| /******************************************************************************************* | |
| * | |
| *   rPBR [shader] - Bidirectional reflectance distribution function fragment shader | |
| * | |
| *   Copyright (c) 2017 Victor Fisac | |
| * | |
| **********************************************************************************************/ | |
| 
 | |
| #version 330 | |
| #define         MAX_SAMPLES        1024u | |
| 
 | |
| // Input vertex attributes (from vertex shader) | |
| in vec2 fragTexCoord; | |
| 
 | |
| // Constant values | |
| const float PI = 3.14159265359; | |
|  | |
| // Output fragment color | |
| out vec4 finalColor; | |
| 
 | |
| float DistributionGGX(vec3 N, vec3 H, float roughness); | |
| float RadicalInverse_VdC(uint bits); | |
| vec2 Hammersley(uint i, uint N); | |
| vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness); | |
| float GeometrySchlickGGX(float NdotV, float roughness); | |
| float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness); | |
| vec2 IntegrateBRDF(float NdotV, float roughness); | |
| 
 | |
| float DistributionGGX(vec3 N, vec3 H, float roughness) | |
| { | |
|     float a = roughness*roughness; | |
|     float a2 = a*a; | |
|     float NdotH = max(dot(N, H), 0.0); | |
|     float NdotH2 = NdotH*NdotH; | |
| 
 | |
|     float nom   = a2; | |
|     float denom = (NdotH2*(a2 - 1.0) + 1.0); | |
|     denom = PI*denom*denom; | |
| 
 | |
|     return nom/denom; | |
| } | |
| 
 | |
| float RadicalInverse_VdC(uint bits) | |
| { | |
|      bits = (bits << 16u) | (bits >> 16u); | |
|      bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); | |
|      bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); | |
|      bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); | |
|      bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); | |
|      return float(bits) * 2.3283064365386963e-10; // / 0x100000000 | |
| } | |
| 
 | |
| vec2 Hammersley(uint i, uint N) | |
| { | |
| 	return vec2(float(i)/float(N), RadicalInverse_VdC(i)); | |
| } | |
| 
 | |
| vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness) | |
| { | |
| 	float a = roughness*roughness; | |
| 	float phi = 2.0 * PI * Xi.x; | |
| 	float cosTheta = sqrt((1.0 - Xi.y)/(1.0 + (a*a - 1.0)*Xi.y)); | |
| 	float sinTheta = sqrt(1.0 - cosTheta*cosTheta); | |
| 
 | |
| 	// Transform from spherical coordinates to cartesian coordinates (halfway vector) | |
| 	vec3 H = vec3(cos(phi)*sinTheta, sin(phi)*sinTheta, cosTheta); | |
| 
 | |
| 	// Transform from tangent space H vector to world space sample vector | |
| 	vec3 up = ((abs(N.z) < 0.999) ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0)); | |
| 	vec3 tangent = normalize(cross(up, N)); | |
| 	vec3 bitangent = cross(N, tangent); | |
| 	vec3 sampleVec = tangent*H.x + bitangent*H.y + N*H.z; | |
| 
 | |
| 	return normalize(sampleVec); | |
| } | |
| 
 | |
| float GeometrySchlickGGX(float NdotV, float roughness) | |
| { | |
|     // For IBL k is calculated different | |
|     float k = (roughness*roughness)/2.0; | |
| 
 | |
|     float nom = NdotV; | |
|     float denom = NdotV*(1.0 - k) + k; | |
| 
 | |
|     return nom/denom; | |
| } | |
| 
 | |
| float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) | |
| { | |
|     float NdotV = max(dot(N, V), 0.0); | |
|     float NdotL = max(dot(N, L), 0.0); | |
|     float ggx2 = GeometrySchlickGGX(NdotV, roughness); | |
|     float ggx1 = GeometrySchlickGGX(NdotL, roughness); | |
| 
 | |
|     return ggx1*ggx2; | |
| } | |
| 
 | |
| vec2 IntegrateBRDF(float NdotV, float roughness) | |
| { | |
|     vec3 V = vec3(sqrt(1.0 - NdotV*NdotV), 0.0, NdotV); | |
|     float A = 0.0; | |
|     float B = 0.0;  | |
|     vec3 N = vec3(0.0, 0.0, 1.0); | |
| 
 | |
|     for(uint i = 0u; i < MAX_SAMPLES; i++) | |
|     { | |
|         // Generate a sample vector that's biased towards the preferred alignment direction (importance sampling) | |
|         vec2 Xi = Hammersley(i, MAX_SAMPLES); | |
|         vec3 H = ImportanceSampleGGX(Xi, N, roughness); | |
|         vec3 L = normalize(2.0*dot(V, H)*H - V); | |
|         float NdotL = max(L.z, 0.0); | |
|         float NdotH = max(H.z, 0.0); | |
|         float VdotH = max(dot(V, H), 0.0); | |
| 
 | |
|         if (NdotL > 0.0) | |
|         { | |
|             float G = GeometrySmith(N, V, L, roughness); | |
|             float G_Vis = (G*VdotH)/(NdotH*NdotV); | |
|             float Fc = pow(1.0 - VdotH, 5.0); | |
| 
 | |
|             A += (1.0 - Fc)*G_Vis; | |
|             B += Fc*G_Vis; | |
|         } | |
|     } | |
| 
 | |
|     // Calculate brdf average sample | |
|     A /= float(MAX_SAMPLES); | |
|     B /= float(MAX_SAMPLES); | |
| 
 | |
|     return vec2(A, B); | |
| } | |
| 
 | |
| void main() | |
| { | |
|     // Calculate brdf based on texture coordinates | |
|     vec2 brdf = IntegrateBRDF(fragTexCoord.x, fragTexCoord.y); | |
| 
 | |
|     // Calculate final fragment color | |
|     finalColor = vec4(brdf.r, brdf.g, 0.0, 1.0); | |
| }
 |