop_length;
|
|
};
|
|
if(ch->sample_position >= ch->sample->length) {
|
|
ch->sample_position = ch->sample->loop_start;
|
|
};
|
|
break;
|
|
case jar_xm_PING_PONG_LOOP:
|
|
if(ch->ping) {
|
|
if(mod->linear_interpolation) {
|
|
v_left = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b];
|
|
if (ch->sample->stereo) {
|
|
v_right = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length];
|
|
} else {
|
|
v_right = v_left;
|
|
};
|
|
};
|
|
ch->sample_position += ch->step;
|
|
if(ch->sample_position >= ch->sample->loop_end) {
|
|
ch->ping = false;
|
|
ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position;
|
|
};
|
|
if(ch->sample_position >= ch->sample->length) {
|
|
ch->ping = false;
|
|
ch->sample_position -= ch->sample->length - 1;
|
|
};
|
|
} else {
|
|
if(mod->linear_interpolation) {
|
|
v_left = u_left;
|
|
v_right = u_right;
|
|
u_left = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b - 2];
|
|
if (ch->sample->stereo) {
|
|
u_right = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length - 2];
|
|
} else {
|
|
u_right = u_left;
|
|
};
|
|
};
|
|
ch->sample_position -= ch->step;
|
|
if(ch->sample_position <= ch->sample->loop_start) {
|
|
ch->ping = true;
|
|
ch->sample_position = (ch->sample->loop_start << 1) - ch->sample_position;
|
|
};
|
|
if (ch->sample_position <= .0f) {
|
|
ch->ping = true;
|
|
ch->sample_position = .0f;
|
|
};
|
|
};
|
|
break;
|
|
|
|
default:
|
|
v_left = .0f;
|
|
v_right = .0f;
|
|
break;
|
|
};
|
|
|
|
float endval_left = mod->linear_interpolation ? jar_xm_LERP(u_left, v_left, t) : u_left;
|
|
float endval_right = mod->linear_interpolation ? jar_xm_LERP(u_right, v_right, t) : u_right;
|
|
|
|
if (mod->ramping) {
|
|
if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) {
|
|
/* Smoothly transition between old and new sample. */
|
|
if (previous > -1) {
|
|
ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
|
|
ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
|
|
} else {
|
|
ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
|
|
ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
|
|
};
|
|
};
|
|
};
|
|
|
|
if (previous > -1) {
|
|
ch->end_of_previous_sample_left[previous] = endval_left;
|
|
ch->end_of_previous_sample_right[previous] = endval_right;
|
|
} else {
|
|
ch->curr_left = endval_left;
|
|
ch->curr_right = endval_right;
|
|
};
|
|
};
|
|
|
|
// gather all channel audio into stereo float
|
|
static void jar_xm_mixdown(jar_xm_context_t* ctx, float* left, float* right) {
|
|
jar_xm_module_t* mod = &(ctx->module);
|
|
|
|
if(ctx->remaining_samples_in_tick <= 0) {
|
|
jar_xm_tick(ctx);
|
|
};
|
|
ctx->remaining_samples_in_tick--;
|
|
*left = 0.f;
|
|
*right = 0.f;
|
|
if(ctx->max_loop_count > 0 && ctx->loop_count > ctx->max_loop_count) { return; }
|
|
|
|
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
|
|
jar_xm_channel_context_t* ch = ctx->channels + i;
|
|
if(ch->instrument != NULL && ch->sample != NULL && ch->sample_position >= 0) {
|
|
jar_xm_next_of_sample(ctx, ch, -1);
|
|
if(!ch->muted && !ch->instrument->muted) {
|
|
*left += ch->curr_left * ch->actual_volume * (1.f - ch->actual_panning);
|
|
*right += ch->curr_right * ch->actual_volume * ch->actual_panning;
|
|
};
|
|
|
|
if (mod->ramping) {
|
|
ch->frame_count++;
|
|
jar_xm_SLIDE_TOWARDS(ch->actual_volume, ch->target_volume, ctx->volume_ramp);
|
|
jar_xm_SLIDE_TOWARDS(ch->actual_panning, ch->target_panning, ctx->panning_ramp);
|
|
};
|
|
};
|
|
};
|
|
if (ctx->global_volume != 1.0f) {
|
|
*left *= ctx->global_volume;
|
|
*right *= ctx->global_volume;
|
|
};
|
|
|
|
// experimental
|
|
// float counter = (float)ctx->generated_samples * 0.0001f
|
|
// *left = tan(&left + sin(counter));
|
|
// *right = tan(&right + cos(counter));
|
|
|
|
// apply brick wall limiter when audio goes beyond bounderies
|
|
if(*left < -1.0) {*left = -1.0;} else if(*left > 1.0) {*left = 1.0;};
|
|
if(*right < -1.0) {*right = -1.0;} else if(*right > 1.0) {*right = 1.0;};
|
|
};
|
|
|
|
void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples) {
|
|
if(ctx && output) {
|
|
ctx->generated_samples += numsamples;
|
|
for(size_t i = 0; i < numsamples; i++) {
|
|
jar_xm_mixdown(ctx, output + (2 * i), output + (2 * i + 1));
|
|
};
|
|
};
|
|
};
|
|
|
|
uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx) {
|
|
uint64_t total = 0;
|
|
uint8_t currentLoopCount = jar_xm_get_loop_count(ctx);
|
|
jar_xm_set_max_loop_count(ctx, 0);
|
|
while(jar_xm_get_loop_count(ctx) == currentLoopCount) {
|
|
total += ctx->remaining_samples_in_tick;
|
|
ctx->remaining_samples_in_tick = 0;
|
|
jar_xm_tick(ctx);
|
|
}
|
|
ctx->loop_count = currentLoopCount;
|
|
return total;
|
|
}
|
|
|
|
//--------------------------------------------
|
|
//FILE LOADER - TODO - NEEDS TO BE CLEANED UP
|
|
//--------------------------------------------
|
|
#undef DEBUG
|
|
#define DEBUG(...) do { \
|
|
fprintf(stderr, __VA_ARGS__); \
|
|
fflush(stderr); \
|
|
} while(0)
|
|
|
|
#define DEBUG_ERR(...) do { \
|
|
fprintf(stderr, __VA_ARGS__); \
|
|
fflush(stderr); \
|
|
} while(0)
|
|
|
|
#define FATAL(...) do { \
|
|
fprintf(stderr, __VA_ARGS__); \
|
|
fflush(stderr); \
|
|
exit(1); \
|
|
} while(0)
|
|
|
|
#define FATAL_ERR(...) do { \
|
|
fprintf(stderr, __VA_ARGS__); \
|
|
fflush(stderr); \
|
|
exit(1); \
|
|
} while(0)
|
|
|
|
|
|
int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename) {
|
|
FILE* xmf;
|
|
int size;
|
|
int ret;
|
|
|
|
xmf = fopen(filename, "rb");
|
|
if(xmf == NULL) {
|
|
DEBUG_ERR("Could not open input file");
|
|
*ctx = NULL;
|
|
return 3;
|
|
}
|
|
|
|
fseek(xmf, 0, SEEK_END);
|
|
size = ftell(xmf);
|
|
rewind(xmf);
|
|
if(size == -1) {
|
|
fclose(xmf);
|
|
DEBUG_ERR("fseek() failed");
|
|
*ctx = NULL;
|
|
return 4;
|
|
}
|
|
|
|
char* data = JARXM_MALLOC(size + 1);
|
|
if(!data || fread(data, 1, size, xmf) < size) {
|
|
fclose(xmf);
|
|
DEBUG_ERR(data ? "fread() failed" : "JARXM_MALLOC() failed");
|
|
JARXM_FREE(data);
|
|
*ctx = NULL;
|
|
return 5;
|
|
}
|
|
|
|
fclose(xmf);
|
|
|
|
ret = jar_xm_create_context_safe(ctx, data, size, rate);
|
|
JARXM_FREE(data);
|
|
|
|
switch(ret) {
|
|
case 0:
|
|
break;
|
|
case 1: DEBUG("could not create context: module is not sane\n");
|
|
*ctx = NULL;
|
|
return 1;
|
|
break;
|
|
case 2: FATAL("could not create context: malloc failed\n");
|
|
return 2;
|
|
break;
|
|
default: FATAL("could not create context: unknown error\n");
|
|
return 6;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// not part of the original library
|
|
void jar_xm_reset(jar_xm_context_t* ctx) {
|
|
for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) {
|
|
jar_xm_cut_note(&ctx->channels[i]);
|
|
}
|
|
ctx->generated_samples = 0;
|
|
ctx->current_row = 0;
|
|
ctx->current_table_index = 0;
|
|
ctx->current_tick = 0;
|
|
ctx->tempo =ctx->default_tempo; // reset to file default value
|
|
ctx->bpm = ctx->default_bpm; // reset to file default value
|
|
ctx->global_volume = ctx->default_global_volume; // reset to file default value
|
|
}
|
|
|
|
|
|
void jar_xm_flip_linear_interpolation(jar_xm_context_t* ctx) {
|
|
if (ctx->module.linear_interpolation) {
|
|
ctx->module.linear_interpolation = 0;
|
|
} else {
|
|
ctx->module.linear_interpolation = 1;
|
|
}
|
|
}
|
|
|
|
void jar_xm_table_jump(jar_xm_context_t* ctx, int table_ptr) {
|
|
for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) {
|
|
jar_xm_cut_note(&ctx->channels[i]);
|
|
}
|
|
ctx->current_row = 0;
|
|
ctx->current_tick = 0;
|
|
if(table_ptr > 0 && table_ptr < ctx->module.length) {
|
|
ctx->current_table_index = table_ptr;
|
|
ctx->module.restart_position = table_ptr; // The reason to jump is to start a new loop or track
|
|
} else {
|
|
ctx->current_table_index = 0;
|
|
ctx->module.restart_position = 0; // The reason to jump is to start a new loop or track
|
|
ctx->tempo =ctx->default_tempo; // reset to file default value
|
|
ctx->bpm = ctx->default_bpm; // reset to file default value
|
|
ctx->global_volume = ctx->default_global_volume; // reset to file default value
|
|
};
|
|
}
|
|
|
|
|
|
// TRANSLATE NOTE NUMBER INTO USER VALUE (ie. 1 = C-1, 2 = C#1, 3 = D-1 ... )
|
|
const char* xm_note_chr(int number) {
|
|
if (number == NOTE_OFF) {
|
|
return "==";
|
|
};
|
|
number = number % 12;
|
|
switch(number) {
|
|
case 1: return "C-";
|
|
case 2: return "C#";
|
|
case 3: return "D-";
|
|
case 4: return "D#";
|
|
case 5: return "E-";
|
|
case 6: return "F-";
|
|
case 7: return "F#";
|
|
case 8: return "G-";
|
|
case 9: return "G#";
|
|
case 10: return "A-";
|
|
case 11: return "A#";
|
|
case 12: return "B-";
|
|
};
|
|
return "??";
|
|
};
|
|
|
|
const char* xm_octave_chr(int number) {
|
|
if (number == NOTE_OFF) {
|
|
return "=";
|
|
};
|
|
|
|
int number2 = number - number % 12;
|
|
int result = floor(number2 / 12) + 1;
|
|
switch(result) {
|
|
case 1: return "1";
|
|
case 2: return "2";
|
|
case 3: return "3";
|
|
case 4: return "4";
|
|
case 5: return "5";
|
|
case 6: return "6";
|
|
case 7: return "7";
|
|
case 8: return "8";
|
|
default: return "?"; /* UNKNOWN */
|
|
};
|
|
|
|
};
|
|
|
|
// TRANSLATE NOTE EFFECT CODE INTO USER VALUE
|
|
const char* xm_effect_chr(int fx) {
|
|
switch(fx) {
|
|
case 0: return "0"; /* ZERO = NO EFFECT */
|
|
case 1: return "1"; /* 1xx: Portamento up */
|
|
case 2: return "2"; /* 2xx: Portamento down */
|
|
case 3: return "3"; /* 3xx: Tone portamento */
|
|
case 4: return "4"; /* 4xy: Vibrato */
|
|
case 5: return "5"; /* 5xy: Tone portamento + Volume slide */
|
|
case 6: return "6"; /* 6xy: Vibrato + Volume slide */
|
|
case 7: return "7"; /* 7xy: Tremolo */
|
|
case 8: return "8"; /* 8xx: Set panning */
|
|
case 9: return "9"; /* 9xx: Sample offset */
|
|
case 0xA: return "A";/* Axy: Volume slide */
|
|
case 0xB: return "B";/* Bxx: Position jump */
|
|
case 0xC: return "C";/* Cxx: Set volume */
|
|
case 0xD: return "D";/* Dxx: Pattern break */
|
|
case 0xE: return "E";/* EXy: Extended command */
|
|
case 0xF: return "F";/* Fxx: Set tempo/BPM */
|
|
case 16: return "G"; /* Gxx: Set global volume */
|
|
case 17: return "H"; /* Hxy: Global volume slide */
|
|
case 21: return "L"; /* Lxx: Set envelope position */
|
|
case 25: return "P"; /* Pxy: Panning slide */
|
|
case 27: return "R"; /* Rxy: Multi retrig note */
|
|
case 29: return "T"; /* Txy: Tremor */
|
|
case 33: return "X"; /* Xxy: Extra stuff */
|
|
default: return "?"; /* UNKNOWN */
|
|
};
|
|
}
|
|
|
|
#ifdef JAR_XM_RAYLIB
|
|
|
|
#include "raylib.h" // Need RayLib API calls for the DEBUG display
|
|
|
|
void jar_xm_debug(jar_xm_context_t *ctx) {
|
|
int size=40;
|
|
int x = 0, y = 0;
|
|
|
|
// DEBUG VARIABLES
|
|
y += size; DrawText(TextFormat("CUR TBL = %i", ctx->current_table_index), x, y, size, WHITE);
|
|
y += size; DrawText(TextFormat("CUR PAT = %i", ctx->module.pattern_table[ctx->current_table_index]), x, y, size, WHITE);
|
|
y += size; DrawText(TextFormat("POS JMP = %d", ctx->position_jump), x, y, size, WHITE);
|
|
y += size; DrawText(TextFormat("JMP DST = %i", ctx->jump_dest), x, y, size, WHITE);
|
|
y += size; DrawText(TextFormat("PTN BRK = %d", ctx->pattern_break), x, y, size, WHITE);
|
|
y += size; DrawText(TextFormat("CUR ROW = %i", ctx->current_row), x, y, size, WHITE);
|
|
y += size; DrawText(TextFormat("JMP ROW = %i", ctx->jump_row), x, y, size, WHITE);
|
|
y += size; DrawText(TextFormat("ROW LCT = %i", ctx->row_loop_count), x, y, size, WHITE);
|
|
y += size; DrawText(TextFormat("LCT = %i", ctx->loop_count), x, y, size, WHITE);
|
|
y += size; DrawText(TextFormat("MAX LCT = %i", ctx->max_loop_count), x, y, size, WHITE);
|
|
x = size * 12; y = 0;
|
|
|
|
y += size; DrawText(TextFormat("CUR TCK = %i", ctx->current_tick), x, y, size, WHITE);
|
|
y += size; DrawText(TextFormat("XTR TCK = %i", ctx->extra_ticks), x, y, size, WHITE);
|
|
y += size; DrawText(TextFormat("TCK/ROW = %i", ctx->tempo), x, y, size, ORANGE);
|
|
y += size; DrawText(TextFormat("SPL TCK = %f", ctx->remaining_samples_in_tick), x, y, size, WHITE);
|
|
y += size; DrawText(TextFormat("GEN SPL = %i", ctx->generated_samples), x, y, size, WHITE);
|
|
y += size * 7;
|
|
|
|
x = 0;
|
|
size=16;
|
|
// TIMELINE OF MODULE
|
|
for (int i=0; i < ctx->module.length; i++) {
|
|
if (i == ctx->jump_dest) {
|
|
if (ctx->position_jump) {
|
|
DrawRectangle(i * size * 2, y - size, size * 2, size, GOLD);
|
|
} else {
|
|
DrawRectangle(i * size * 2, y - size, size * 2, size, BROWN);
|
|
};
|
|
};
|
|
if (i == ctx->current_table_index) {
|
|
// DrawText(TextFormat("%02X", ctx->current_tick), i * size * 2, y - size, size, WHITE);
|
|
DrawRectangle(i * size * 2, y, size * 2, size, RED);
|
|
DrawText(TextFormat("%02X", ctx->current_row), i * size * 2, y - size, size, YELLOW);
|
|
} else {
|
|
DrawRectangle(i * size * 2, y, size * 2, size, ORANGE);
|
|
};
|
|
DrawText(TextFormat("%02X", ctx->module.pattern_table[i]), i * size * 2, y, size, WHITE);
|
|
};
|
|
y += size;
|
|
|
|
jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index];
|
|
|
|
/* DISPLAY CURRENTLY PLAYING PATTERN */
|
|
|
|
x += 2 * size;
|
|
for(uint8_t i = 0; i < ctx->module.num_channels; i++) {
|
|
DrawRectangle(x, y, 8 * size, size, PURPLE);
|
|
DrawText("N", x, y, size, YELLOW);
|
|
DrawText("I", x + size * 2, y, size, YELLOW);
|
|
DrawText("V", x + size * 4, y, size, YELLOW);
|
|
DrawText("FX", x + size * 6, y, size, YELLOW);
|
|
x += 9 * size;
|
|
};
|
|
x += size;
|
|
for (int j=(ctx->current_row - 14); j<(ctx->current_row + 15); j++) {
|
|
y += size;
|
|
x = 0;
|
|
if (j >=0 && j < (cur->num_rows)) {
|
|
DrawRectangle(x, y, size * 2, size, BROWN);
|
|
DrawText(TextFormat("%02X",j), x, y, size, WHITE);
|
|
x += 2 * size;
|
|
for(uint8_t i = 0; i < ctx->module.num_channels; i++) {
|
|
if (j==(ctx->current_row)) {
|
|
DrawRectangle(x, y, 8 * size, size, DARKGREEN);
|
|
} else {
|
|
DrawRectangle(x, y, 8 * size, size, DARKGRAY);
|
|
};
|
|
jar_xm_pattern_slot_t *s = cur->slots + j * ctx->module.num_channels + i;
|
|
// jar_xm_channel_context_t *ch = ctx->channels + i;
|
|
if (s->note > 0) {DrawText(TextFormat("%s%s", xm_note_chr(s->note), xm_octave_chr(s->note) ), x, y, size, WHITE);} else {DrawText("...", x, y, size, GRAY);};
|
|
if (s->instrument > 0) {
|
|
DrawText(TextFormat("%02X", s->instrument), x + size * 2, y, size, WHITE);
|
|
if (s->volume_column == 0) {
|
|
DrawText(TextFormat("%02X", 64), x + size * 4, y, size, YELLOW);
|
|
};
|
|
} else {
|
|
DrawText("..", x + size * 2, y, size, GRAY);
|
|
if (s->volume_column == 0) {
|
|
DrawText("..", x + size * 4, y, size, GRAY);
|
|
};
|
|
};
|
|
if (s->volume_column > 0) {DrawText(TextFormat("%02X", (s->volume_column - 16)), x + size * 4, y, size, WHITE);};
|
|
if (s->effect_type > 0 || s->effect_param > 0) {DrawText(TextFormat("%s%02X", xm_effect_chr(s->effect_type), s->effect_param), x + size * 6, y, size, WHITE);};
|
|
x += 9 * size;
|
|
};
|
|
};
|
|
};
|
|
|
|
}
|
|
#endif // RayLib extension
|
|
|
|
#endif//end of JAR_XM_IMPLEMENTATION
|
|
//-------------------------------------------------------------------------------
|
|
|
|
#endif//end of INCLUDE_JAR_XM_H
|