Nie możesz wybrać więcej, niż 25 tematów Tematy muszą się zaczynać od litery lub cyfry, mogą zawierać myślniki ('-') i mogą mieć do 35 znaków.
 
 
 
 
 
 

2428 wiersze
91 KiB

/**********************************************************************************************
*
* rshapes - Basic functions to draw 2d shapes and check collisions
*
* ADDITIONAL NOTES:
* Shapes can be draw using 3 types of primitives: LINES, TRIANGLES and QUADS.
* Some functions implement two drawing options: TRIANGLES and QUADS, by default TRIANGLES
* are used but QUADS implementation can be selected with SUPPORT_QUADS_DRAW_MODE define
*
* Some functions define texture coordinates (rlTexCoord2f()) for the shapes and use a
* user-provided texture with SetShapesTexture(), the pourpouse of this implementation
* is allowing to reduce draw calls when combined with a texture-atlas.
*
* By default, raylib sets the default texture and rectangle at InitWindow()[rcore] to one
* white character of default font [rtext], this way, raylib text and shapes can be draw with
* a single draw call and it also allows users to configure it the same way with their own fonts.
*
* CONFIGURATION:
* #define SUPPORT_MODULE_RSHAPES
* rshapes module is included in the build
*
* #define SUPPORT_QUADS_DRAW_MODE
* Use QUADS instead of TRIANGLES for drawing when possible. Lines-based shapes still use LINES
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2013-2025 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#include "raylib.h" // Declares module functions
// Check if config flags have been externally provided on compilation line
#if !defined(EXTERNAL_CONFIG_FLAGS)
#include "config.h" // Defines module configuration flags
#endif
#if defined(SUPPORT_MODULE_RSHAPES)
#include "rlgl.h" // OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2
#include <math.h> // Required for: sinf(), asinf(), cosf(), acosf(), sqrtf(), fabsf()
#include <float.h> // Required for: FLT_EPSILON
#include <stdlib.h> // Required for: RL_FREE
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
// Error rate to calculate how many segments we need to draw a smooth circle,
// taken from https://stackoverflow.com/a/2244088
#ifndef SMOOTH_CIRCLE_ERROR_RATE
#define SMOOTH_CIRCLE_ERROR_RATE 0.5f // Circle error rate
#endif
#ifndef SPLINE_SEGMENT_DIVISIONS
#define SPLINE_SEGMENT_DIVISIONS 24 // Spline segment divisions
#endif
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// Not here...
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
static Texture2D texShapes = { 1, 1, 1, 1, 7 }; // Texture used on shapes drawing (white pixel loaded by rlgl)
static Rectangle texShapesRec = { 0.0f, 0.0f, 1.0f, 1.0f }; // Texture source rectangle used on shapes drawing
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static float EaseCubicInOut(float t, float b, float c, float d); // Cubic easing
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Set texture and rectangle to be used on shapes drawing
// NOTE: It can be useful when using basic shapes and one single font,
// defining a font char white rectangle would allow drawing everything in a single draw call
void SetShapesTexture(Texture2D texture, Rectangle source)
{
// Reset texture to default pixel if required
// WARNING: Shapes texture should be probably better validated,
// it can break the rendering of all shapes if misused
if ((texture.id == 0) || (source.width == 0) || (source.height == 0))
{
texShapes = (Texture2D){ 1, 1, 1, 1, 7 };
texShapesRec = (Rectangle){ 0.0f, 0.0f, 1.0f, 1.0f };
}
else
{
texShapes = texture;
texShapesRec = source;
}
}
// Get texture that is used for shapes drawing
Texture2D GetShapesTexture(void)
{
return texShapes;
}
// Get texture source rectangle that is used for shapes drawing
Rectangle GetShapesTextureRectangle(void)
{
return texShapesRec;
}
// Draw a pixel
void DrawPixel(int posX, int posY, Color color)
{
DrawPixelV((Vector2){ (float)posX, (float)posY }, color);
}
// Draw a pixel (Vector version)
void DrawPixelV(Vector2 position, Color color)
{
#if defined(SUPPORT_QUADS_DRAW_MODE)
rlSetTexture(GetShapesTexture().id);
Rectangle shapeRect = GetShapesTextureRectangle();
rlBegin(RL_QUADS);
rlNormal3f(0.0f, 0.0f, 1.0f);
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(position.x, position.y);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(position.x, position.y + 1);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(position.x + 1, position.y + 1);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(position.x + 1, position.y);
rlEnd();
rlSetTexture(0);
#else
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(position.x, position.y);
rlVertex2f(position.x, position.y + 1);
rlVertex2f(position.x + 1, position.y);
rlVertex2f(position.x + 1, position.y);
rlVertex2f(position.x, position.y + 1);
rlVertex2f(position.x + 1, position.y + 1);
rlEnd();
#endif
}
// Draw a line (using gl lines)
void DrawLine(int startPosX, int startPosY, int endPosX, int endPosY, Color color)
{
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f((float)startPosX, (float)startPosY);
rlVertex2f((float)endPosX, (float)endPosY);
rlEnd();
}
// Draw a line (using gl lines)
void DrawLineV(Vector2 startPos, Vector2 endPos, Color color)
{
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(startPos.x, startPos.y);
rlVertex2f(endPos.x, endPos.y);
rlEnd();
}
// Draw lines sequuence (using gl lines)
void DrawLineStrip(const Vector2 *points, int pointCount, Color color)
{
if (pointCount < 2) return; // Security check
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
for (int i = 0; i < pointCount - 1; i++)
{
rlVertex2f(points[i].x, points[i].y);
rlVertex2f(points[i + 1].x, points[i + 1].y);
}
rlEnd();
}
// Draw line using cubic-bezier spline, in-out interpolation, no control points
void DrawLineBezier(Vector2 startPos, Vector2 endPos, float thick, Color color)
{
Vector2 previous = startPos;
Vector2 current = { 0 };
Vector2 points[2*SPLINE_SEGMENT_DIVISIONS + 2] = { 0 };
for (int i = 1; i <= SPLINE_SEGMENT_DIVISIONS; i++)
{
// Cubic easing in-out
// NOTE: Easing is calculated only for y position value
current.y = EaseCubicInOut((float)i, startPos.y, endPos.y - startPos.y, (float)SPLINE_SEGMENT_DIVISIONS);
current.x = previous.x + (endPos.x - startPos.x)/(float)SPLINE_SEGMENT_DIVISIONS;
float dy = current.y - previous.y;
float dx = current.x - previous.x;
float size = 0.5f*thick/sqrtf(dx*dx+dy*dy);
if (i == 1)
{
points[0].x = previous.x + dy*size;
points[0].y = previous.y - dx*size;
points[1].x = previous.x - dy*size;
points[1].y = previous.y + dx*size;
}
points[2*i + 1].x = current.x - dy*size;
points[2*i + 1].y = current.y + dx*size;
points[2*i].x = current.x + dy*size;
points[2*i].y = current.y - dx*size;
previous = current;
}
DrawTriangleStrip(points, 2*SPLINE_SEGMENT_DIVISIONS + 2, color);
}
// Draw a line defining thickness
void DrawLineEx(Vector2 startPos, Vector2 endPos, float thick, Color color)
{
Vector2 delta = { endPos.x - startPos.x, endPos.y - startPos.y };
float length = sqrtf(delta.x*delta.x + delta.y*delta.y);
if ((length > 0) && (thick > 0))
{
float scale = thick/(2*length);
Vector2 radius = { -scale*delta.y, scale*delta.x };
Vector2 strip[4] = {
{ startPos.x - radius.x, startPos.y - radius.y },
{ startPos.x + radius.x, startPos.y + radius.y },
{ endPos.x - radius.x, endPos.y - radius.y },
{ endPos.x + radius.x, endPos.y + radius.y }
};
DrawTriangleStrip(strip, 4, color);
}
}
// Draw a color-filled circle
void DrawCircle(int centerX, int centerY, float radius, Color color)
{
DrawCircleV((Vector2){ (float)centerX, (float)centerY }, radius, color);
}
// Draw a color-filled circle (Vector version)
// NOTE: On OpenGL 3.3 and ES2 we use QUADS to avoid drawing order issues
void DrawCircleV(Vector2 center, float radius, Color color)
{
DrawCircleSector(center, radius, 0, 360, 36, color);
}
// Draw a piece of a circle
void DrawCircleSector(Vector2 center, float radius, float startAngle, float endAngle, int segments, Color color)
{
if (radius <= 0.0f) radius = 0.1f; // Avoid div by zero
// Function expects (endAngle > startAngle)
if (endAngle < startAngle)
{
// Swap values
float tmp = startAngle;
startAngle = endAngle;
endAngle = tmp;
}
int minSegments = (int)ceilf((endAngle - startAngle)/90);
if (segments < minSegments)
{
// Calculate the maximum angle between segments based on the error rate (usually 0.5f)
float th = acosf(2*powf(1 - SMOOTH_CIRCLE_ERROR_RATE/radius, 2) - 1);
segments = (int)((endAngle - startAngle)*ceilf(2*PI/th)/360);
if (segments <= 0) segments = minSegments;
}
float stepLength = (endAngle - startAngle)/(float)segments;
float angle = startAngle;
#if defined(SUPPORT_QUADS_DRAW_MODE)
rlSetTexture(GetShapesTexture().id);
Rectangle shapeRect = GetShapesTextureRectangle();
rlBegin(RL_QUADS);
// NOTE: Every QUAD actually represents two segments
for (int i = 0; i < segments/2; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x, center.y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength*2.0f))*radius, center.y + sinf(DEG2RAD*(angle + stepLength*2.0f))*radius);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*radius, center.y + sinf(DEG2RAD*(angle + stepLength))*radius);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*radius, center.y + sinf(DEG2RAD*angle)*radius);
angle += (stepLength*2.0f);
}
// NOTE: In case number of segments is odd, we add one last piece to the cake
if ((((unsigned int)segments)%2) == 1)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x, center.y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*radius, center.y + sinf(DEG2RAD*(angle + stepLength))*radius);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*radius, center.y + sinf(DEG2RAD*angle)*radius);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x, center.y);
}
rlEnd();
rlSetTexture(0);
#else
rlBegin(RL_TRIANGLES);
for (int i = 0; i < segments; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(center.x, center.y);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*radius, center.y + sinf(DEG2RAD*(angle + stepLength))*radius);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*radius, center.y + sinf(DEG2RAD*angle)*radius);
angle += stepLength;
}
rlEnd();
#endif
}
// Draw a piece of a circle outlines
void DrawCircleSectorLines(Vector2 center, float radius, float startAngle, float endAngle, int segments, Color color)
{
if (radius <= 0.0f) radius = 0.1f; // Avoid div by zero issue
// Function expects (endAngle > startAngle)
if (endAngle < startAngle)
{
// Swap values
float tmp = startAngle;
startAngle = endAngle;
endAngle = tmp;
}
int minSegments = (int)ceilf((endAngle - startAngle)/90);
if (segments < minSegments)
{
// Calculate the maximum angle between segments based on the error rate (usually 0.5f)
float th = acosf(2*powf(1 - SMOOTH_CIRCLE_ERROR_RATE/radius, 2) - 1);
segments = (int)((endAngle - startAngle)*ceilf(2*PI/th)/360);
if (segments <= 0) segments = minSegments;
}
float stepLength = (endAngle - startAngle)/(float)segments;
float angle = startAngle;
bool showCapLines = true;
rlBegin(RL_LINES);
if (showCapLines)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(center.x, center.y);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*radius, center.y + sinf(DEG2RAD*angle)*radius);
}
for (int i = 0; i < segments; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*radius, center.y + sinf(DEG2RAD*angle)*radius);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*radius, center.y + sinf(DEG2RAD*(angle + stepLength))*radius);
angle += stepLength;
}
if (showCapLines)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(center.x, center.y);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*radius, center.y + sinf(DEG2RAD*angle)*radius);
}
rlEnd();
}
// Draw a gradient-filled circle
void DrawCircleGradient(int centerX, int centerY, float radius, Color inner, Color outer)
{
rlBegin(RL_TRIANGLES);
for (int i = 0; i < 360; i += 10)
{
rlColor4ub(inner.r, inner.g, inner.b, inner.a);
rlVertex2f((float)centerX, (float)centerY);
rlColor4ub(outer.r, outer.g, outer.b, outer.a);
rlVertex2f((float)centerX + cosf(DEG2RAD*(i + 10))*radius, (float)centerY + sinf(DEG2RAD*(i + 10))*radius);
rlColor4ub(outer.r, outer.g, outer.b, outer.a);
rlVertex2f((float)centerX + cosf(DEG2RAD*i)*radius, (float)centerY + sinf(DEG2RAD*i)*radius);
}
rlEnd();
}
// Draw circle outline
void DrawCircleLines(int centerX, int centerY, float radius, Color color)
{
DrawCircleLinesV((Vector2){ (float)centerX, (float)centerY }, radius, color);
}
// Draw circle outline (Vector version)
void DrawCircleLinesV(Vector2 center, float radius, Color color)
{
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
// NOTE: Circle outline is drawn pixel by pixel every degree (0 to 360)
for (int i = 0; i < 360; i += 10)
{
rlVertex2f(center.x + cosf(DEG2RAD*i)*radius, center.y + sinf(DEG2RAD*i)*radius);
rlVertex2f(center.x + cosf(DEG2RAD*(i + 10))*radius, center.y + sinf(DEG2RAD*(i + 10))*radius);
}
rlEnd();
}
// Draw ellipse
void DrawEllipse(int centerX, int centerY, float radiusH, float radiusV, Color color)
{
rlBegin(RL_TRIANGLES);
for (int i = 0; i < 360; i += 10)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f((float)centerX, (float)centerY);
rlVertex2f((float)centerX + cosf(DEG2RAD*(i + 10))*radiusH, (float)centerY + sinf(DEG2RAD*(i + 10))*radiusV);
rlVertex2f((float)centerX + cosf(DEG2RAD*i)*radiusH, (float)centerY + sinf(DEG2RAD*i)*radiusV);
}
rlEnd();
}
// Draw ellipse outline
void DrawEllipseLines(int centerX, int centerY, float radiusH, float radiusV, Color color)
{
rlBegin(RL_LINES);
for (int i = 0; i < 360; i += 10)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(centerX + cosf(DEG2RAD*(i + 10))*radiusH, centerY + sinf(DEG2RAD*(i + 10))*radiusV);
rlVertex2f(centerX + cosf(DEG2RAD*i)*radiusH, centerY + sinf(DEG2RAD*i)*radiusV);
}
rlEnd();
}
// Draw ring
void DrawRing(Vector2 center, float innerRadius, float outerRadius, float startAngle, float endAngle, int segments, Color color)
{
if (startAngle == endAngle) return;
// Function expects (outerRadius > innerRadius)
if (outerRadius < innerRadius)
{
float tmp = outerRadius;
outerRadius = innerRadius;
innerRadius = tmp;
if (outerRadius <= 0.0f) outerRadius = 0.1f;
}
// Function expects (endAngle > startAngle)
if (endAngle < startAngle)
{
// Swap values
float tmp = startAngle;
startAngle = endAngle;
endAngle = tmp;
}
int minSegments = (int)ceilf((endAngle - startAngle)/90);
if (segments < minSegments)
{
// Calculate the maximum angle between segments based on the error rate (usually 0.5f)
float th = acosf(2*powf(1 - SMOOTH_CIRCLE_ERROR_RATE/outerRadius, 2) - 1);
segments = (int)((endAngle - startAngle)*ceilf(2*PI/th)/360);
if (segments <= 0) segments = minSegments;
}
// Not a ring
if (innerRadius <= 0.0f)
{
DrawCircleSector(center, outerRadius, startAngle, endAngle, segments, color);
return;
}
float stepLength = (endAngle - startAngle)/(float)segments;
float angle = startAngle;
#if defined(SUPPORT_QUADS_DRAW_MODE)
rlSetTexture(GetShapesTexture().id);
Rectangle shapeRect = GetShapesTextureRectangle();
rlBegin(RL_QUADS);
for (int i = 0; i < segments; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*outerRadius, center.y + sinf(DEG2RAD*angle)*outerRadius);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*innerRadius, center.y + sinf(DEG2RAD*angle)*innerRadius);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*innerRadius, center.y + sinf(DEG2RAD*(angle + stepLength))*innerRadius);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*outerRadius, center.y + sinf(DEG2RAD*(angle + stepLength))*outerRadius);
angle += stepLength;
}
rlEnd();
rlSetTexture(0);
#else
rlBegin(RL_TRIANGLES);
for (int i = 0; i < segments; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*innerRadius, center.y + sinf(DEG2RAD*angle)*innerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*innerRadius, center.y + sinf(DEG2RAD*(angle + stepLength))*innerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*outerRadius, center.y + sinf(DEG2RAD*angle)*outerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*innerRadius, center.y + sinf(DEG2RAD*(angle + stepLength))*innerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*outerRadius, center.y + sinf(DEG2RAD*(angle + stepLength))*outerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*outerRadius, center.y + sinf(DEG2RAD*angle)*outerRadius);
angle += stepLength;
}
rlEnd();
#endif
}
// Draw ring outline
void DrawRingLines(Vector2 center, float innerRadius, float outerRadius, float startAngle, float endAngle, int segments, Color color)
{
if (startAngle == endAngle) return;
// Function expects (outerRadius > innerRadius)
if (outerRadius < innerRadius)
{
float tmp = outerRadius;
outerRadius = innerRadius;
innerRadius = tmp;
if (outerRadius <= 0.0f) outerRadius = 0.1f;
}
// Function expects (endAngle > startAngle)
if (endAngle < startAngle)
{
// Swap values
float tmp = startAngle;
startAngle = endAngle;
endAngle = tmp;
}
int minSegments = (int)ceilf((endAngle - startAngle)/90);
if (segments < minSegments)
{
// Calculate the maximum angle between segments based on the error rate (usually 0.5f)
float th = acosf(2*powf(1 - SMOOTH_CIRCLE_ERROR_RATE/outerRadius, 2) - 1);
segments = (int)((endAngle - startAngle)*ceilf(2*PI/th)/360);
if (segments <= 0) segments = minSegments;
}
if (innerRadius <= 0.0f)
{
DrawCircleSectorLines(center, outerRadius, startAngle, endAngle, segments, color);
return;
}
float stepLength = (endAngle - startAngle)/(float)segments;
float angle = startAngle;
bool showCapLines = true;
rlBegin(RL_LINES);
if (showCapLines)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*outerRadius, center.y + sinf(DEG2RAD*angle)*outerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*innerRadius, center.y + sinf(DEG2RAD*angle)*innerRadius);
}
for (int i = 0; i < segments; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*outerRadius, center.y + sinf(DEG2RAD*angle)*outerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*outerRadius, center.y + sinf(DEG2RAD*(angle + stepLength))*outerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*innerRadius, center.y + sinf(DEG2RAD*angle)*innerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*innerRadius, center.y + sinf(DEG2RAD*(angle + stepLength))*innerRadius);
angle += stepLength;
}
if (showCapLines)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*outerRadius, center.y + sinf(DEG2RAD*angle)*outerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*innerRadius, center.y + sinf(DEG2RAD*angle)*innerRadius);
}
rlEnd();
}
// Draw a color-filled rectangle
void DrawRectangle(int posX, int posY, int width, int height, Color color)
{
DrawRectangleV((Vector2){ (float)posX, (float)posY }, (Vector2){ (float)width, (float)height }, color);
}
// Draw a color-filled rectangle (Vector version)
// NOTE: On OpenGL 3.3 and ES2 we use QUADS to avoid drawing order issues
void DrawRectangleV(Vector2 position, Vector2 size, Color color)
{
DrawRectanglePro((Rectangle){ position.x, position.y, size.x, size.y }, (Vector2){ 0.0f, 0.0f }, 0.0f, color);
}
// Draw a color-filled rectangle
void DrawRectangleRec(Rectangle rec, Color color)
{
DrawRectanglePro(rec, (Vector2){ 0.0f, 0.0f }, 0.0f, color);
}
// Draw a color-filled rectangle with pro parameters
void DrawRectanglePro(Rectangle rec, Vector2 origin, float rotation, Color color)
{
Vector2 topLeft = { 0 };
Vector2 topRight = { 0 };
Vector2 bottomLeft = { 0 };
Vector2 bottomRight = { 0 };
// Only calculate rotation if needed
if (rotation == 0.0f)
{
float x = rec.x - origin.x;
float y = rec.y - origin.y;
topLeft = (Vector2){ x, y };
topRight = (Vector2){ x + rec.width, y };
bottomLeft = (Vector2){ x, y + rec.height };
bottomRight = (Vector2){ x + rec.width, y + rec.height };
}
else
{
float sinRotation = sinf(rotation*DEG2RAD);
float cosRotation = cosf(rotation*DEG2RAD);
float x = rec.x;
float y = rec.y;
float dx = -origin.x;
float dy = -origin.y;
topLeft.x = x + dx*cosRotation - dy*sinRotation;
topLeft.y = y + dx*sinRotation + dy*cosRotation;
topRight.x = x + (dx + rec.width)*cosRotation - dy*sinRotation;
topRight.y = y + (dx + rec.width)*sinRotation + dy*cosRotation;
bottomLeft.x = x + dx*cosRotation - (dy + rec.height)*sinRotation;
bottomLeft.y = y + dx*sinRotation + (dy + rec.height)*cosRotation;
bottomRight.x = x + (dx + rec.width)*cosRotation - (dy + rec.height)*sinRotation;
bottomRight.y = y + (dx + rec.width)*sinRotation + (dy + rec.height)*cosRotation;
}
#if defined(SUPPORT_QUADS_DRAW_MODE)
rlSetTexture(GetShapesTexture().id);
Rectangle shapeRect = GetShapesTextureRectangle();
rlBegin(RL_QUADS);
rlNormal3f(0.0f, 0.0f, 1.0f);
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(topLeft.x, topLeft.y);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(bottomLeft.x, bottomLeft.y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(bottomRight.x, bottomRight.y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(topRight.x, topRight.y);
rlEnd();
rlSetTexture(0);
#else
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(topLeft.x, topLeft.y);
rlVertex2f(bottomLeft.x, bottomLeft.y);
rlVertex2f(topRight.x, topRight.y);
rlVertex2f(topRight.x, topRight.y);
rlVertex2f(bottomLeft.x, bottomLeft.y);
rlVertex2f(bottomRight.x, bottomRight.y);
rlEnd();
#endif
}
// Draw a vertical-gradient-filled rectangle
void DrawRectangleGradientV(int posX, int posY, int width, int height, Color top, Color bottom)
{
DrawRectangleGradientEx((Rectangle){ (float)posX, (float)posY, (float)width, (float)height }, top, bottom, bottom, top);
}
// Draw a horizontal-gradient-filled rectangle
void DrawRectangleGradientH(int posX, int posY, int width, int height, Color left, Color right)
{
DrawRectangleGradientEx((Rectangle){ (float)posX, (float)posY, (float)width, (float)height }, left, left, right, right);
}
// Draw a gradient-filled rectangle
void DrawRectangleGradientEx(Rectangle rec, Color topLeft, Color bottomLeft, Color topRight, Color bottomRight)
{
rlSetTexture(GetShapesTexture().id);
Rectangle shapeRect = GetShapesTextureRectangle();
rlBegin(RL_QUADS);
rlNormal3f(0.0f, 0.0f, 1.0f);
// NOTE: Default raylib font character 95 is a white square
rlColor4ub(topLeft.r, topLeft.g, topLeft.b, topLeft.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(rec.x, rec.y);
rlColor4ub(bottomLeft.r, bottomLeft.g, bottomLeft.b, bottomLeft.a);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(rec.x, rec.y + rec.height);
rlColor4ub(topRight.r, topRight.g, topRight.b, topRight.a);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(rec.x + rec.width, rec.y + rec.height);
rlColor4ub(bottomRight.r, bottomRight.g, bottomRight.b, bottomRight.a);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(rec.x + rec.width, rec.y);
rlEnd();
rlSetTexture(0);
}
// Draw rectangle outline
// WARNING: All Draw*Lines() functions use RL_LINES for drawing,
// it implies flushing the current batch and changing draw mode to RL_LINES
// but it solves another issue: https://github.com/raysan5/raylib/issues/3884
void DrawRectangleLines(int posX, int posY, int width, int height, Color color)
{
Matrix mat = rlGetMatrixTransform();
float xOffset = 0.5f/mat.m0;
float yOffset = 0.5f/mat.m5;
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f((float)posX + xOffset, (float)posY + yOffset);
rlVertex2f((float)posX + (float)width - xOffset, (float)posY + yOffset);
rlVertex2f((float)posX + (float)width - xOffset, (float)posY + yOffset);
rlVertex2f((float)posX + (float)width - xOffset, (float)posY + (float)height - yOffset);
rlVertex2f((float)posX + (float)width - xOffset, (float)posY + (float)height - yOffset);
rlVertex2f((float)posX + xOffset, (float)posY + (float)height - yOffset);
rlVertex2f((float)posX + xOffset, (float)posY + (float)height - yOffset);
rlVertex2f((float)posX + xOffset, (float)posY + yOffset);
rlEnd();
/*
// Previous implementation, it has issues... but it does not require view matrix...
#if defined(SUPPORT_QUADS_DRAW_MODE)
DrawRectangle(posX, posY, width, 1, color);
DrawRectangle(posX + width - 1, posY + 1, 1, height - 2, color);
DrawRectangle(posX, posY + height - 1, width, 1, color);
DrawRectangle(posX, posY + 1, 1, height - 2, color);
#else
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f((float)posX, (float)posY);
rlVertex2f((float)posX + (float)width, (float)posY + 1);
rlVertex2f((float)posX + (float)width, (float)posY + 1);
rlVertex2f((float)posX + (float)width, (float)posY + (float)height);
rlVertex2f((float)posX + (float)width, (float)posY + (float)height);
rlVertex2f((float)posX + 1, (float)posY + (float)height);
rlVertex2f((float)posX + 1, (float)posY + (float)height);
rlVertex2f((float)posX + 1, (float)posY + 1);
rlEnd();
#endif
*/
}
// Draw rectangle outline with extended parameters
void DrawRectangleLinesEx(Rectangle rec, float lineThick, Color color)
{
if ((lineThick > rec.width) || (lineThick > rec.height))
{
if (rec.width >= rec.height) lineThick = rec.height/2;
else if (rec.width <= rec.height) lineThick = rec.width/2;
}
// When rec = { x, y, 8.0f, 6.0f } and lineThick = 2, the following
// four rectangles are drawn ([T]op, [B]ottom, [L]eft, [R]ight):
//
// TTTTTTTT
// TTTTTTTT
// LL RR
// LL RR
// BBBBBBBB
// BBBBBBBB
//
Rectangle top = { rec.x, rec.y, rec.width, lineThick };
Rectangle bottom = { rec.x, rec.y - lineThick + rec.height, rec.width, lineThick };
Rectangle left = { rec.x, rec.y + lineThick, lineThick, rec.height - lineThick*2.0f };
Rectangle right = { rec.x - lineThick + rec.width, rec.y + lineThick, lineThick, rec.height - lineThick*2.0f };
DrawRectangleRec(top, color);
DrawRectangleRec(bottom, color);
DrawRectangleRec(left, color);
DrawRectangleRec(right, color);
}
// Draw rectangle with rounded edges
void DrawRectangleRounded(Rectangle rec, float roundness, int segments, Color color)
{
// Not a rounded rectangle
if (roundness <= 0.0f)
{
DrawRectangleRec(rec, color);
return;
}
if (roundness >= 1.0f) roundness = 1.0f;
// Calculate corner radius
float radius = (rec.width > rec.height)? (rec.height*roundness)/2 : (rec.width*roundness)/2;
if (radius <= 0.0f) return;
// Calculate number of segments to use for the corners
if (segments < 4)
{
// Calculate the maximum angle between segments based on the error rate (usually 0.5f)
float th = acosf(2*powf(1 - SMOOTH_CIRCLE_ERROR_RATE/radius, 2) - 1);
segments = (int)(ceilf(2*PI/th)/4.0f);
if (segments <= 0) segments = 4;
}
float stepLength = 90.0f/(float)segments;
/*
Quick sketch to make sense of all of this,
there are 9 parts to draw, also mark the 12 points we'll use
P0____________________P1
/| |\
/1| 2 |3\
P7 /__|____________________|__\ P2
| |P8 P9| |
| 8 | 9 | 4 |
| __|____________________|__ |
P6 \ |P11 P10| / P3
\7| 6 |5/
\|____________________|/
P5 P4
*/
// Coordinates of the 12 points that define the rounded rect
const Vector2 point[12] = {
{(float)rec.x + radius, rec.y}, {(float)(rec.x + rec.width) - radius, rec.y}, { rec.x + rec.width, (float)rec.y + radius }, // PO, P1, P2
{rec.x + rec.width, (float)(rec.y + rec.height) - radius}, {(float)(rec.x + rec.width) - radius, rec.y + rec.height}, // P3, P4
{(float)rec.x + radius, rec.y + rec.height}, { rec.x, (float)(rec.y + rec.height) - radius}, {rec.x, (float)rec.y + radius}, // P5, P6, P7
{(float)rec.x + radius, (float)rec.y + radius}, {(float)(rec.x + rec.width) - radius, (float)rec.y + radius}, // P8, P9
{(float)(rec.x + rec.width) - radius, (float)(rec.y + rec.height) - radius}, {(float)rec.x + radius, (float)(rec.y + rec.height) - radius} // P10, P11
};
const Vector2 centers[4] = { point[8], point[9], point[10], point[11] };
const float angles[4] = { 180.0f, 270.0f, 0.0f, 90.0f };
#if defined(SUPPORT_QUADS_DRAW_MODE)
rlSetTexture(GetShapesTexture().id);
Rectangle shapeRect = GetShapesTextureRectangle();
rlBegin(RL_QUADS);
// Draw all the 4 corners: [1] Upper Left Corner, [3] Upper Right Corner, [5] Lower Right Corner, [7] Lower Left Corner
for (int k = 0; k < 4; ++k) // Hope the compiler is smart enough to unroll this loop
{
float angle = angles[k];
const Vector2 center = centers[k];
// NOTE: Every QUAD actually represents two segments
for (int i = 0; i < segments/2; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x, center.y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength*2))*radius, center.y + sinf(DEG2RAD*(angle + stepLength*2))*radius);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*radius, center.y + sinf(DEG2RAD*(angle + stepLength))*radius);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*radius, center.y + sinf(DEG2RAD*angle)*radius);
angle += (stepLength*2);
}
// NOTE: In case number of segments is odd, we add one last piece to the cake
if (segments%2)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x, center.y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*radius, center.y + sinf(DEG2RAD*(angle + stepLength))*radius);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*radius, center.y + sinf(DEG2RAD*angle)*radius);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x, center.y);
}
}
// [2] Upper Rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[0].x, point[0].y);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[8].x, point[8].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[9].x, point[9].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[1].x, point[1].y);
// [4] Right Rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[2].x, point[2].y);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[9].x, point[9].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[10].x, point[10].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[3].x, point[3].y);
// [6] Bottom Rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[11].x, point[11].y);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[5].x, point[5].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[4].x, point[4].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[10].x, point[10].y);
// [8] Left Rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[7].x, point[7].y);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[6].x, point[6].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[11].x, point[11].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[8].x, point[8].y);
// [9] Middle Rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[8].x, point[8].y);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[11].x, point[11].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[10].x, point[10].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[9].x, point[9].y);
rlEnd();
rlSetTexture(0);
#else
rlBegin(RL_TRIANGLES);
// Draw all of the 4 corners: [1] Upper Left Corner, [3] Upper Right Corner, [5] Lower Right Corner, [7] Lower Left Corner
for (int k = 0; k < 4; ++k) // Hope the compiler is smart enough to unroll this loop
{
float angle = angles[k];
const Vector2 center = centers[k];
for (int i = 0; i < segments; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(center.x, center.y);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*radius, center.y + sinf(DEG2RAD*(angle + stepLength))*radius);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*radius, center.y + sinf(DEG2RAD*angle)*radius);
angle += stepLength;
}
}
// [2] Upper Rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(point[0].x, point[0].y);
rlVertex2f(point[8].x, point[8].y);
rlVertex2f(point[9].x, point[9].y);
rlVertex2f(point[1].x, point[1].y);
rlVertex2f(point[0].x, point[0].y);
rlVertex2f(point[9].x, point[9].y);
// [4] Right Rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(point[9].x, point[9].y);
rlVertex2f(point[10].x, point[10].y);
rlVertex2f(point[3].x, point[3].y);
rlVertex2f(point[2].x, point[2].y);
rlVertex2f(point[9].x, point[9].y);
rlVertex2f(point[3].x, point[3].y);
// [6] Bottom Rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(point[11].x, point[11].y);
rlVertex2f(point[5].x, point[5].y);
rlVertex2f(point[4].x, point[4].y);
rlVertex2f(point[10].x, point[10].y);
rlVertex2f(point[11].x, point[11].y);
rlVertex2f(point[4].x, point[4].y);
// [8] Left Rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(point[7].x, point[7].y);
rlVertex2f(point[6].x, point[6].y);
rlVertex2f(point[11].x, point[11].y);
rlVertex2f(point[8].x, point[8].y);
rlVertex2f(point[7].x, point[7].y);
rlVertex2f(point[11].x, point[11].y);
// [9] Middle Rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(point[8].x, point[8].y);
rlVertex2f(point[11].x, point[11].y);
rlVertex2f(point[10].x, point[10].y);
rlVertex2f(point[9].x, point[9].y);
rlVertex2f(point[8].x, point[8].y);
rlVertex2f(point[10].x, point[10].y);
rlEnd();
#endif
}
// Draw rectangle with rounded edges
// TODO: This function should be refactored to use RL_LINES, for consistency with other Draw*Lines()
void DrawRectangleRoundedLines(Rectangle rec, float roundness, int segments, Color color)
{
DrawRectangleRoundedLinesEx(rec, roundness, segments, 1.0f, color);
}
// Draw rectangle with rounded edges outline
void DrawRectangleRoundedLinesEx(Rectangle rec, float roundness, int segments, float lineThick, Color color)
{
if (lineThick < 0) lineThick = 0;
// Not a rounded rectangle
if (roundness <= 0.0f)
{
DrawRectangleLinesEx((Rectangle){rec.x-lineThick, rec.y-lineThick, rec.width+2*lineThick, rec.height+2*lineThick}, lineThick, color);
return;
}
if (roundness >= 1.0f) roundness = 1.0f;
// Calculate corner radius
float radius = (rec.width > rec.height)? (rec.height*roundness)/2 : (rec.width*roundness)/2;
if (radius <= 0.0f) return;
// Calculate number of segments to use for the corners
if (segments < 4)
{
// Calculate the maximum angle between segments based on the error rate (usually 0.5f)
float th = acosf(2*powf(1 - SMOOTH_CIRCLE_ERROR_RATE/radius, 2) - 1);
segments = (int)(ceilf(2*PI/th)/2.0f);
if (segments <= 0) segments = 4;
}
float stepLength = 90.0f/(float)segments;
const float outerRadius = radius + lineThick, innerRadius = radius;
/*
Quick sketch to make sense of all of this,
marks the 16 + 4(corner centers P16-19) points we'll use
P0 ================== P1
// P8 P9 \\
// \\
P7 // P15 P10 \\ P2
|| *P16 P17* ||
|| ||
|| P14 P11 ||
P6 \\ *P19 P18* // P3
\\ //
\\ P13 P12 //
P5 ================== P4
*/
const Vector2 point[16] = {
{(float)rec.x + innerRadius + 0.5f, rec.y - lineThick + 0.5f},
{(float)(rec.x + rec.width) - innerRadius - 0.5f, rec.y - lineThick + 0.5f},
{rec.x + rec.width + lineThick - 0.5f, (float)rec.y + innerRadius + 0.5f}, // PO, P1, P2
{rec.x + rec.width + lineThick - 0.5f, (float)(rec.y + rec.height) - innerRadius - 0.5f},
{(float)(rec.x + rec.width) - innerRadius - 0.5f, rec.y + rec.height + lineThick - 0.5f}, // P3, P4
{(float)rec.x + innerRadius + 0.5f, rec.y + rec.height + lineThick - 0.5f},
{rec.x - lineThick + 0.5f, (float)(rec.y + rec.height) - innerRadius - 0.5f},
{rec.x - lineThick + 0.5f, (float)rec.y + innerRadius + 0.5f}, // P5, P6, P7
{(float)rec.x + innerRadius + 0.5f, rec.y + 0.5f},
{(float)(rec.x + rec.width) - innerRadius - 0.5f, rec.y + 0.5f}, // P8, P9
{rec.x + rec.width - 0.5f, (float)rec.y + innerRadius + 0.5f},
{rec.x + rec.width - 0.5f, (float)(rec.y + rec.height) - innerRadius - 0.5f}, // P10, P11
{(float)(rec.x + rec.width) - innerRadius - 0.5f, rec.y + rec.height - 0.5f},
{(float)rec.x + innerRadius + 0.5f, rec.y + rec.height - 0.5f}, // P12, P13
{rec.x + 0.5f, (float)(rec.y + rec.height) - innerRadius - 0.5f},
{rec.x + 0.5f, (float)rec.y + innerRadius + 0.5f} // P14, P15
};
const Vector2 centers[4] = {
{(float)rec.x + innerRadius + 0.5f, (float)rec.y + innerRadius + 0.5f},
{(float)(rec.x + rec.width) - innerRadius - 0.5f, (float)rec.y + innerRadius + 0.5f}, // P16, P17
{(float)(rec.x + rec.width) - innerRadius - 0.5f, (float)(rec.y + rec.height) - innerRadius - 0.5f},
{(float)rec.x + innerRadius + 0.5f, (float)(rec.y + rec.height) - innerRadius - 0.5f} // P18, P19
};
const float angles[4] = { 180.0f, 270.0f, 0.0f, 90.0f };
if (lineThick > 1)
{
#if defined(SUPPORT_QUADS_DRAW_MODE)
rlSetTexture(GetShapesTexture().id);
Rectangle shapeRect = GetShapesTextureRectangle();
rlBegin(RL_QUADS);
// Draw all the 4 corners first: Upper Left Corner, Upper Right Corner, Lower Right Corner, Lower Left Corner
for (int k = 0; k < 4; ++k) // Hope the compiler is smart enough to unroll this loop
{
float angle = angles[k];
const Vector2 center = centers[k];
for (int i = 0; i < segments; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*innerRadius, center.y + sinf(DEG2RAD*angle)*innerRadius);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*innerRadius, center.y + sinf(DEG2RAD*(angle + stepLength))*innerRadius);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*outerRadius, center.y + sinf(DEG2RAD*(angle + stepLength))*outerRadius);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*outerRadius, center.y + sinf(DEG2RAD*angle)*outerRadius);
angle += stepLength;
}
}
// Upper rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[0].x, point[0].y);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[8].x, point[8].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[9].x, point[9].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[1].x, point[1].y);
// Right rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[2].x, point[2].y);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[10].x, point[10].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[11].x, point[11].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[3].x, point[3].y);
// Lower rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[13].x, point[13].y);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[5].x, point[5].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[4].x, point[4].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[12].x, point[12].y);
// Left rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[15].x, point[15].y);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[7].x, point[7].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(point[6].x, point[6].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(point[14].x, point[14].y);
rlEnd();
rlSetTexture(0);
#else
rlBegin(RL_TRIANGLES);
// Draw all of the 4 corners first: Upper Left Corner, Upper Right Corner, Lower Right Corner, Lower Left Corner
for (int k = 0; k < 4; ++k) // Hope the compiler is smart enough to unroll this loop
{
float angle = angles[k];
const Vector2 center = centers[k];
for (int i = 0; i < segments; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*innerRadius, center.y + sinf(DEG2RAD*angle)*innerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*innerRadius, center.y + sinf(DEG2RAD*(angle + stepLength))*innerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*outerRadius, center.y + sinf(DEG2RAD*angle)*outerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*innerRadius, center.y + sinf(DEG2RAD*(angle + stepLength))*innerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*outerRadius, center.y + sinf(DEG2RAD*(angle + stepLength))*outerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*outerRadius, center.y + sinf(DEG2RAD*angle)*outerRadius);
angle += stepLength;
}
}
// Upper rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(point[0].x, point[0].y);
rlVertex2f(point[8].x, point[8].y);
rlVertex2f(point[9].x, point[9].y);
rlVertex2f(point[1].x, point[1].y);
rlVertex2f(point[0].x, point[0].y);
rlVertex2f(point[9].x, point[9].y);
// Right rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(point[10].x, point[10].y);
rlVertex2f(point[11].x, point[11].y);
rlVertex2f(point[3].x, point[3].y);
rlVertex2f(point[2].x, point[2].y);
rlVertex2f(point[10].x, point[10].y);
rlVertex2f(point[3].x, point[3].y);
// Lower rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(point[13].x, point[13].y);
rlVertex2f(point[5].x, point[5].y);
rlVertex2f(point[4].x, point[4].y);
rlVertex2f(point[12].x, point[12].y);
rlVertex2f(point[13].x, point[13].y);
rlVertex2f(point[4].x, point[4].y);
// Left rectangle
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(point[7].x, point[7].y);
rlVertex2f(point[6].x, point[6].y);
rlVertex2f(point[14].x, point[14].y);
rlVertex2f(point[15].x, point[15].y);
rlVertex2f(point[7].x, point[7].y);
rlVertex2f(point[14].x, point[14].y);
rlEnd();
#endif
}
else
{
// Use LINES to draw the outline
rlBegin(RL_LINES);
// Draw all the 4 corners first: Upper Left Corner, Upper Right Corner, Lower Right Corner, Lower Left Corner
for (int k = 0; k < 4; ++k) // Hope the compiler is smart enough to unroll this loop
{
float angle = angles[k];
const Vector2 center = centers[k];
for (int i = 0; i < segments; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(center.x + cosf(DEG2RAD*angle)*outerRadius, center.y + sinf(DEG2RAD*angle)*outerRadius);
rlVertex2f(center.x + cosf(DEG2RAD*(angle + stepLength))*outerRadius, center.y + sinf(DEG2RAD*(angle + stepLength))*outerRadius);
angle += stepLength;
}
}
// And now the remaining 4 lines
for (int i = 0; i < 8; i += 2)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(point[i].x, point[i].y);
rlVertex2f(point[i + 1].x, point[i + 1].y);
}
rlEnd();
}
}
// Draw a triangle
// NOTE: Vertex must be provided in counter-clockwise order
void DrawTriangle(Vector2 v1, Vector2 v2, Vector2 v3, Color color)
{
#if defined(SUPPORT_QUADS_DRAW_MODE)
rlSetTexture(GetShapesTexture().id);
Rectangle shapeRect = GetShapesTextureRectangle();
rlBegin(RL_QUADS);
rlColor4ub(color.r, color.g, color.b, color.a);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(v1.x, v1.y);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(v2.x, v2.y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(v2.x, v2.y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(v3.x, v3.y);
rlEnd();
rlSetTexture(0);
#else
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(v1.x, v1.y);
rlVertex2f(v2.x, v2.y);
rlVertex2f(v3.x, v3.y);
rlEnd();
#endif
}
// Draw a triangle using lines
// NOTE: Vertex must be provided in counter-clockwise order
void DrawTriangleLines(Vector2 v1, Vector2 v2, Vector2 v3, Color color)
{
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(v1.x, v1.y);
rlVertex2f(v2.x, v2.y);
rlVertex2f(v2.x, v2.y);
rlVertex2f(v3.x, v3.y);
rlVertex2f(v3.x, v3.y);
rlVertex2f(v1.x, v1.y);
rlEnd();
}
// Draw a triangle fan defined by points
// NOTE: First vertex provided is the center, shared by all triangles
// By default, following vertex should be provided in counter-clockwise order
void DrawTriangleFan(const Vector2 *points, int pointCount, Color color)
{
if (pointCount >= 3)
{
rlSetTexture(GetShapesTexture().id);
Rectangle shapeRect = GetShapesTextureRectangle();
rlBegin(RL_QUADS);
rlColor4ub(color.r, color.g, color.b, color.a);
for (int i = 1; i < pointCount - 1; i++)
{
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(points[0].x, points[0].y);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(points[i].x, points[i].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(points[i + 1].x, points[i + 1].y);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(points[i + 1].x, points[i + 1].y);
}
rlEnd();
rlSetTexture(0);
}
}
// Draw a triangle strip defined by points
// NOTE: Every new vertex connects with previous two
void DrawTriangleStrip(const Vector2 *points, int pointCount, Color color)
{
if (pointCount >= 3)
{
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
for (int i = 2; i < pointCount; i++)
{
if ((i%2) == 0)
{
rlVertex2f(points[i].x, points[i].y);
rlVertex2f(points[i - 2].x, points[i - 2].y);
rlVertex2f(points[i - 1].x, points[i - 1].y);
}
else
{
rlVertex2f(points[i].x, points[i].y);
rlVertex2f(points[i - 1].x, points[i - 1].y);
rlVertex2f(points[i - 2].x, points[i - 2].y);
}
}
rlEnd();
}
}
// Draw a regular polygon of n sides (Vector version)
void DrawPoly(Vector2 center, int sides, float radius, float rotation, Color color)
{
if (sides < 3) sides = 3;
float centralAngle = rotation*DEG2RAD;
float angleStep = 360.0f/(float)sides*DEG2RAD;
#if defined(SUPPORT_QUADS_DRAW_MODE)
rlSetTexture(GetShapesTexture().id);
Rectangle shapeRect = GetShapesTextureRectangle();
rlBegin(RL_QUADS);
for (int i = 0; i < sides; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
float nextAngle = centralAngle + angleStep;
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x, center.y);
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(centralAngle)*radius, center.y + sinf(centralAngle)*radius);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x + cosf(nextAngle)*radius, center.y + sinf(nextAngle)*radius);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(centralAngle)*radius, center.y + sinf(centralAngle)*radius);
centralAngle = nextAngle;
}
rlEnd();
rlSetTexture(0);
#else
rlBegin(RL_TRIANGLES);
for (int i = 0; i < sides; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(center.x, center.y);
rlVertex2f(center.x + cosf(centralAngle + angleStep)*radius, center.y + sinf(centralAngle + angleStep)*radius);
rlVertex2f(center.x + cosf(centralAngle)*radius, center.y + sinf(centralAngle)*radius);
centralAngle += angleStep;
}
rlEnd();
#endif
}
// Draw a polygon outline of n sides
void DrawPolyLines(Vector2 center, int sides, float radius, float rotation, Color color)
{
if (sides < 3) sides = 3;
float centralAngle = rotation*DEG2RAD;
float angleStep = 360.0f/(float)sides*DEG2RAD;
rlBegin(RL_LINES);
for (int i = 0; i < sides; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex2f(center.x + cosf(centralAngle)*radius, center.y + sinf(centralAngle)*radius);
rlVertex2f(center.x + cosf(centralAngle + angleStep)*radius, center.y + sinf(centralAngle + angleStep)*radius);
centralAngle += angleStep;
}
rlEnd();
}
void DrawPolyLinesEx(Vector2 center, int sides, float radius, float rotation, float lineThick, Color color)
{
if (sides < 3) sides = 3;
float centralAngle = rotation*DEG2RAD;
float exteriorAngle = 360.0f/(float)sides*DEG2RAD;
float innerRadius = radius - (lineThick*cosf(DEG2RAD*exteriorAngle/2.0f));
#if defined(SUPPORT_QUADS_DRAW_MODE)
rlSetTexture(GetShapesTexture().id);
Rectangle shapeRect = GetShapesTextureRectangle();
rlBegin(RL_QUADS);
for (int i = 0; i < sides; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
float nextAngle = centralAngle + exteriorAngle;
rlTexCoord2f(shapeRect.x/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(centralAngle)*radius, center.y + sinf(centralAngle)*radius);
rlTexCoord2f(shapeRect.x/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x + cosf(centralAngle)*innerRadius, center.y + sinf(centralAngle)*innerRadius);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, (shapeRect.y + shapeRect.height)/texShapes.height);
rlVertex2f(center.x + cosf(nextAngle)*innerRadius, center.y + sinf(nextAngle)*innerRadius);
rlTexCoord2f((shapeRect.x + shapeRect.width)/texShapes.width, shapeRect.y/texShapes.height);
rlVertex2f(center.x + cosf(nextAngle)*radius, center.y + sinf(nextAngle)*radius);
centralAngle = nextAngle;
}
rlEnd();
rlSetTexture(0);
#else
rlBegin(RL_TRIANGLES);
for (int i = 0; i < sides; i++)
{
rlColor4ub(color.r, color.g, color.b, color.a);
float nextAngle = centralAngle + exteriorAngle;
rlVertex2f(center.x + cosf(nextAngle)*radius, center.y + sinf(nextAngle)*radius);
rlVertex2f(center.x + cosf(centralAngle)*radius, center.y + sinf(centralAngle)*radius);
rlVertex2f(center.x + cosf(centralAngle)*innerRadius, center.y + sinf(centralAngle)*innerRadius);
rlVertex2f(center.x + cosf(centralAngle)*innerRadius, center.y + sinf(centralAngle)*innerRadius);
rlVertex2f(center.x + cosf(nextAngle)*innerRadius, center.y + sinf(nextAngle)*innerRadius);
rlVertex2f(center.x + cosf(nextAngle)*radius, center.y + sinf(nextAngle)*radius);
centralAngle = nextAngle;
}
rlEnd();
#endif
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Splines functions
//----------------------------------------------------------------------------------
// Draw spline: linear, minimum 2 points
void DrawSplineLinear(const Vector2 *points, int pointCount, float thick, Color color)
{
if (pointCount < 2) return;
#if defined(SUPPORT_SPLINE_MITERS)
Vector2 prevNormal = (Vector2){-(points[1].y - points[0].y), (points[1].x - points[0].x)};
float prevLength = sqrtf(prevNormal.x*prevNormal.x + prevNormal.y*prevNormal.y);
if (prevLength > 0.0f)
{
prevNormal.x /= prevLength;
prevNormal.y /= prevLength;
}
else
{
prevNormal.x = 0.0f;
prevNormal.y = 0.0f;
}
Vector2 prevRadius = { 0.5f*thick*prevNormal.x, 0.5f*thick*prevNormal.y };
for (int i = 0; i < pointCount - 1; i++)
{
Vector2 normal = { 0 };
if (i < pointCount - 2)
{
normal = (Vector2){-(points[i + 2].y - points[i + 1].y), (points[i + 2].x - points[i + 1].x)};
float normalLength = sqrtf(normal.x*normal.x + normal.y*normal.y);
if (normalLength > 0.0f)
{
normal.x /= normalLength;
normal.y /= normalLength;
}
else
{
normal.x = 0.0f;
normal.y = 0.0f;
}
}
else
{
normal = prevNormal;
}
Vector2 radius = { prevNormal.x + normal.x, prevNormal.y + normal.y };
float radiusLength = sqrtf(radius.x*radius.x + radius.y*radius.y);
if (radiusLength > 0.0f)
{
radius.x /= radiusLength;
radius.y /= radiusLength;
}
else
{
radius.x = 0.0f;
radius.y = 0.0f;
}
float cosTheta = radius.x*normal.x + radius.y*normal.y;
if (cosTheta != 0.0f)
{
radius.x *= (thick*0.5f/cosTheta);
radius.y *= (thick*0.5f/cosTheta);
}
else
{
radius.x = 0.0f;
radius.y = 0.0f;
}
Vector2 strip[4] = {
{ points[i].x - prevRadius.x, points[i].y - prevRadius.y },
{ points[i].x + prevRadius.x, points[i].y + prevRadius.y },
{ points[i + 1].x - radius.x, points[i + 1].y - radius.y },
{ points[i + 1].x + radius.x, points[i + 1].y + radius.y }
};
DrawTriangleStrip(strip, 4, color);
prevRadius = radius;
prevNormal = normal;
}
#else // !SUPPORT_SPLINE_MITERS
Vector2 delta = { 0 };
float length = 0.0f;
float scale = 0.0f;
for (int i = 0; i < pointCount - 1; i++)
{
delta = (Vector2){ points[i + 1].x - points[i].x, points[i + 1].y - points[i].y };
length = sqrtf(delta.x*delta.x + delta.y*delta.y);
if (length > 0) scale = thick/(2*length);
Vector2 radius = { -scale*delta.y, scale*delta.x };
Vector2 strip[4] = {
{ points[i].x - radius.x, points[i].y - radius.y },
{ points[i].x + radius.x, points[i].y + radius.y },
{ points[i + 1].x - radius.x, points[i + 1].y - radius.y },
{ points[i + 1].x + radius.x, points[i + 1].y + radius.y }
};
DrawTriangleStrip(strip, 4, color);
}
#endif
#if defined(SUPPORT_SPLINE_SEGMENT_CAPS)
// TODO: Add spline segment rounded caps at the begin/end of the spline
#endif
}
// Draw spline: B-Spline, minimum 4 points
void DrawSplineBasis(const Vector2 *points, int pointCount, float thick, Color color)
{
if (pointCount < 4) return;
float a[4] = { 0 };
float b[4] = { 0 };
float dy = 0.0f;
float dx = 0.0f;
float size = 0.0f;
Vector2 currentPoint = { 0 };
Vector2 nextPoint = { 0 };
Vector2 vertices[2*SPLINE_SEGMENT_DIVISIONS + 2] = { 0 };
for (int i = 0; i < (pointCount - 3); i++)
{
float t = 0.0f;
Vector2 p1 = points[i], p2 = points[i + 1], p3 = points[i + 2], p4 = points[i + 3];
a[0] = (-p1.x + 3.0f*p2.x - 3.0f*p3.x + p4.x)/6.0f;
a[1] = (3.0f*p1.x - 6.0f*p2.x + 3.0f*p3.x)/6.0f;
a[2] = (-3.0f*p1.x + 3.0f*p3.x)/6.0f;
a[3] = (p1.x + 4.0f*p2.x + p3.x)/6.0f;
b[0] = (-p1.y + 3.0f*p2.y - 3.0f*p3.y + p4.y)/6.0f;
b[1] = (3.0f*p1.y - 6.0f*p2.y + 3.0f*p3.y)/6.0f;
b[2] = (-3.0f*p1.y + 3.0f*p3.y)/6.0f;
b[3] = (p1.y + 4.0f*p2.y + p3.y)/6.0f;
currentPoint.x = a[3];
currentPoint.y = b[3];
if (i == 0) DrawCircleV(currentPoint, thick/2.0f, color); // Draw init line circle-cap
if (i > 0)
{
vertices[0].x = currentPoint.x + dy*size;
vertices[0].y = currentPoint.y - dx*size;
vertices[1].x = currentPoint.x - dy*size;
vertices[1].y = currentPoint.y + dx*size;
}
for (int j = 1; j <= SPLINE_SEGMENT_DIVISIONS; j++)
{
t = ((float)j)/((float)SPLINE_SEGMENT_DIVISIONS);
nextPoint.x = a[3] + t*(a[2] + t*(a[1] + t*a[0]));
nextPoint.y = b[3] + t*(b[2] + t*(b[1] + t*b[0]));
dy = nextPoint.y - currentPoint.y;
dx = nextPoint.x - currentPoint.x;
size = 0.5f*thick/sqrtf(dx*dx+dy*dy);
if ((i == 0) && (j == 1))
{
vertices[0].x = currentPoint.x + dy*size;
vertices[0].y = currentPoint.y - dx*size;
vertices[1].x = currentPoint.x - dy*size;
vertices[1].y = currentPoint.y + dx*size;
}
vertices[2*j + 1].x = nextPoint.x - dy*size;
vertices[2*j + 1].y = nextPoint.y + dx*size;
vertices[2*j].x = nextPoint.x + dy*size;
vertices[2*j].y = nextPoint.y - dx*size;
currentPoint = nextPoint;
}
DrawTriangleStrip(vertices, 2*SPLINE_SEGMENT_DIVISIONS + 2, color);
}
// Cap circle drawing at the end of every segment
DrawCircleV(currentPoint, thick/2.0f, color);
}
// Draw spline: Catmull-Rom, minimum 4 points
void DrawSplineCatmullRom(const Vector2 *points, int pointCount, float thick, Color color)
{
if (pointCount < 4) return;
float dy = 0.0f;
float dx = 0.0f;
float size = 0.0f;
Vector2 currentPoint = points[1];
Vector2 nextPoint = { 0 };
Vector2 vertices[2*SPLINE_SEGMENT_DIVISIONS + 2] = { 0 };
DrawCircleV(currentPoint, thick/2.0f, color); // Draw init line circle-cap
for (int i = 0; i < (pointCount - 3); i++)
{
float t = 0.0f;
Vector2 p1 = points[i], p2 = points[i + 1], p3 = points[i + 2], p4 = points[i + 3];
if (i > 0)
{
vertices[0].x = currentPoint.x + dy*size;
vertices[0].y = currentPoint.y - dx*size;
vertices[1].x = currentPoint.x - dy*size;
vertices[1].y = currentPoint.y + dx*size;
}
for (int j = 1; j <= SPLINE_SEGMENT_DIVISIONS; j++)
{
t = ((float)j)/((float)SPLINE_SEGMENT_DIVISIONS);
float q0 = (-1.0f*t*t*t) + (2.0f*t*t) + (-1.0f*t);
float q1 = (3.0f*t*t*t) + (-5.0f*t*t) + 2.0f;
float q2 = (-3.0f*t*t*t) + (4.0f*t*t) + t;
float q3 = t*t*t - t*t;
nextPoint.x = 0.5f*((p1.x*q0) + (p2.x*q1) + (p3.x*q2) + (p4.x*q3));
nextPoint.y = 0.5f*((p1.y*q0) + (p2.y*q1) + (p3.y*q2) + (p4.y*q3));
dy = nextPoint.y - currentPoint.y;
dx = nextPoint.x - currentPoint.x;
size = (0.5f*thick)/sqrtf(dx*dx + dy*dy);
if ((i == 0) && (j == 1))
{
vertices[0].x = currentPoint.x + dy*size;
vertices[0].y = currentPoint.y - dx*size;
vertices[1].x = currentPoint.x - dy*size;
vertices[1].y = currentPoint.y + dx*size;
}
vertices[2*j + 1].x = nextPoint.x - dy*size;
vertices[2*j + 1].y = nextPoint.y + dx*size;
vertices[2*j].x = nextPoint.x + dy*size;
vertices[2*j].y = nextPoint.y - dx*size;
currentPoint = nextPoint;
}
DrawTriangleStrip(vertices, 2*SPLINE_SEGMENT_DIVISIONS + 2, color);
}
// Cap circle drawing at the end of every segment
DrawCircleV(currentPoint, thick/2.0f, color);
}
// Draw spline: Quadratic Bezier, minimum 3 points (1 control point): [p1, c2, p3, c4...]
void DrawSplineBezierQuadratic(const Vector2 *points, int pointCount, float thick, Color color)
{
if (pointCount >= 3)
{
for (int i = 0; i < pointCount - 2; i += 2) DrawSplineSegmentBezierQuadratic(points[i], points[i + 1], points[i + 2], thick, color);
// Cap circle drawing at the end of every segment
//for (int i = 2; i < pointCount - 2; i += 2) DrawCircleV(points[i], thick/2.0f, color);
}
}
// Draw spline: Cubic Bezier, minimum 4 points (2 control points): [p1, c2, c3, p4, c5, c6...]
void DrawSplineBezierCubic(const Vector2 *points, int pointCount, float thick, Color color)
{
if (pointCount >= 4)
{
for (int i = 0; i < pointCount - 3; i += 3) DrawSplineSegmentBezierCubic(points[i], points[i + 1], points[i + 2], points[i + 3], thick, color);
// Cap circle drawing at the end of every segment
//for (int i = 3; i < pointCount - 3; i += 3) DrawCircleV(points[i], thick/2.0f, color);
}
}
// Draw spline segment: Linear, 2 points
void DrawSplineSegmentLinear(Vector2 p1, Vector2 p2, float thick, Color color)
{
// NOTE: For the linear spline we don't use subdivisions, just a single quad
Vector2 delta = { p2.x - p1.x, p2.y - p1.y };
float length = sqrtf(delta.x*delta.x + delta.y*delta.y);
if ((length > 0) && (thick > 0))
{
float scale = thick/(2*length);
Vector2 radius = { -scale*delta.y, scale*delta.x };
Vector2 strip[4] = {
{ p1.x - radius.x, p1.y - radius.y },
{ p1.x + radius.x, p1.y + radius.y },
{ p2.x - radius.x, p2.y - radius.y },
{ p2.x + radius.x, p2.y + radius.y }
};
DrawTriangleStrip(strip, 4, color);
}
}
// Draw spline segment: B-Spline, 4 points
void DrawSplineSegmentBasis(Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4, float thick, Color color)
{
const float step = 1.0f/SPLINE_SEGMENT_DIVISIONS;
Vector2 currentPoint = { 0 };
Vector2 nextPoint = { 0 };
float t = 0.0f;
Vector2 points[2*SPLINE_SEGMENT_DIVISIONS + 2] = { 0 };
float a[4] = { 0 };
float b[4] = { 0 };
a[0] = (-p1.x + 3*p2.x - 3*p3.x + p4.x)/6.0f;
a[1] = (3*p1.x - 6*p2.x + 3*p3.x)/6.0f;
a[2] = (-3*p1.x + 3*p3.x)/6.0f;
a[3] = (p1.x + 4*p2.x + p3.x)/6.0f;
b[0] = (-p1.y + 3*p2.y - 3*p3.y + p4.y)/6.0f;
b[1] = (3*p1.y - 6*p2.y + 3*p3.y)/6.0f;
b[2] = (-3*p1.y + 3*p3.y)/6.0f;
b[3] = (p1.y + 4*p2.y + p3.y)/6.0f;
currentPoint.x = a[3];
currentPoint.y = b[3];
for (int i = 0; i <= SPLINE_SEGMENT_DIVISIONS; i++)
{
t = step*(float)i;
nextPoint.x = a[3] + t*(a[2] + t*(a[1] + t*a[0]));
nextPoint.y = b[3] + t*(b[2] + t*(b[1] + t*b[0]));
float dy = nextPoint.y - currentPoint.y;
float dx = nextPoint.x - currentPoint.x;
float size = (0.5f*thick)/sqrtf(dx*dx + dy*dy);
if (i == 1)
{
points[0].x = currentPoint.x + dy*size;
points[0].y = currentPoint.y - dx*size;
points[1].x = currentPoint.x - dy*size;
points[1].y = currentPoint.y + dx*size;
}
points[2*i + 1].x = nextPoint.x - dy*size;
points[2*i + 1].y = nextPoint.y + dx*size;
points[2*i].x = nextPoint.x + dy*size;
points[2*i].y = nextPoint.y - dx*size;
currentPoint = nextPoint;
}
DrawTriangleStrip(points, 2*SPLINE_SEGMENT_DIVISIONS+2, color);
}
// Draw spline segment: Catmull-Rom, 4 points
void DrawSplineSegmentCatmullRom(Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4, float thick, Color color)
{
const float step = 1.0f/SPLINE_SEGMENT_DIVISIONS;
Vector2 currentPoint = p1;
Vector2 nextPoint = { 0 };
float t = 0.0f;
Vector2 points[2*SPLINE_SEGMENT_DIVISIONS + 2] = { 0 };
for (int i = 0; i <= SPLINE_SEGMENT_DIVISIONS; i++)
{
t = step*(float)i;
float q0 = (-1*t*t*t) + (2*t*t) + (-1*t);
float q1 = (3*t*t*t) + (-5*t*t) + 2;
float q2 = (-3*t*t*t) + (4*t*t) + t;
float q3 = t*t*t - t*t;
nextPoint.x = 0.5f*((p1.x*q0) + (p2.x*q1) + (p3.x*q2) + (p4.x*q3));
nextPoint.y = 0.5f*((p1.y*q0) + (p2.y*q1) + (p3.y*q2) + (p4.y*q3));
float dy = nextPoint.y - currentPoint.y;
float dx = nextPoint.x - currentPoint.x;
float size = (0.5f*thick)/sqrtf(dx*dx + dy*dy);
if (i == 1)
{
points[0].x = currentPoint.x + dy*size;
points[0].y = currentPoint.y - dx*size;
points[1].x = currentPoint.x - dy*size;
points[1].y = currentPoint.y + dx*size;
}
points[2*i + 1].x = nextPoint.x - dy*size;
points[2*i + 1].y = nextPoint.y + dx*size;
points[2*i].x = nextPoint.x + dy*size;
points[2*i].y = nextPoint.y - dx*size;
currentPoint = nextPoint;
}
DrawTriangleStrip(points, 2*SPLINE_SEGMENT_DIVISIONS + 2, color);
}
// Draw spline segment: Quadratic Bezier, 2 points, 1 control point
void DrawSplineSegmentBezierQuadratic(Vector2 p1, Vector2 c2, Vector2 p3, float thick, Color color)
{
const float step = 1.0f/SPLINE_SEGMENT_DIVISIONS;
Vector2 previous = p1;
Vector2 current = { 0 };
float t = 0.0f;
Vector2 points[2*SPLINE_SEGMENT_DIVISIONS + 2] = { 0 };
for (int i = 1; i <= SPLINE_SEGMENT_DIVISIONS; i++)
{
t = step*(float)i;
float a = powf(1.0f - t, 2);
float b = 2.0f*(1.0f - t)*t;
float c = powf(t, 2);
// NOTE: The easing functions aren't suitable here because they don't take a control point
current.y = a*p1.y + b*c2.y + c*p3.y;
current.x = a*p1.x + b*c2.x + c*p3.x;
float dy = current.y - previous.y;
float dx = current.x - previous.x;
float size = 0.5f*thick/sqrtf(dx*dx+dy*dy);
if (i == 1)
{
points[0].x = previous.x + dy*size;
points[0].y = previous.y - dx*size;
points[1].x = previous.x - dy*size;
points[1].y = previous.y + dx*size;
}
points[2*i + 1].x = current.x - dy*size;
points[2*i + 1].y = current.y + dx*size;
points[2*i].x = current.x + dy*size;
points[2*i].y = current.y - dx*size;
previous = current;
}
DrawTriangleStrip(points, 2*SPLINE_SEGMENT_DIVISIONS + 2, color);
}
// Draw spline segment: Cubic Bezier, 2 points, 2 control points
void DrawSplineSegmentBezierCubic(Vector2 p1, Vector2 c2, Vector2 c3, Vector2 p4, float thick, Color color)
{
const float step = 1.0f/SPLINE_SEGMENT_DIVISIONS;
Vector2 previous = p1;
Vector2 current = { 0 };
float t = 0.0f;
Vector2 points[2*SPLINE_SEGMENT_DIVISIONS + 2] = { 0 };
for (int i = 1; i <= SPLINE_SEGMENT_DIVISIONS; i++)
{
t = step*(float)i;
float a = powf(1.0f - t, 3);
float b = 3.0f*powf(1.0f - t, 2)*t;
float c = 3.0f*(1.0f - t)*powf(t, 2);
float d = powf(t, 3);
current.y = a*p1.y + b*c2.y + c*c3.y + d*p4.y;
current.x = a*p1.x + b*c2.x + c*c3.x + d*p4.x;
float dy = current.y - previous.y;
float dx = current.x - previous.x;
float size = 0.5f*thick/sqrtf(dx*dx+dy*dy);
if (i == 1)
{
points[0].x = previous.x + dy*size;
points[0].y = previous.y - dx*size;
points[1].x = previous.x - dy*size;
points[1].y = previous.y + dx*size;
}
points[2*i + 1].x = current.x - dy*size;
points[2*i + 1].y = current.y + dx*size;
points[2*i].x = current.x + dy*size;
points[2*i].y = current.y - dx*size;
previous = current;
}
DrawTriangleStrip(points, 2*SPLINE_SEGMENT_DIVISIONS + 2, color);
}
// Get spline point for a given t [0.0f .. 1.0f], Linear
Vector2 GetSplinePointLinear(Vector2 startPos, Vector2 endPos, float t)
{
Vector2 point = { 0 };
point.x = startPos.x*(1.0f - t) + endPos.x*t;
point.y = startPos.y*(1.0f - t) + endPos.y*t;
return point;
}
// Get spline point for a given t [0.0f .. 1.0f], B-Spline
Vector2 GetSplinePointBasis(Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4, float t)
{
Vector2 point = { 0 };
float a[4] = { 0 };
float b[4] = { 0 };
a[0] = (-p1.x + 3*p2.x - 3*p3.x + p4.x)/6.0f;
a[1] = (3*p1.x - 6*p2.x + 3*p3.x)/6.0f;
a[2] = (-3*p1.x + 3*p3.x)/6.0f;
a[3] = (p1.x + 4*p2.x + p3.x)/6.0f;
b[0] = (-p1.y + 3*p2.y - 3*p3.y + p4.y)/6.0f;
b[1] = (3*p1.y - 6*p2.y + 3*p3.y)/6.0f;
b[2] = (-3*p1.y + 3*p3.y)/6.0f;
b[3] = (p1.y + 4*p2.y + p3.y)/6.0f;
point.x = a[3] + t*(a[2] + t*(a[1] + t*a[0]));
point.y = b[3] + t*(b[2] + t*(b[1] + t*b[0]));
return point;
}
// Get spline point for a given t [0.0f .. 1.0f], Catmull-Rom
Vector2 GetSplinePointCatmullRom(Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4, float t)
{
Vector2 point = { 0 };
float q0 = (-1*t*t*t) + (2*t*t) + (-1*t);
float q1 = (3*t*t*t) + (-5*t*t) + 2;
float q2 = (-3*t*t*t) + (4*t*t) + t;
float q3 = t*t*t - t*t;
point.x = 0.5f*((p1.x*q0) + (p2.x*q1) + (p3.x*q2) + (p4.x*q3));
point.y = 0.5f*((p1.y*q0) + (p2.y*q1) + (p3.y*q2) + (p4.y*q3));
return point;
}
// Get spline point for a given t [0.0f .. 1.0f], Quadratic Bezier
Vector2 GetSplinePointBezierQuad(Vector2 startPos, Vector2 controlPos, Vector2 endPos, float t)
{
Vector2 point = { 0 };
float a = powf(1.0f - t, 2);
float b = 2.0f*(1.0f - t)*t;
float c = powf(t, 2);
point.y = a*startPos.y + b*controlPos.y + c*endPos.y;
point.x = a*startPos.x + b*controlPos.x + c*endPos.x;
return point;
}
// Get spline point for a given t [0.0f .. 1.0f], Cubic Bezier
Vector2 GetSplinePointBezierCubic(Vector2 startPos, Vector2 startControlPos, Vector2 endControlPos, Vector2 endPos, float t)
{
Vector2 point = { 0 };
float a = powf(1.0f - t, 3);
float b = 3.0f*powf(1.0f - t, 2)*t;
float c = 3.0f*(1.0f - t)*powf(t, 2);
float d = powf(t, 3);
point.y = a*startPos.y + b*startControlPos.y + c*endControlPos.y + d*endPos.y;
point.x = a*startPos.x + b*startControlPos.x + c*endControlPos.x + d*endPos.x;
return point;
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Collision Detection functions
//----------------------------------------------------------------------------------
// Check if point is inside rectangle
bool CheckCollisionPointRec(Vector2 point, Rectangle rec)
{
bool collision = false;
if ((point.x >= rec.x) && (point.x < (rec.x + rec.width)) && (point.y >= rec.y) && (point.y < (rec.y + rec.height))) collision = true;
return collision;
}
// Check if point is inside circle
bool CheckCollisionPointCircle(Vector2 point, Vector2 center, float radius)
{
bool collision = false;
float distanceSquared = (point.x - center.x)*(point.x - center.x) + (point.y - center.y)*(point.y - center.y);
if (distanceSquared <= radius*radius) collision = true;
return collision;
}
// Check if point is inside a triangle defined by three points (p1, p2, p3)
bool CheckCollisionPointTriangle(Vector2 point, Vector2 p1, Vector2 p2, Vector2 p3)
{
bool collision = false;
float alpha = ((p2.y - p3.y)*(point.x - p3.x) + (p3.x - p2.x)*(point.y - p3.y)) /
((p2.y - p3.y)*(p1.x - p3.x) + (p3.x - p2.x)*(p1.y - p3.y));
float beta = ((p3.y - p1.y)*(point.x - p3.x) + (p1.x - p3.x)*(point.y - p3.y)) /
((p2.y - p3.y)*(p1.x - p3.x) + (p3.x - p2.x)*(p1.y - p3.y));
float gamma = 1.0f - alpha - beta;
if ((alpha > 0) && (beta > 0) && (gamma > 0)) collision = true;
return collision;
}
// Check if point is within a polygon described by array of vertices
// NOTE: Based on http://jeffreythompson.org/collision-detection/poly-point.php
bool CheckCollisionPointPoly(Vector2 point, const Vector2 *points, int pointCount)
{
bool inside = false;
if (pointCount > 2)
{
for (int i = 0, j = pointCount - 1; i < pointCount; j = i++)
{
if ((points[i].y > point.y) != (points[j].y > point.y) &&
(point.x < (points[j].x - points[i].x)*(point.y - points[i].y)/(points[j].y - points[i].y) + points[i].x))
{
inside = !inside;
}
}
}
return inside;
}
// Check collision between two rectangles
bool CheckCollisionRecs(Rectangle rec1, Rectangle rec2)
{
bool collision = false;
if ((rec1.x < (rec2.x + rec2.width) && (rec1.x + rec1.width) > rec2.x) &&
(rec1.y < (rec2.y + rec2.height) && (rec1.y + rec1.height) > rec2.y)) collision = true;
return collision;
}
// Check collision between two circles
bool CheckCollisionCircles(Vector2 center1, float radius1, Vector2 center2, float radius2)
{
bool collision = false;
float dx = center2.x - center1.x; // X distance between centers
float dy = center2.y - center1.y; // Y distance between centers
float distanceSquared = dx*dx + dy*dy; // Distance between centers squared
float radiusSum = radius1 + radius2;
collision = (distanceSquared <= (radiusSum*radiusSum));
return collision;
}
// Check collision between circle and rectangle
// NOTE: Reviewed version to take into account corner limit case
bool CheckCollisionCircleRec(Vector2 center, float radius, Rectangle rec)
{
bool collision = false;
float recCenterX = rec.x + rec.width/2.0f;
float recCenterY = rec.y + rec.height/2.0f;
float dx = fabsf(center.x - recCenterX);
float dy = fabsf(center.y - recCenterY);
if (dx > (rec.width/2.0f + radius)) { return false; }
if (dy > (rec.height/2.0f + radius)) { return false; }
if (dx <= (rec.width/2.0f)) { return true; }
if (dy <= (rec.height/2.0f)) { return true; }
float cornerDistanceSq = (dx - rec.width/2.0f)*(dx - rec.width/2.0f) +
(dy - rec.height/2.0f)*(dy - rec.height/2.0f);
collision = (cornerDistanceSq <= (radius*radius));
return collision;
}
// Check the collision between two lines defined by two points each, returns collision point by reference
bool CheckCollisionLines(Vector2 startPos1, Vector2 endPos1, Vector2 startPos2, Vector2 endPos2, Vector2 *collisionPoint)
{
bool collision = false;
float div = (endPos2.y - startPos2.y)*(endPos1.x - startPos1.x) - (endPos2.x - startPos2.x)*(endPos1.y - startPos1.y);
if (fabsf(div) >= FLT_EPSILON)
{
collision = true;
float xi = ((startPos2.x - endPos2.x)*(startPos1.x*endPos1.y - startPos1.y*endPos1.x) - (startPos1.x - endPos1.x)*(startPos2.x*endPos2.y - startPos2.y*endPos2.x))/div;
float yi = ((startPos2.y - endPos2.y)*(startPos1.x*endPos1.y - startPos1.y*endPos1.x) - (startPos1.y - endPos1.y)*(startPos2.x*endPos2.y - startPos2.y*endPos2.x))/div;
if (((fabsf(startPos1.x - endPos1.x) > FLT_EPSILON) && (xi < fminf(startPos1.x, endPos1.x) || (xi > fmaxf(startPos1.x, endPos1.x)))) ||
((fabsf(startPos2.x - endPos2.x) > FLT_EPSILON) && (xi < fminf(startPos2.x, endPos2.x) || (xi > fmaxf(startPos2.x, endPos2.x)))) ||
((fabsf(startPos1.y - endPos1.y) > FLT_EPSILON) && (yi < fminf(startPos1.y, endPos1.y) || (yi > fmaxf(startPos1.y, endPos1.y)))) ||
((fabsf(startPos2.y - endPos2.y) > FLT_EPSILON) && (yi < fminf(startPos2.y, endPos2.y) || (yi > fmaxf(startPos2.y, endPos2.y))))) collision = false;
if (collision && (collisionPoint != 0))
{
collisionPoint->x = xi;
collisionPoint->y = yi;
}
}
return collision;
}
// Check if point belongs to line created between two points [p1] and [p2] with defined margin in pixels [threshold]
bool CheckCollisionPointLine(Vector2 point, Vector2 p1, Vector2 p2, int threshold)
{
bool collision = false;
float dxc = point.x - p1.x;
float dyc = point.y - p1.y;
float dxl = p2.x - p1.x;
float dyl = p2.y - p1.y;
float cross = dxc*dyl - dyc*dxl;
if (fabsf(cross) < (threshold*fmaxf(fabsf(dxl), fabsf(dyl))))
{
if (fabsf(dxl) >= fabsf(dyl)) collision = (dxl > 0)? ((p1.x <= point.x) && (point.x <= p2.x)) : ((p2.x <= point.x) && (point.x <= p1.x));
else collision = (dyl > 0)? ((p1.y <= point.y) && (point.y <= p2.y)) : ((p2.y <= point.y) && (point.y <= p1.y));
}
return collision;
}
// Check if circle collides with a line created between two points [p1] and [p2]
RLAPI bool CheckCollisionCircleLine(Vector2 center, float radius, Vector2 p1, Vector2 p2)
{
float dx = p1.x - p2.x;
float dy = p1.y - p2.y;
if ((fabsf(dx) + fabsf(dy)) <= FLT_EPSILON)
{
return CheckCollisionCircles(p1, 0, center, radius);
}
float lengthSQ = ((dx*dx) + (dy*dy));
float dotProduct = (((center.x - p1.x)*(p2.x - p1.x)) + ((center.y - p1.y)*(p2.y - p1.y)))/(lengthSQ);
if (dotProduct > 1.0f) dotProduct = 1.0f;
else if (dotProduct < 0.0f) dotProduct = 0.0f;
float dx2 = (p1.x - (dotProduct*(dx))) - center.x;
float dy2 = (p1.y - (dotProduct*(dy))) - center.y;
float distanceSQ = ((dx2*dx2) + (dy2*dy2));
return (distanceSQ <= radius*radius);
}
// Get collision rectangle for two rectangles collision
Rectangle GetCollisionRec(Rectangle rec1, Rectangle rec2)
{
Rectangle overlap = { 0 };
float left = (rec1.x > rec2.x)? rec1.x : rec2.x;
float right1 = rec1.x + rec1.width;
float right2 = rec2.x + rec2.width;
float right = (right1 < right2)? right1 : right2;
float top = (rec1.y > rec2.y)? rec1.y : rec2.y;
float bottom1 = rec1.y + rec1.height;
float bottom2 = rec2.y + rec2.height;
float bottom = (bottom1 < bottom2)? bottom1 : bottom2;
if ((left < right) && (top < bottom))
{
overlap.x = left;
overlap.y = top;
overlap.width = right - left;
overlap.height = bottom - top;
}
return overlap;
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
// Cubic easing in-out
// NOTE: Used by DrawLineBezier() only
static float EaseCubicInOut(float t, float b, float c, float d)
{
float result = 0.0f;
if ((t /= 0.5f*d) < 1) result = 0.5f*c*t*t*t + b;
else
{
t -= 2;
result = 0.5f*c*(t*t*t + 2.0f) + b;
}
return result;
}
#endif // SUPPORT_MODULE_RSHAPES