#version 100
|
|
|
|
#define PI 3.1415926535897932384626433832795
|
|
|
|
precision highp float;
|
|
|
|
// Input vertex attributes (from vertex shader)
|
|
varying vec2 fragTexCoord;
|
|
varying vec4 fragColor;
|
|
|
|
uniform vec2 offset; // Offset of the scale
|
|
uniform float zoom; // Zoom of the scale
|
|
// NOTE: Maximum number of shader for-loop iterations depend on GPU,
|
|
// For example, on RasperryPi for this examply only supports up to 60
|
|
uniform int maxIterations; // Max iterations per pixel
|
|
|
|
const float max = 4.0; // We consider infinite as 4.0: if a point reaches a distance of 4.0 it will escape to infinity
|
|
const float max2 = max*max; // Square of max to avoid computing square root
|
|
|
|
void main()
|
|
{
|
|
// The pixel coordinates are scaled so they are on the mandelbrot scale
|
|
// NOTE: fragTexCoord already comes as normalized screen coordinates but offset must be normalized before scaling and zoom
|
|
vec2 c = vec2((fragTexCoord.x - 0.5)*2.5, (fragTexCoord.y - 0.5)*1.5)/zoom;
|
|
c.x += offset.x;
|
|
c.y += offset.y;
|
|
float a = 0.0;
|
|
float b = 0.0;
|
|
|
|
// The Mandelbrot set is a two-dimensional set defined in the complex plane on which the iteration of the function
|
|
// Fc(z) = z^2 + c on the complex numbers c from the plane does not diverge to infinity starting at z = 0
|
|
// Here: z = a + bi. Iterations: z -> z^2 + c = (a + bi)^2 + (c.x + c.yi) = (a^2 - b^2 + c.x) + (2ab + c.y)i
|
|
|
|
int iter = 0;
|
|
while (iter < maxIterations)
|
|
{
|
|
float aa = a*a;
|
|
float bb = b*b;
|
|
if (aa + bb > max2)
|
|
break;
|
|
|
|
float twoab = 2.0*a*b;
|
|
a = aa - bb + c.x;
|
|
b = twoab + c.y;
|
|
|
|
++iter;
|
|
}
|
|
|
|
if (iter >= maxIterations)
|
|
{
|
|
gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
|
|
}
|
|
else
|
|
{
|
|
float normR = float(iter - (iter/55)*55)/55.0;
|
|
float normG = float(iter - (iter/69)*69)/69.0;
|
|
float normB = float(iter - (iter/40)*40)/40.0;
|
|
|
|
gl_FragColor = vec4(sin(normR*PI), sin(normG*PI), sin(normB*PI), 1.0);
|
|
}
|
|
}
|