Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.
 
 
 
 
 
 

6795 rader
300 KiB

/**********************************************************************************************
*
* rmodels - Basic functions to draw 3d shapes and load and draw 3d models
*
* CONFIGURATION:
* #define SUPPORT_MODULE_RMODELS
* rmodels module is included in the build
*
* #define SUPPORT_FILEFORMAT_OBJ
* #define SUPPORT_FILEFORMAT_MTL
* #define SUPPORT_FILEFORMAT_IQM
* #define SUPPORT_FILEFORMAT_GLTF
* #define SUPPORT_FILEFORMAT_VOX
* #define SUPPORT_FILEFORMAT_M3D
* Selected desired fileformats to be supported for model data loading.
*
* #define SUPPORT_MESH_GENERATION
* Support procedural mesh generation functions, uses external par_shapes.h library
* NOTE: Some generated meshes DO NOT include generated texture coordinates
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2013-2024 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#include "raylib.h" // Declares module functions
// Check if config flags have been externally provided on compilation line
#if !defined(EXTERNAL_CONFIG_FLAGS)
#include "config.h" // Defines module configuration flags
#endif
#if defined(SUPPORT_MODULE_RMODELS)
#include "utils.h" // Required for: TRACELOG(), LoadFileData(), LoadFileText(), SaveFileText()
#include "rlgl.h" // OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2
#include "raymath.h" // Required for: Vector3, Quaternion and Matrix functionality
#include <stdio.h> // Required for: sprintf()
#include <stdlib.h> // Required for: malloc(), calloc(), free()
#include <string.h> // Required for: memcmp(), strlen(), strncpy()
#include <math.h> // Required for: sinf(), cosf(), sqrtf(), fabsf()
#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL)
#define TINYOBJ_MALLOC RL_MALLOC
#define TINYOBJ_CALLOC RL_CALLOC
#define TINYOBJ_REALLOC RL_REALLOC
#define TINYOBJ_FREE RL_FREE
#define TINYOBJ_LOADER_C_IMPLEMENTATION
#include "external/tinyobj_loader_c.h" // OBJ/MTL file formats loading
#endif
#if defined(SUPPORT_FILEFORMAT_GLTF)
#define CGLTF_MALLOC RL_MALLOC
#define CGLTF_FREE RL_FREE
#define CGLTF_IMPLEMENTATION
#include "external/cgltf.h" // glTF file format loading
#endif
#if defined(SUPPORT_FILEFORMAT_VOX)
#define VOX_MALLOC RL_MALLOC
#define VOX_CALLOC RL_CALLOC
#define VOX_REALLOC RL_REALLOC
#define VOX_FREE RL_FREE
#define VOX_LOADER_IMPLEMENTATION
#include "external/vox_loader.h" // VOX file format loading (MagikaVoxel)
#endif
#if defined(SUPPORT_FILEFORMAT_M3D)
#define M3D_MALLOC RL_MALLOC
#define M3D_REALLOC RL_REALLOC
#define M3D_FREE RL_FREE
#define M3D_IMPLEMENTATION
#include "external/m3d.h" // Model3D file format loading
#endif
#if defined(SUPPORT_MESH_GENERATION)
#define PAR_MALLOC(T, N) ((T*)RL_MALLOC(N*sizeof(T)))
#define PAR_CALLOC(T, N) ((T*)RL_CALLOC(N*sizeof(T), 1))
#define PAR_REALLOC(T, BUF, N) ((T*)RL_REALLOC(BUF, sizeof(T)*(N)))
#define PAR_FREE RL_FREE
#if defined(_MSC_VER) // Disable some MSVC warning
#pragma warning(push)
#pragma warning(disable : 4244)
#pragma warning(disable : 4305)
#endif
#define PAR_SHAPES_IMPLEMENTATION
#include "external/par_shapes.h" // Shapes 3d parametric generation
#if defined(_MSC_VER)
#pragma warning(pop) // Disable MSVC warning suppression
#endif
#endif
#if defined(_WIN32)
#include <direct.h> // Required for: _chdir() [Used in LoadOBJ()]
#define CHDIR _chdir
#else
#include <unistd.h> // Required for: chdir() (POSIX) [Used in LoadOBJ()]
#define CHDIR chdir
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#ifndef MAX_MATERIAL_MAPS
#define MAX_MATERIAL_MAPS 12 // Maximum number of maps supported
#endif
#ifndef MAX_MESH_VERTEX_BUFFERS
#define MAX_MESH_VERTEX_BUFFERS 9 // Maximum vertex buffers (VBO) per mesh
#endif
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
#if defined(SUPPORT_FILEFORMAT_OBJ)
static Model LoadOBJ(const char *fileName); // Load OBJ mesh data
#endif
#if defined(SUPPORT_FILEFORMAT_IQM)
static Model LoadIQM(const char *fileName); // Load IQM mesh data
static ModelAnimation *LoadModelAnimationsIQM(const char *fileName, int *animCount); // Load IQM animation data
#endif
#if defined(SUPPORT_FILEFORMAT_GLTF)
static Model LoadGLTF(const char *fileName); // Load GLTF mesh data
static ModelAnimation *LoadModelAnimationsGLTF(const char *fileName, int *animCount); // Load GLTF animation data
#endif
#if defined(SUPPORT_FILEFORMAT_VOX)
static Model LoadVOX(const char *filename); // Load VOX mesh data
#endif
#if defined(SUPPORT_FILEFORMAT_M3D)
static Model LoadM3D(const char *filename); // Load M3D mesh data
static ModelAnimation *LoadModelAnimationsM3D(const char *fileName, int *animCount); // Load M3D animation data
#endif
#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL)
static void ProcessMaterialsOBJ(Material *rayMaterials, tinyobj_material_t *materials, int materialCount); // Process obj materials
#endif
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Draw a line in 3D world space
void DrawLine3D(Vector3 startPos, Vector3 endPos, Color color)
{
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex3f(startPos.x, startPos.y, startPos.z);
rlVertex3f(endPos.x, endPos.y, endPos.z);
rlEnd();
}
// Draw a point in 3D space, actually a small line
void DrawPoint3D(Vector3 position, Color color)
{
rlPushMatrix();
rlTranslatef(position.x, position.y, position.z);
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex3f(0.0f, 0.0f, 0.0f);
rlVertex3f(0.0f, 0.0f, 0.1f);
rlEnd();
rlPopMatrix();
}
// Draw a circle in 3D world space
void DrawCircle3D(Vector3 center, float radius, Vector3 rotationAxis, float rotationAngle, Color color)
{
rlPushMatrix();
rlTranslatef(center.x, center.y, center.z);
rlRotatef(rotationAngle, rotationAxis.x, rotationAxis.y, rotationAxis.z);
rlBegin(RL_LINES);
for (int i = 0; i < 360; i += 10)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex3f(sinf(DEG2RAD*i)*radius, cosf(DEG2RAD*i)*radius, 0.0f);
rlVertex3f(sinf(DEG2RAD*(i + 10))*radius, cosf(DEG2RAD*(i + 10))*radius, 0.0f);
}
rlEnd();
rlPopMatrix();
}
// Draw a color-filled triangle (vertex in counter-clockwise order!)
void DrawTriangle3D(Vector3 v1, Vector3 v2, Vector3 v3, Color color)
{
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex3f(v1.x, v1.y, v1.z);
rlVertex3f(v2.x, v2.y, v2.z);
rlVertex3f(v3.x, v3.y, v3.z);
rlEnd();
}
// Draw a triangle strip defined by points
void DrawTriangleStrip3D(const Vector3 *points, int pointCount, Color color)
{
if (pointCount < 3) return; // Security check
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
for (int i = 2; i < pointCount; i++)
{
if ((i%2) == 0)
{
rlVertex3f(points[i].x, points[i].y, points[i].z);
rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z);
rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z);
}
else
{
rlVertex3f(points[i].x, points[i].y, points[i].z);
rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z);
rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z);
}
}
rlEnd();
}
// Draw cube
// NOTE: Cube position is the center position
void DrawCube(Vector3 position, float width, float height, float length, Color color)
{
float x = 0.0f;
float y = 0.0f;
float z = 0.0f;
rlPushMatrix();
// NOTE: Transformation is applied in inverse order (scale -> rotate -> translate)
rlTranslatef(position.x, position.y, position.z);
//rlRotatef(45, 0, 1, 0);
//rlScalef(1.0f, 1.0f, 1.0f); // NOTE: Vertices are directly scaled on definition
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
// Front face
rlNormal3f(0.0f, 0.0f, 1.0f);
rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Right
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
// Back face
rlNormal3f(0.0f, 0.0f, -1.0f);
rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Left
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
// Top face
rlNormal3f(0.0f, 1.0f, 0.0f);
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
rlVertex3f(x - width/2, y + height/2, z + length/2); // Bottom Left
rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right
// Bottom face
rlNormal3f(0.0f, -1.0f, 0.0f);
rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
rlVertex3f(x + width/2, y - height/2, z - length/2); // Top Right
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left
// Right face
rlNormal3f(1.0f, 0.0f, 0.0f);
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left
// Left face
rlNormal3f(-1.0f, 0.0f, 0.0f);
rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Right
rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right
rlEnd();
rlPopMatrix();
}
// Draw cube (Vector version)
void DrawCubeV(Vector3 position, Vector3 size, Color color)
{
DrawCube(position, size.x, size.y, size.z, color);
}
// Draw cube wires
void DrawCubeWires(Vector3 position, float width, float height, float length, Color color)
{
float x = 0.0f;
float y = 0.0f;
float z = 0.0f;
rlPushMatrix();
rlTranslatef(position.x, position.y, position.z);
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
// Front face
//------------------------------------------------------------------
// Bottom line
rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom left
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom right
// Left line
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom right
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top right
// Top line
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top right
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top left
// Right line
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top left
rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom left
// Back face
//------------------------------------------------------------------
// Bottom line
rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom left
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom right
// Left line
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom right
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top right
// Top line
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top right
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top left
// Right line
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top left
rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom left
// Top face
//------------------------------------------------------------------
// Left line
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top left front
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top left back
// Right line
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top right front
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top right back
// Bottom face
//------------------------------------------------------------------
// Left line
rlVertex3f(x - width/2, y - height/2, z + length/2); // Top left front
rlVertex3f(x - width/2, y - height/2, z - length/2); // Top left back
// Right line
rlVertex3f(x + width/2, y - height/2, z + length/2); // Top right front
rlVertex3f(x + width/2, y - height/2, z - length/2); // Top right back
rlEnd();
rlPopMatrix();
}
// Draw cube wires (vector version)
void DrawCubeWiresV(Vector3 position, Vector3 size, Color color)
{
DrawCubeWires(position, size.x, size.y, size.z, color);
}
// Draw sphere
void DrawSphere(Vector3 centerPos, float radius, Color color)
{
DrawSphereEx(centerPos, radius, 16, 16, color);
}
// Draw sphere with extended parameters
void DrawSphereEx(Vector3 centerPos, float radius, int rings, int slices, Color color)
{
#if 0
// Basic implementation, do not use it!
// For a sphere with 16 rings and 16 slices it requires 8640 cos()/sin() function calls!
// New optimized version below only requires 4 cos()/sin() calls
rlPushMatrix();
// NOTE: Transformation is applied in inverse order (scale -> translate)
rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
rlScalef(radius, radius, radius);
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
for (int i = 0; i < (rings + 2); i++)
{
for (int j = 0; j < slices; j++)
{
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)),
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)),
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices)));
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)),
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices)));
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)),
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)),
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices)));
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i))),
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
}
}
rlEnd();
rlPopMatrix();
#endif
rlPushMatrix();
// NOTE: Transformation is applied in inverse order (scale -> translate)
rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
rlScalef(radius, radius, radius);
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
float ringangle = DEG2RAD*(180.0f/(rings + 1)); // Angle between latitudinal parallels
float sliceangle = DEG2RAD*(360.0f/slices); // Angle between longitudinal meridians
float cosring = cosf(ringangle);
float sinring = sinf(ringangle);
float cosslice = cosf(sliceangle);
float sinslice = sinf(sliceangle);
Vector3 vertices[4] = { 0 }; // Required to store face vertices
vertices[2] = (Vector3){ 0, 1, 0 };
vertices[3] = (Vector3){ sinring, cosring, 0 };
for (int i = 0; i < rings + 1; i++)
{
for (int j = 0; j < slices; j++)
{
vertices[0] = vertices[2]; // Rotate around y axis to set up vertices for next face
vertices[1] = vertices[3];
vertices[2] = (Vector3){ cosslice*vertices[2].x - sinslice*vertices[2].z, vertices[2].y, sinslice*vertices[2].x + cosslice*vertices[2].z }; // Rotation matrix around y axis
vertices[3] = (Vector3){ cosslice*vertices[3].x - sinslice*vertices[3].z, vertices[3].y, sinslice*vertices[3].x + cosslice*vertices[3].z };
rlVertex3f(vertices[0].x, vertices[0].y, vertices[0].z);
rlVertex3f(vertices[3].x, vertices[3].y, vertices[3].z);
rlVertex3f(vertices[1].x, vertices[1].y, vertices[1].z);
rlVertex3f(vertices[0].x, vertices[0].y, vertices[0].z);
rlVertex3f(vertices[2].x, vertices[2].y, vertices[2].z);
rlVertex3f(vertices[3].x, vertices[3].y, vertices[3].z);
}
vertices[2] = vertices[3]; // Rotate around z axis to set up starting vertices for next ring
vertices[3] = (Vector3){ cosring*vertices[3].x + sinring*vertices[3].y, -sinring*vertices[3].x + cosring*vertices[3].y, vertices[3].z }; // Rotation matrix around z axis
}
rlEnd();
rlPopMatrix();
}
// Draw sphere wires
void DrawSphereWires(Vector3 centerPos, float radius, int rings, int slices, Color color)
{
rlPushMatrix();
// NOTE: Transformation is applied in inverse order (scale -> translate)
rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
rlScalef(radius, radius, radius);
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
for (int i = 0; i < (rings + 2); i++)
{
for (int j = 0; j < slices; j++)
{
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)),
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)),
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices)));
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)),
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices)));
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)),
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices)));
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)),
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)),
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices)));
}
}
rlEnd();
rlPopMatrix();
}
// Draw a cylinder
// NOTE: It could be also used for pyramid and cone
void DrawCylinder(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
{
if (sides < 3) sides = 3;
const float angleStep = 360.0f/sides;
rlPushMatrix();
rlTranslatef(position.x, position.y, position.z);
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
if (radiusTop > 0)
{
// Draw Body -------------------------------------------------------------------------------------
for (int i = 0; i < sides; i++)
{
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom); //Bottom Left
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom); //Bottom Right
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop); //Top Right
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusTop, height, cosf(DEG2RAD*i*angleStep)*radiusTop); //Top Left
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom); //Bottom Left
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop); //Top Right
}
// Draw Cap --------------------------------------------------------------------------------------
for (int i = 0; i < sides; i++)
{
rlVertex3f(0, height, 0);
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusTop, height, cosf(DEG2RAD*i*angleStep)*radiusTop);
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop);
}
}
else
{
// Draw Cone -------------------------------------------------------------------------------------
for (int i = 0; i < sides; i++)
{
rlVertex3f(0, height, 0);
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom);
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom);
}
}
// Draw Base -----------------------------------------------------------------------------------------
for (int i = 0; i < sides; i++)
{
rlVertex3f(0, 0, 0);
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom);
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom);
}
rlEnd();
rlPopMatrix();
}
// Draw a cylinder with base at startPos and top at endPos
// NOTE: It could be also used for pyramid and cone
void DrawCylinderEx(Vector3 startPos, Vector3 endPos, float startRadius, float endRadius, int sides, Color color)
{
if (sides < 3) sides = 3;
Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z };
if ((direction.x == 0) && (direction.y == 0) && (direction.z == 0)) return; // Security check
// Construct a basis of the base and the top face:
Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction));
Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction));
float baseAngle = (2.0f*PI)/sides;
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
for (int i = 0; i < sides; i++)
{
// Compute the four vertices
float s1 = sinf(baseAngle*(i + 0))*startRadius;
float c1 = cosf(baseAngle*(i + 0))*startRadius;
Vector3 w1 = { startPos.x + s1*b1.x + c1*b2.x, startPos.y + s1*b1.y + c1*b2.y, startPos.z + s1*b1.z + c1*b2.z };
float s2 = sinf(baseAngle*(i + 1))*startRadius;
float c2 = cosf(baseAngle*(i + 1))*startRadius;
Vector3 w2 = { startPos.x + s2*b1.x + c2*b2.x, startPos.y + s2*b1.y + c2*b2.y, startPos.z + s2*b1.z + c2*b2.z };
float s3 = sinf(baseAngle*(i + 0))*endRadius;
float c3 = cosf(baseAngle*(i + 0))*endRadius;
Vector3 w3 = { endPos.x + s3*b1.x + c3*b2.x, endPos.y + s3*b1.y + c3*b2.y, endPos.z + s3*b1.z + c3*b2.z };
float s4 = sinf(baseAngle*(i + 1))*endRadius;
float c4 = cosf(baseAngle*(i + 1))*endRadius;
Vector3 w4 = { endPos.x + s4*b1.x + c4*b2.x, endPos.y + s4*b1.y + c4*b2.y, endPos.z + s4*b1.z + c4*b2.z };
if (startRadius > 0)
{
rlVertex3f(startPos.x, startPos.y, startPos.z); // |
rlVertex3f(w2.x, w2.y, w2.z); // T0
rlVertex3f(w1.x, w1.y, w1.z); // |
}
// w2 x.-----------x startPos
rlVertex3f(w1.x, w1.y, w1.z); // | |\'. T0 /
rlVertex3f(w2.x, w2.y, w2.z); // T1 | \ '. /
rlVertex3f(w3.x, w3.y, w3.z); // | |T \ '. /
// | 2 \ T 'x w1
rlVertex3f(w2.x, w2.y, w2.z); // | w4 x.---\-1-|---x endPos
rlVertex3f(w4.x, w4.y, w4.z); // T2 '. \ |T3/
rlVertex3f(w3.x, w3.y, w3.z); // | '. \ | /
// '.\|/
if (endRadius > 0) // 'x w3
{
rlVertex3f(endPos.x, endPos.y, endPos.z); // |
rlVertex3f(w3.x, w3.y, w3.z); // T3
rlVertex3f(w4.x, w4.y, w4.z); // |
} //
}
rlEnd();
}
// Draw a wired cylinder
// NOTE: It could be also used for pyramid and cone
void DrawCylinderWires(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
{
if (sides < 3) sides = 3;
const float angleStep = 360.0f/sides;
rlPushMatrix();
rlTranslatef(position.x, position.y, position.z);
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
for (int i = 0; i < sides; i++)
{
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom);
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom);
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom);
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop);
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop);
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusTop, height, cosf(DEG2RAD*i*angleStep)*radiusTop);
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusTop, height, cosf(DEG2RAD*i*angleStep)*radiusTop);
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom);
}
rlEnd();
rlPopMatrix();
}
// Draw a wired cylinder with base at startPos and top at endPos
// NOTE: It could be also used for pyramid and cone
void DrawCylinderWiresEx(Vector3 startPos, Vector3 endPos, float startRadius, float endRadius, int sides, Color color)
{
if (sides < 3) sides = 3;
Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z };
if ((direction.x == 0) && (direction.y == 0) && (direction.z == 0)) return; // Security check
// Construct a basis of the base and the top face:
Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction));
Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction));
float baseAngle = (2.0f*PI)/sides;
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
for (int i = 0; i < sides; i++)
{
// Compute the four vertices
float s1 = sinf(baseAngle*(i + 0))*startRadius;
float c1 = cosf(baseAngle*(i + 0))*startRadius;
Vector3 w1 = { startPos.x + s1*b1.x + c1*b2.x, startPos.y + s1*b1.y + c1*b2.y, startPos.z + s1*b1.z + c1*b2.z };
float s2 = sinf(baseAngle*(i + 1))*startRadius;
float c2 = cosf(baseAngle*(i + 1))*startRadius;
Vector3 w2 = { startPos.x + s2*b1.x + c2*b2.x, startPos.y + s2*b1.y + c2*b2.y, startPos.z + s2*b1.z + c2*b2.z };
float s3 = sinf(baseAngle*(i + 0))*endRadius;
float c3 = cosf(baseAngle*(i + 0))*endRadius;
Vector3 w3 = { endPos.x + s3*b1.x + c3*b2.x, endPos.y + s3*b1.y + c3*b2.y, endPos.z + s3*b1.z + c3*b2.z };
float s4 = sinf(baseAngle*(i + 1))*endRadius;
float c4 = cosf(baseAngle*(i + 1))*endRadius;
Vector3 w4 = { endPos.x + s4*b1.x + c4*b2.x, endPos.y + s4*b1.y + c4*b2.y, endPos.z + s4*b1.z + c4*b2.z };
rlVertex3f(w1.x, w1.y, w1.z);
rlVertex3f(w2.x, w2.y, w2.z);
rlVertex3f(w1.x, w1.y, w1.z);
rlVertex3f(w3.x, w3.y, w3.z);
rlVertex3f(w3.x, w3.y, w3.z);
rlVertex3f(w4.x, w4.y, w4.z);
}
rlEnd();
}
// Draw a capsule with the center of its sphere caps at startPos and endPos
void DrawCapsule(Vector3 startPos, Vector3 endPos, float radius, int slices, int rings, Color color)
{
if (slices < 3) slices = 3;
Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z };
// draw a sphere if start and end points are the same
bool sphereCase = (direction.x == 0) && (direction.y == 0) && (direction.z == 0);
if (sphereCase) direction = (Vector3){0.0f, 1.0f, 0.0f};
// Construct a basis of the base and the caps:
Vector3 b0 = Vector3Normalize(direction);
Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction));
Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction));
Vector3 capCenter = endPos;
float baseSliceAngle = (2.0f*PI)/slices;
float baseRingAngle = PI*0.5f/rings;
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
// render both caps
for (int c = 0; c < 2; c++)
{
for (int i = 0; i < rings; i++)
{
for (int j = 0; j < slices; j++)
{
// we build up the rings from capCenter in the direction of the 'direction' vector we computed earlier
// as we iterate through the rings they must be placed higher above the center, the height we need is sin(angle(i))
// as we iterate through the rings they must get smaller by the cos(angle(i))
// compute the four vertices
float ringSin1 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 0 ));
float ringCos1 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 0 ));
Vector3 w1 = (Vector3){
capCenter.x + (sinf(baseRingAngle*( i + 0 ))*b0.x + ringSin1*b1.x + ringCos1*b2.x)*radius,
capCenter.y + (sinf(baseRingAngle*( i + 0 ))*b0.y + ringSin1*b1.y + ringCos1*b2.y)*radius,
capCenter.z + (sinf(baseRingAngle*( i + 0 ))*b0.z + ringSin1*b1.z + ringCos1*b2.z)*radius
};
float ringSin2 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 0 ));
float ringCos2 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 0 ));
Vector3 w2 = (Vector3){
capCenter.x + (sinf(baseRingAngle*( i + 0 ))*b0.x + ringSin2*b1.x + ringCos2*b2.x)*radius,
capCenter.y + (sinf(baseRingAngle*( i + 0 ))*b0.y + ringSin2*b1.y + ringCos2*b2.y)*radius,
capCenter.z + (sinf(baseRingAngle*( i + 0 ))*b0.z + ringSin2*b1.z + ringCos2*b2.z)*radius
};
float ringSin3 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 1 ));
float ringCos3 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 1 ));
Vector3 w3 = (Vector3){
capCenter.x + (sinf(baseRingAngle*( i + 1 ))*b0.x + ringSin3*b1.x + ringCos3*b2.x)*radius,
capCenter.y + (sinf(baseRingAngle*( i + 1 ))*b0.y + ringSin3*b1.y + ringCos3*b2.y)*radius,
capCenter.z + (sinf(baseRingAngle*( i + 1 ))*b0.z + ringSin3*b1.z + ringCos3*b2.z)*radius
};
float ringSin4 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 1 ));
float ringCos4 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 1 ));
Vector3 w4 = (Vector3){
capCenter.x + (sinf(baseRingAngle*( i + 1 ))*b0.x + ringSin4*b1.x + ringCos4*b2.x)*radius,
capCenter.y + (sinf(baseRingAngle*( i + 1 ))*b0.y + ringSin4*b1.y + ringCos4*b2.y)*radius,
capCenter.z + (sinf(baseRingAngle*( i + 1 ))*b0.z + ringSin4*b1.z + ringCos4*b2.z)*radius
};
// Make sure cap triangle normals are facing outwards
if (c == 0)
{
rlVertex3f(w1.x, w1.y, w1.z);
rlVertex3f(w2.x, w2.y, w2.z);
rlVertex3f(w3.x, w3.y, w3.z);
rlVertex3f(w2.x, w2.y, w2.z);
rlVertex3f(w4.x, w4.y, w4.z);
rlVertex3f(w3.x, w3.y, w3.z);
}
else
{
rlVertex3f(w1.x, w1.y, w1.z);
rlVertex3f(w3.x, w3.y, w3.z);
rlVertex3f(w2.x, w2.y, w2.z);
rlVertex3f(w2.x, w2.y, w2.z);
rlVertex3f(w3.x, w3.y, w3.z);
rlVertex3f(w4.x, w4.y, w4.z);
}
}
}
capCenter = startPos;
b0 = Vector3Scale(b0, -1.0f);
}
// render middle
if (!sphereCase)
{
for (int j = 0; j < slices; j++)
{
// compute the four vertices
float ringSin1 = sinf(baseSliceAngle*(j + 0))*radius;
float ringCos1 = cosf(baseSliceAngle*(j + 0))*radius;
Vector3 w1 = {
startPos.x + ringSin1*b1.x + ringCos1*b2.x,
startPos.y + ringSin1*b1.y + ringCos1*b2.y,
startPos.z + ringSin1*b1.z + ringCos1*b2.z
};
float ringSin2 = sinf(baseSliceAngle*(j + 1))*radius;
float ringCos2 = cosf(baseSliceAngle*(j + 1))*radius;
Vector3 w2 = {
startPos.x + ringSin2*b1.x + ringCos2*b2.x,
startPos.y + ringSin2*b1.y + ringCos2*b2.y,
startPos.z + ringSin2*b1.z + ringCos2*b2.z
};
float ringSin3 = sinf(baseSliceAngle*(j + 0))*radius;
float ringCos3 = cosf(baseSliceAngle*(j + 0))*radius;
Vector3 w3 = {
endPos.x + ringSin3*b1.x + ringCos3*b2.x,
endPos.y + ringSin3*b1.y + ringCos3*b2.y,
endPos.z + ringSin3*b1.z + ringCos3*b2.z
};
float ringSin4 = sinf(baseSliceAngle*(j + 1))*radius;
float ringCos4 = cosf(baseSliceAngle*(j + 1))*radius;
Vector3 w4 = {
endPos.x + ringSin4*b1.x + ringCos4*b2.x,
endPos.y + ringSin4*b1.y + ringCos4*b2.y,
endPos.z + ringSin4*b1.z + ringCos4*b2.z
};
// w2 x.-----------x startPos
rlVertex3f(w1.x, w1.y, w1.z); // | |\'. T0 /
rlVertex3f(w2.x, w2.y, w2.z); // T1 | \ '. /
rlVertex3f(w3.x, w3.y, w3.z); // | |T \ '. /
// | 2 \ T 'x w1
rlVertex3f(w2.x, w2.y, w2.z); // | w4 x.---\-1-|---x endPos
rlVertex3f(w4.x, w4.y, w4.z); // T2 '. \ |T3/
rlVertex3f(w3.x, w3.y, w3.z); // | '. \ | /
// '.\|/
// 'x w3
}
}
rlEnd();
}
// Draw capsule wires with the center of its sphere caps at startPos and endPos
void DrawCapsuleWires(Vector3 startPos, Vector3 endPos, float radius, int slices, int rings, Color color)
{
if (slices < 3) slices = 3;
Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z };
// draw a sphere if start and end points are the same
bool sphereCase = (direction.x == 0) && (direction.y == 0) && (direction.z == 0);
if (sphereCase) direction = (Vector3){0.0f, 1.0f, 0.0f};
// Construct a basis of the base and the caps:
Vector3 b0 = Vector3Normalize(direction);
Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction));
Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction));
Vector3 capCenter = endPos;
float baseSliceAngle = (2.0f*PI)/slices;
float baseRingAngle = PI*0.5f/rings;
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
// render both caps
for (int c = 0; c < 2; c++)
{
for (int i = 0; i < rings; i++)
{
for (int j = 0; j < slices; j++)
{
// we build up the rings from capCenter in the direction of the 'direction' vector we computed earlier
// as we iterate through the rings they must be placed higher above the center, the height we need is sin(angle(i))
// as we iterate through the rings they must get smaller by the cos(angle(i))
// compute the four vertices
float ringSin1 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 0 ));
float ringCos1 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 0 ));
Vector3 w1 = (Vector3){
capCenter.x + (sinf(baseRingAngle*( i + 0 ))*b0.x + ringSin1*b1.x + ringCos1*b2.x)*radius,
capCenter.y + (sinf(baseRingAngle*( i + 0 ))*b0.y + ringSin1*b1.y + ringCos1*b2.y)*radius,
capCenter.z + (sinf(baseRingAngle*( i + 0 ))*b0.z + ringSin1*b1.z + ringCos1*b2.z)*radius
};
float ringSin2 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 0 ));
float ringCos2 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 0 ));
Vector3 w2 = (Vector3){
capCenter.x + (sinf(baseRingAngle*( i + 0 ))*b0.x + ringSin2*b1.x + ringCos2*b2.x)*radius,
capCenter.y + (sinf(baseRingAngle*( i + 0 ))*b0.y + ringSin2*b1.y + ringCos2*b2.y)*radius,
capCenter.z + (sinf(baseRingAngle*( i + 0 ))*b0.z + ringSin2*b1.z + ringCos2*b2.z)*radius
};
float ringSin3 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 1 ));
float ringCos3 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 1 ));
Vector3 w3 = (Vector3){
capCenter.x + (sinf(baseRingAngle*( i + 1 ))*b0.x + ringSin3*b1.x + ringCos3*b2.x)*radius,
capCenter.y + (sinf(baseRingAngle*( i + 1 ))*b0.y + ringSin3*b1.y + ringCos3*b2.y)*radius,
capCenter.z + (sinf(baseRingAngle*( i + 1 ))*b0.z + ringSin3*b1.z + ringCos3*b2.z)*radius
};
float ringSin4 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 1 ));
float ringCos4 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 1 ));
Vector3 w4 = (Vector3){
capCenter.x + (sinf(baseRingAngle*( i + 1 ))*b0.x + ringSin4*b1.x + ringCos4*b2.x)*radius,
capCenter.y + (sinf(baseRingAngle*( i + 1 ))*b0.y + ringSin4*b1.y + ringCos4*b2.y)*radius,
capCenter.z + (sinf(baseRingAngle*( i + 1 ))*b0.z + ringSin4*b1.z + ringCos4*b2.z)*radius
};
rlVertex3f(w1.x, w1.y, w1.z);
rlVertex3f(w2.x, w2.y, w2.z);
rlVertex3f(w2.x, w2.y, w2.z);
rlVertex3f(w3.x, w3.y, w3.z);
rlVertex3f(w1.x, w1.y, w1.z);
rlVertex3f(w3.x, w3.y, w3.z);
rlVertex3f(w2.x, w2.y, w2.z);
rlVertex3f(w4.x, w4.y, w4.z);
rlVertex3f(w3.x, w3.y, w3.z);
rlVertex3f(w4.x, w4.y, w4.z);
}
}
capCenter = startPos;
b0 = Vector3Scale(b0, -1.0f);
}
// render middle
if (!sphereCase)
{
for (int j = 0; j < slices; j++)
{
// compute the four vertices
float ringSin1 = sinf(baseSliceAngle*(j + 0))*radius;
float ringCos1 = cosf(baseSliceAngle*(j + 0))*radius;
Vector3 w1 = {
startPos.x + ringSin1*b1.x + ringCos1*b2.x,
startPos.y + ringSin1*b1.y + ringCos1*b2.y,
startPos.z + ringSin1*b1.z + ringCos1*b2.z
};
float ringSin2 = sinf(baseSliceAngle*(j + 1))*radius;
float ringCos2 = cosf(baseSliceAngle*(j + 1))*radius;
Vector3 w2 = {
startPos.x + ringSin2*b1.x + ringCos2*b2.x,
startPos.y + ringSin2*b1.y + ringCos2*b2.y,
startPos.z + ringSin2*b1.z + ringCos2*b2.z
};
float ringSin3 = sinf(baseSliceAngle*(j + 0))*radius;
float ringCos3 = cosf(baseSliceAngle*(j + 0))*radius;
Vector3 w3 = {
endPos.x + ringSin3*b1.x + ringCos3*b2.x,
endPos.y + ringSin3*b1.y + ringCos3*b2.y,
endPos.z + ringSin3*b1.z + ringCos3*b2.z
};
float ringSin4 = sinf(baseSliceAngle*(j + 1))*radius;
float ringCos4 = cosf(baseSliceAngle*(j + 1))*radius;
Vector3 w4 = {
endPos.x + ringSin4*b1.x + ringCos4*b2.x,
endPos.y + ringSin4*b1.y + ringCos4*b2.y,
endPos.z + ringSin4*b1.z + ringCos4*b2.z
};
rlVertex3f(w1.x, w1.y, w1.z);
rlVertex3f(w3.x, w3.y, w3.z);
rlVertex3f(w2.x, w2.y, w2.z);
rlVertex3f(w4.x, w4.y, w4.z);
rlVertex3f(w2.x, w2.y, w2.z);
rlVertex3f(w3.x, w3.y, w3.z);
}
}
rlEnd();
}
// Draw a plane
void DrawPlane(Vector3 centerPos, Vector2 size, Color color)
{
// NOTE: Plane is always created on XZ ground
rlPushMatrix();
rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
rlScalef(size.x, 1.0f, size.y);
rlBegin(RL_QUADS);
rlColor4ub(color.r, color.g, color.b, color.a);
rlNormal3f(0.0f, 1.0f, 0.0f);
rlVertex3f(-0.5f, 0.0f, -0.5f);
rlVertex3f(-0.5f, 0.0f, 0.5f);
rlVertex3f(0.5f, 0.0f, 0.5f);
rlVertex3f(0.5f, 0.0f, -0.5f);
rlEnd();
rlPopMatrix();
}
// Draw a ray line
void DrawRay(Ray ray, Color color)
{
float scale = 10000;
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex3f(ray.position.x, ray.position.y, ray.position.z);
rlVertex3f(ray.position.x + ray.direction.x*scale, ray.position.y + ray.direction.y*scale, ray.position.z + ray.direction.z*scale);
rlEnd();
}
// Draw a grid centered at (0, 0, 0)
void DrawGrid(int slices, float spacing)
{
int halfSlices = slices/2;
rlBegin(RL_LINES);
for (int i = -halfSlices; i <= halfSlices; i++)
{
if (i == 0)
{
rlColor3f(0.5f, 0.5f, 0.5f);
}
else
{
rlColor3f(0.75f, 0.75f, 0.75f);
}
rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing);
rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing);
rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing);
rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing);
}
rlEnd();
}
// Load model from files (mesh and material)
Model LoadModel(const char *fileName)
{
Model model = { 0 };
#if defined(SUPPORT_FILEFORMAT_OBJ)
if (IsFileExtension(fileName, ".obj")) model = LoadOBJ(fileName);
#endif
#if defined(SUPPORT_FILEFORMAT_IQM)
if (IsFileExtension(fileName, ".iqm")) model = LoadIQM(fileName);
#endif
#if defined(SUPPORT_FILEFORMAT_GLTF)
if (IsFileExtension(fileName, ".gltf") || IsFileExtension(fileName, ".glb")) model = LoadGLTF(fileName);
#endif
#if defined(SUPPORT_FILEFORMAT_VOX)
if (IsFileExtension(fileName, ".vox")) model = LoadVOX(fileName);
#endif
#if defined(SUPPORT_FILEFORMAT_M3D)
if (IsFileExtension(fileName, ".m3d")) model = LoadM3D(fileName);
#endif
// Make sure model transform is set to identity matrix!
model.transform = MatrixIdentity();
if ((model.meshCount != 0) && (model.meshes != NULL))
{
// Upload vertex data to GPU (static meshes)
for (int i = 0; i < model.meshCount; i++) UploadMesh(&model.meshes[i], false);
}
else TRACELOG(LOG_WARNING, "MESH: [%s] Failed to load model mesh(es) data", fileName);
if (model.materialCount == 0)
{
TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to load model material data, default to white material", fileName);
model.materialCount = 1;
model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
model.materials[0] = LoadMaterialDefault();
if (model.meshMaterial == NULL) model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
}
return model;
}
// Load model from generated mesh
// WARNING: A shallow copy of mesh is generated, passed by value,
// as long as struct contains pointers to data and some values, we get a copy
// of mesh pointing to same data as original version... be careful!
Model LoadModelFromMesh(Mesh mesh)
{
Model model = { 0 };
model.transform = MatrixIdentity();
model.meshCount = 1;
model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
model.meshes[0] = mesh;
model.materialCount = 1;
model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
model.materials[0] = LoadMaterialDefault();
model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
model.meshMaterial[0] = 0; // First material index
return model;
}
// Check if a model is valid (loaded in GPU, VAO/VBOs)
bool IsModelValid(Model model)
{
bool result = false;
if ((model.meshes != NULL) && // Validate model contains some mesh
(model.materials != NULL) && // Validate model contains some material (at least default one)
(model.meshMaterial != NULL) && // Validate mesh-material linkage
(model.meshCount > 0) && // Validate mesh count
(model.materialCount > 0)) result = true; // Validate material count
// NOTE: Many elements could be validated from a model, including every model mesh VAO/VBOs
// but some VBOs could not be used, it depends on Mesh vertex data
for (int i = 0; i < model.meshCount; i++)
{
if ((model.meshes[i].vertices != NULL) && (model.meshes[i].vboId[0] == 0)) { result = false; break; } // Vertex position buffer not uploaded to GPU
if ((model.meshes[i].texcoords != NULL) && (model.meshes[i].vboId[1] == 0)) { result = false; break; } // Vertex textcoords buffer not uploaded to GPU
if ((model.meshes[i].normals != NULL) && (model.meshes[i].vboId[2] == 0)) { result = false; break; } // Vertex normals buffer not uploaded to GPU
if ((model.meshes[i].colors != NULL) && (model.meshes[i].vboId[3] == 0)) { result = false; break; } // Vertex colors buffer not uploaded to GPU
if ((model.meshes[i].tangents != NULL) && (model.meshes[i].vboId[4] == 0)) { result = false; break; } // Vertex tangents buffer not uploaded to GPU
if ((model.meshes[i].texcoords2 != NULL) && (model.meshes[i].vboId[5] == 0)) { result = false; break; } // Vertex texcoords2 buffer not uploaded to GPU
if ((model.meshes[i].indices != NULL) && (model.meshes[i].vboId[6] == 0)) { result = false; break; } // Vertex indices buffer not uploaded to GPU
if ((model.meshes[i].boneIds != NULL) && (model.meshes[i].vboId[7] == 0)) { result = false; break; } // Vertex boneIds buffer not uploaded to GPU
if ((model.meshes[i].boneWeights != NULL) && (model.meshes[i].vboId[8] == 0)) { result = false; break; } // Vertex boneWeights buffer not uploaded to GPU
// NOTE: Some OpenGL versions do not support VAO, so we don't check it
//if (model.meshes[i].vaoId == 0) { result = false; break }
}
return result;
}
// Unload model (meshes/materials) from memory (RAM and/or VRAM)
// NOTE: This function takes care of all model elements, for a detailed control
// over them, use UnloadMesh() and UnloadMaterial()
void UnloadModel(Model model)
{
// Unload meshes
for (int i = 0; i < model.meshCount; i++) UnloadMesh(model.meshes[i]);
// Unload materials maps
// NOTE: As the user could be sharing shaders and textures between models,
// we don't unload the material but just free its maps,
// the user is responsible for freeing models shaders and textures
for (int i = 0; i < model.materialCount; i++) RL_FREE(model.materials[i].maps);
// Unload arrays
RL_FREE(model.meshes);
RL_FREE(model.materials);
RL_FREE(model.meshMaterial);
// Unload animation data
RL_FREE(model.bones);
RL_FREE(model.bindPose);
TRACELOG(LOG_INFO, "MODEL: Unloaded model (and meshes) from RAM and VRAM");
}
// Compute model bounding box limits (considers all meshes)
BoundingBox GetModelBoundingBox(Model model)
{
BoundingBox bounds = { 0 };
if (model.meshCount > 0)
{
Vector3 temp = { 0 };
bounds = GetMeshBoundingBox(model.meshes[0]);
for (int i = 1; i < model.meshCount; i++)
{
BoundingBox tempBounds = GetMeshBoundingBox(model.meshes[i]);
temp.x = (bounds.min.x < tempBounds.min.x)? bounds.min.x : tempBounds.min.x;
temp.y = (bounds.min.y < tempBounds.min.y)? bounds.min.y : tempBounds.min.y;
temp.z = (bounds.min.z < tempBounds.min.z)? bounds.min.z : tempBounds.min.z;
bounds.min = temp;
temp.x = (bounds.max.x > tempBounds.max.x)? bounds.max.x : tempBounds.max.x;
temp.y = (bounds.max.y > tempBounds.max.y)? bounds.max.y : tempBounds.max.y;
temp.z = (bounds.max.z > tempBounds.max.z)? bounds.max.z : tempBounds.max.z;
bounds.max = temp;
}
}
// Apply model.transform to bounding box
// WARNING: Current BoundingBox structure design does not support rotation transformations,
// in those cases is up to the user to calculate the proper box bounds (8 vertices transformed)
bounds.min = Vector3Transform(bounds.min, model.transform);
bounds.max = Vector3Transform(bounds.max, model.transform);
return bounds;
}
// Upload vertex data into a VAO (if supported) and VBO
void UploadMesh(Mesh *mesh, bool dynamic)
{
if (mesh->vaoId > 0)
{
// Check if mesh has already been loaded in GPU
TRACELOG(LOG_WARNING, "VAO: [ID %i] Trying to re-load an already loaded mesh", mesh->vaoId);
return;
}
mesh->vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VERTEX_BUFFERS, sizeof(unsigned int));
mesh->vaoId = 0; // Vertex Array Object
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_POSITION] = 0; // Vertex buffer: positions
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD] = 0; // Vertex buffer: texcoords
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL] = 0; // Vertex buffer: normals
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR] = 0; // Vertex buffer: colors
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT] = 0; // Vertex buffer: tangents
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2] = 0; // Vertex buffer: texcoords2
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_INDICES] = 0; // Vertex buffer: indices
#ifdef RL_SUPPORT_MESH_GPU_SKINNING
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS] = 0; // Vertex buffer: boneIds
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS] = 0; // Vertex buffer: boneWeights
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
mesh->vaoId = rlLoadVertexArray();
rlEnableVertexArray(mesh->vaoId);
// NOTE: Vertex attributes must be uploaded considering default locations points and available vertex data
// Enable vertex attributes: position (shader-location = 0)
void *vertices = (mesh->animVertices != NULL)? mesh->animVertices : mesh->vertices;
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_POSITION] = rlLoadVertexBuffer(vertices, mesh->vertexCount*3*sizeof(float), dynamic);
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_POSITION, 3, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_POSITION);
// Enable vertex attributes: texcoords (shader-location = 1)
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD] = rlLoadVertexBuffer(mesh->texcoords, mesh->vertexCount*2*sizeof(float), dynamic);
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD, 2, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD);
// WARNING: When setting default vertex attribute values, the values for each generic vertex attribute
// is part of current state, and it is maintained even if a different program object is used
if (mesh->normals != NULL)
{
// Enable vertex attributes: normals (shader-location = 2)
void *normals = (mesh->animNormals != NULL)? mesh->animNormals : mesh->normals;
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL] = rlLoadVertexBuffer(normals, mesh->vertexCount*3*sizeof(float), dynamic);
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL, 3, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL);
}
else
{
// Default vertex attribute: normal
// WARNING: Default value provided to shader if location available
float value[3] = { 1.0f, 1.0f, 1.0f };
rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL, value, SHADER_ATTRIB_VEC3, 3);
rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL);
}
if (mesh->colors != NULL)
{
// Enable vertex attribute: color (shader-location = 3)
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR] = rlLoadVertexBuffer(mesh->colors, mesh->vertexCount*4*sizeof(unsigned char), dynamic);
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR, 4, RL_UNSIGNED_BYTE, 1, 0, 0);
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR);
}
else
{
// Default vertex attribute: color
// WARNING: Default value provided to shader if location available
float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; // WHITE
rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR, value, SHADER_ATTRIB_VEC4, 4);
rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR);
}
if (mesh->tangents != NULL)
{
// Enable vertex attribute: tangent (shader-location = 4)
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), dynamic);
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT, 4, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT);
}
else
{
// Default vertex attribute: tangent
// WARNING: Default value provided to shader if location available
float value[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT, value, SHADER_ATTRIB_VEC4, 4);
rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT);
}
if (mesh->texcoords2 != NULL)
{
// Enable vertex attribute: texcoord2 (shader-location = 5)
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2] = rlLoadVertexBuffer(mesh->texcoords2, mesh->vertexCount*2*sizeof(float), dynamic);
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2, 2, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2);
}
else
{
// Default vertex attribute: texcoord2
// WARNING: Default value provided to shader if location available
float value[2] = { 0.0f, 0.0f };
rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2, value, SHADER_ATTRIB_VEC2, 2);
rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2);
}
#ifdef RL_SUPPORT_MESH_GPU_SKINNING
if (mesh->boneIds != NULL)
{
// Enable vertex attribute: boneIds (shader-location = 7)
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS] = rlLoadVertexBuffer(mesh->boneIds, mesh->vertexCount*4*sizeof(unsigned char), dynamic);
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS, 4, RL_UNSIGNED_BYTE, 0, 0, 0);
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS);
}
else
{
// Default vertex attribute: boneIds
// WARNING: Default value provided to shader if location available
float value[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS, value, SHADER_ATTRIB_VEC4, 4);
rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS);
}
if (mesh->boneWeights != NULL)
{
// Enable vertex attribute: boneWeights (shader-location = 8)
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS] = rlLoadVertexBuffer(mesh->boneWeights, mesh->vertexCount*4*sizeof(float), dynamic);
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS, 4, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS);
}
else
{
// Default vertex attribute: boneWeights
// WARNING: Default value provided to shader if location available
float value[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS, value, SHADER_ATTRIB_VEC4, 2);
rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS);
}
#endif
if (mesh->indices != NULL)
{
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_INDICES] = rlLoadVertexBufferElement(mesh->indices, mesh->triangleCount*3*sizeof(unsigned short), dynamic);
}
if (mesh->vaoId > 0) TRACELOG(LOG_INFO, "VAO: [ID %i] Mesh uploaded successfully to VRAM (GPU)", mesh->vaoId);
else TRACELOG(LOG_INFO, "VBO: Mesh uploaded successfully to VRAM (GPU)");
rlDisableVertexArray();
#endif
}
// Update mesh vertex data in GPU for a specific buffer index
void UpdateMeshBuffer(Mesh mesh, int index, const void *data, int dataSize, int offset)
{
rlUpdateVertexBuffer(mesh.vboId[index], data, dataSize, offset);
}
// Draw a 3d mesh with material and transform
void DrawMesh(Mesh mesh, Material material, Matrix transform)
{
#if defined(GRAPHICS_API_OPENGL_11)
#define GL_VERTEX_ARRAY 0x8074
#define GL_NORMAL_ARRAY 0x8075
#define GL_COLOR_ARRAY 0x8076
#define GL_TEXTURE_COORD_ARRAY 0x8078
rlEnableTexture(material.maps[MATERIAL_MAP_DIFFUSE].texture.id);
rlEnableStatePointer(GL_VERTEX_ARRAY, mesh.vertices);
rlEnableStatePointer(GL_TEXTURE_COORD_ARRAY, mesh.texcoords);
rlEnableStatePointer(GL_NORMAL_ARRAY, mesh.normals);
rlEnableStatePointer(GL_COLOR_ARRAY, mesh.colors);
rlPushMatrix();
rlMultMatrixf(MatrixToFloat(transform));
rlColor4ub(material.maps[MATERIAL_MAP_DIFFUSE].color.r,
material.maps[MATERIAL_MAP_DIFFUSE].color.g,
material.maps[MATERIAL_MAP_DIFFUSE].color.b,
material.maps[MATERIAL_MAP_DIFFUSE].color.a);
if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, mesh.indices);
else rlDrawVertexArray(0, mesh.vertexCount);
rlPopMatrix();
rlDisableStatePointer(GL_VERTEX_ARRAY);
rlDisableStatePointer(GL_TEXTURE_COORD_ARRAY);
rlDisableStatePointer(GL_NORMAL_ARRAY);
rlDisableStatePointer(GL_COLOR_ARRAY);
rlDisableTexture();
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Bind shader program
rlEnableShader(material.shader.id);
// Send required data to shader (matrices, values)
//-----------------------------------------------------
// Upload to shader material.colDiffuse
if (material.shader.locs[SHADER_LOC_COLOR_DIFFUSE] != -1)
{
float values[4] = {
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.r/255.0f,
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.g/255.0f,
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.b/255.0f,
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.a/255.0f
};
rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_DIFFUSE], values, SHADER_UNIFORM_VEC4, 1);
}
// Upload to shader material.colSpecular (if location available)
if (material.shader.locs[SHADER_LOC_COLOR_SPECULAR] != -1)
{
float values[4] = {
(float)material.maps[MATERIAL_MAP_SPECULAR].color.r/255.0f,
(float)material.maps[MATERIAL_MAP_SPECULAR].color.g/255.0f,
(float)material.maps[MATERIAL_MAP_SPECULAR].color.b/255.0f,
(float)material.maps[MATERIAL_MAP_SPECULAR].color.a/255.0f
};
rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_SPECULAR], values, SHADER_UNIFORM_VEC4, 1);
}
// Get a copy of current matrices to work with,
// just in case stereo render is required, and we need to modify them
// NOTE: At this point the modelview matrix just contains the view matrix (camera)
// That's because BeginMode3D() sets it and there is no model-drawing function
// that modifies it, all use rlPushMatrix() and rlPopMatrix()
Matrix matModel = MatrixIdentity();
Matrix matView = rlGetMatrixModelview();
Matrix matModelView = MatrixIdentity();
Matrix matProjection = rlGetMatrixProjection();
// Upload view and projection matrices (if locations available)
if (material.shader.locs[SHADER_LOC_MATRIX_VIEW] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_VIEW], matView);
if (material.shader.locs[SHADER_LOC_MATRIX_PROJECTION] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_PROJECTION], matProjection);
// Accumulate several model transformations:
// transform: model transformation provided (includes DrawModel() params combined with model.transform)
// rlGetMatrixTransform(): rlgl internal transform matrix due to push/pop matrix stack
matModel = MatrixMultiply(transform, rlGetMatrixTransform());
// Model transformation matrix is sent to shader uniform location: SHADER_LOC_MATRIX_MODEL
if (material.shader.locs[SHADER_LOC_MATRIX_MODEL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MODEL], matModel);
// Get model-view matrix
matModelView = MatrixMultiply(matModel, matView);
// Upload model normal matrix (if locations available)
if (material.shader.locs[SHADER_LOC_MATRIX_NORMAL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_NORMAL], MatrixTranspose(MatrixInvert(matModel)));
#ifdef RL_SUPPORT_MESH_GPU_SKINNING
// Upload Bone Transforms
if ((material.shader.locs[SHADER_LOC_BONE_MATRICES] != -1) && mesh.boneMatrices)
{
rlSetUniformMatrices(material.shader.locs[SHADER_LOC_BONE_MATRICES], mesh.boneMatrices, mesh.boneCount);
}
#endif
//-----------------------------------------------------
// Bind active texture maps (if available)
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
if (material.maps[i].texture.id > 0)
{
// Select current shader texture slot
rlActiveTextureSlot(i);
// Enable texture for active slot
if ((i == MATERIAL_MAP_IRRADIANCE) ||
(i == MATERIAL_MAP_PREFILTER) ||
(i == MATERIAL_MAP_CUBEMAP)) rlEnableTextureCubemap(material.maps[i].texture.id);
else rlEnableTexture(material.maps[i].texture.id);
rlSetUniform(material.shader.locs[SHADER_LOC_MAP_DIFFUSE + i], &i, SHADER_UNIFORM_INT, 1);
}
}
// Try binding vertex array objects (VAO) or use VBOs if not possible
// WARNING: UploadMesh() enables all vertex attributes available in mesh and sets default attribute values
// for shader expected vertex attributes that are not provided by the mesh (i.e. colors)
// This could be a dangerous approach because different meshes with different shaders can enable/disable some attributes
if (!rlEnableVertexArray(mesh.vaoId))
{
// Bind mesh VBO data: vertex position (shader-location = 0)
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_POSITION]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]);
// Bind mesh VBO data: vertex texcoords (shader-location = 1)
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01]);
if (material.shader.locs[SHADER_LOC_VERTEX_NORMAL] != -1)
{
// Bind mesh VBO data: vertex normals (shader-location = 2)
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL], 3, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL]);
}
// Bind mesh VBO data: vertex colors (shader-location = 3, if available)
if (material.shader.locs[SHADER_LOC_VERTEX_COLOR] != -1)
{
if (mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR] != 0)
{
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR], 4, RL_UNSIGNED_BYTE, 1, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
}
else
{
// Set default value for defined vertex attribute in shader but not provided by mesh
// WARNING: It could result in GPU undefined behaviour
float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
rlSetVertexAttributeDefault(material.shader.locs[SHADER_LOC_VERTEX_COLOR], value, SHADER_ATTRIB_VEC4, 4);
rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
}
}
// Bind mesh VBO data: vertex tangents (shader-location = 4, if available)
if (material.shader.locs[SHADER_LOC_VERTEX_TANGENT] != -1)
{
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT], 4, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT]);
}
// Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available)
if (material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] != -1)
{
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02], 2, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02]);
}
#ifdef RL_SUPPORT_MESH_GPU_SKINNING
// Bind mesh VBO data: vertex bone ids (shader-location = 6, if available)
if (material.shader.locs[SHADER_LOC_VERTEX_BONEIDS] != -1)
{
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEIDS], 4, RL_UNSIGNED_BYTE, 0, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEIDS]);
}
// Bind mesh VBO data: vertex bone weights (shader-location = 7, if available)
if (material.shader.locs[SHADER_LOC_VERTEX_BONEWEIGHTS] != -1)
{
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEWEIGHTS], 4, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEWEIGHTS]);
}
#endif
if (mesh.indices != NULL) rlEnableVertexBufferElement(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_INDICES]);
}
int eyeCount = 1;
if (rlIsStereoRenderEnabled()) eyeCount = 2;
for (int eye = 0; eye < eyeCount; eye++)
{
// Calculate model-view-projection matrix (MVP)
Matrix matModelViewProjection = MatrixIdentity();
if (eyeCount == 1) matModelViewProjection = MatrixMultiply(matModelView, matProjection);
else
{
// Setup current eye viewport (half screen width)
rlViewport(eye*rlGetFramebufferWidth()/2, 0, rlGetFramebufferWidth()/2, rlGetFramebufferHeight());
matModelViewProjection = MatrixMultiply(MatrixMultiply(matModelView, rlGetMatrixViewOffsetStereo(eye)), rlGetMatrixProjectionStereo(eye));
}
// Send combined model-view-projection matrix to shader
rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MVP], matModelViewProjection);
// Draw mesh
if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, 0);
else rlDrawVertexArray(0, mesh.vertexCount);
}
// Unbind all bound texture maps
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
if (material.maps[i].texture.id > 0)
{
// Select current shader texture slot
rlActiveTextureSlot(i);
// Disable texture for active slot
if ((i == MATERIAL_MAP_IRRADIANCE) ||
(i == MATERIAL_MAP_PREFILTER) ||
(i == MATERIAL_MAP_CUBEMAP)) rlDisableTextureCubemap();
else rlDisableTexture();
}
}
// Disable all possible vertex array objects (or VBOs)
rlDisableVertexArray();
rlDisableVertexBuffer();
rlDisableVertexBufferElement();
// Disable shader program
rlDisableShader();
// Restore rlgl internal modelview and projection matrices
rlSetMatrixModelview(matView);
rlSetMatrixProjection(matProjection);
#endif
}
// Draw multiple mesh instances with material and different transforms
void DrawMeshInstanced(Mesh mesh, Material material, const Matrix *transforms, int instances)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Instancing required variables
float16 *instanceTransforms = NULL;
unsigned int instancesVboId = 0;
// Bind shader program
rlEnableShader(material.shader.id);
// Send required data to shader (matrices, values)
//-----------------------------------------------------
// Upload to shader material.colDiffuse
if (material.shader.locs[SHADER_LOC_COLOR_DIFFUSE] != -1)
{
float values[4] = {
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.r/255.0f,
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.g/255.0f,
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.b/255.0f,
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.a/255.0f
};
rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_DIFFUSE], values, SHADER_UNIFORM_VEC4, 1);
}
// Upload to shader material.colSpecular (if location available)
if (material.shader.locs[SHADER_LOC_COLOR_SPECULAR] != -1)
{
float values[4] = {
(float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.r/255.0f,
(float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.g/255.0f,
(float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.b/255.0f,
(float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.a/255.0f
};
rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_SPECULAR], values, SHADER_UNIFORM_VEC4, 1);
}
// Get a copy of current matrices to work with,
// just in case stereo render is required, and we need to modify them
// NOTE: At this point the modelview matrix just contains the view matrix (camera)
// That's because BeginMode3D() sets it and there is no model-drawing function
// that modifies it, all use rlPushMatrix() and rlPopMatrix()
Matrix matModel = MatrixIdentity();
Matrix matView = rlGetMatrixModelview();
Matrix matModelView = MatrixIdentity();
Matrix matProjection = rlGetMatrixProjection();
// Upload view and projection matrices (if locations available)
if (material.shader.locs[SHADER_LOC_MATRIX_VIEW] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_VIEW], matView);
if (material.shader.locs[SHADER_LOC_MATRIX_PROJECTION] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_PROJECTION], matProjection);
// Create instances buffer
instanceTransforms = (float16 *)RL_MALLOC(instances*sizeof(float16));
// Fill buffer with instances transformations as float16 arrays
for (int i = 0; i < instances; i++) instanceTransforms[i] = MatrixToFloatV(transforms[i]);
// Enable mesh VAO to attach new buffer
rlEnableVertexArray(mesh.vaoId);
// This could alternatively use a static VBO and either glMapBuffer() or glBufferSubData()
// It isn't clear which would be reliably faster in all cases and on all platforms,
// anecdotally glMapBuffer() seems very slow (syncs) while glBufferSubData() seems
// no faster, since we're transferring all the transform matrices anyway
instancesVboId = rlLoadVertexBuffer(instanceTransforms, instances*sizeof(float16), false);
// Instances transformation matrices are send to shader attribute location: SHADER_LOC_MATRIX_MODEL
for (unsigned int i = 0; i < 4; i++)
{
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i, 4, RL_FLOAT, 0, sizeof(Matrix), i*sizeof(Vector4));
rlSetVertexAttributeDivisor(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i, 1);
}
rlDisableVertexBuffer();
rlDisableVertexArray();
// Accumulate internal matrix transform (push/pop) and view matrix
// NOTE: In this case, model instance transformation must be computed in the shader
matModelView = MatrixMultiply(rlGetMatrixTransform(), matView);
// Upload model normal matrix (if locations available)
if (material.shader.locs[SHADER_LOC_MATRIX_NORMAL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_NORMAL], MatrixTranspose(MatrixInvert(matModel)));
#ifdef RL_SUPPORT_MESH_GPU_SKINNING
// Upload Bone Transforms
if ((material.shader.locs[SHADER_LOC_BONE_MATRICES] != -1) && mesh.boneMatrices)
{
rlSetUniformMatrices(material.shader.locs[SHADER_LOC_BONE_MATRICES], mesh.boneMatrices, mesh.boneCount);
}
#endif
//-----------------------------------------------------
// Bind active texture maps (if available)
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
if (material.maps[i].texture.id > 0)
{
// Select current shader texture slot
rlActiveTextureSlot(i);
// Enable texture for active slot
if ((i == MATERIAL_MAP_IRRADIANCE) ||
(i == MATERIAL_MAP_PREFILTER) ||
(i == MATERIAL_MAP_CUBEMAP)) rlEnableTextureCubemap(material.maps[i].texture.id);
else rlEnableTexture(material.maps[i].texture.id);
rlSetUniform(material.shader.locs[SHADER_LOC_MAP_DIFFUSE + i], &i, SHADER_UNIFORM_INT, 1);
}
}
// Try binding vertex array objects (VAO)
// or use VBOs if not possible
if (!rlEnableVertexArray(mesh.vaoId))
{
// Bind mesh VBO data: vertex position (shader-location = 0)
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_POSITION]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]);
// Bind mesh VBO data: vertex texcoords (shader-location = 1)
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01]);
if (material.shader.locs[SHADER_LOC_VERTEX_NORMAL] != -1)
{
// Bind mesh VBO data: vertex normals (shader-location = 2)
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL], 3, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL]);
}
// Bind mesh VBO data: vertex colors (shader-location = 3, if available)
if (material.shader.locs[SHADER_LOC_VERTEX_COLOR] != -1)
{
if (mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR] != 0)
{
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR], 4, RL_UNSIGNED_BYTE, 1, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
}
else
{
// Set default value for unused attribute
// NOTE: Required when using default shader and no VAO support
float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
rlSetVertexAttributeDefault(material.shader.locs[SHADER_LOC_VERTEX_COLOR], value, SHADER_ATTRIB_VEC4, 4);
rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
}
}
// Bind mesh VBO data: vertex tangents (shader-location = 4, if available)
if (material.shader.locs[SHADER_LOC_VERTEX_TANGENT] != -1)
{
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT], 4, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT]);
}
// Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available)
if (material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] != -1)
{
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02], 2, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02]);
}
#ifdef RL_SUPPORT_MESH_GPU_SKINNING
// Bind mesh VBO data: vertex bone ids (shader-location = 6, if available)
if (material.shader.locs[SHADER_LOC_VERTEX_BONEIDS] != -1)
{
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEIDS], 4, RL_UNSIGNED_BYTE, 0, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEIDS]);
}
// Bind mesh VBO data: vertex bone weights (shader-location = 7, if available)
if (material.shader.locs[SHADER_LOC_VERTEX_BONEWEIGHTS] != -1)
{
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS]);
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEWEIGHTS], 4, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEWEIGHTS]);
}
#endif
if (mesh.indices != NULL) rlEnableVertexBufferElement(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_INDICES]);
}
int eyeCount = 1;
if (rlIsStereoRenderEnabled()) eyeCount = 2;
for (int eye = 0; eye < eyeCount; eye++)
{
// Calculate model-view-projection matrix (MVP)
Matrix matModelViewProjection = MatrixIdentity();
if (eyeCount == 1) matModelViewProjection = MatrixMultiply(matModelView, matProjection);
else
{
// Setup current eye viewport (half screen width)
rlViewport(eye*rlGetFramebufferWidth()/2, 0, rlGetFramebufferWidth()/2, rlGetFramebufferHeight());
matModelViewProjection = MatrixMultiply(MatrixMultiply(matModelView, rlGetMatrixViewOffsetStereo(eye)), rlGetMatrixProjectionStereo(eye));
}
// Send combined model-view-projection matrix to shader
rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MVP], matModelViewProjection);
// Draw mesh instanced
if (mesh.indices != NULL) rlDrawVertexArrayElementsInstanced(0, mesh.triangleCount*3, 0, instances);
else rlDrawVertexArrayInstanced(0, mesh.vertexCount, instances);
}
// Unbind all bound texture maps
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
if (material.maps[i].texture.id > 0)
{
// Select current shader texture slot
rlActiveTextureSlot(i);
// Disable texture for active slot
if ((i == MATERIAL_MAP_IRRADIANCE) ||
(i == MATERIAL_MAP_PREFILTER) ||
(i == MATERIAL_MAP_CUBEMAP)) rlDisableTextureCubemap();
else rlDisableTexture();
}
}
// Disable all possible vertex array objects (or VBOs)
rlDisableVertexArray();
rlDisableVertexBuffer();
rlDisableVertexBufferElement();
// Disable shader program
rlDisableShader();
// Remove instance transforms buffer
rlUnloadVertexBuffer(instancesVboId);
RL_FREE(instanceTransforms);
#endif
}
// Unload mesh from memory (RAM and VRAM)
void UnloadMesh(Mesh mesh)
{
// Unload rlgl mesh vboId data
rlUnloadVertexArray(mesh.vaoId);
if (mesh.vboId != NULL) for (int i = 0; i < MAX_MESH_VERTEX_BUFFERS; i++) rlUnloadVertexBuffer(mesh.vboId[i]);
RL_FREE(mesh.vboId);
RL_FREE(mesh.vertices);
RL_FREE(mesh.texcoords);
RL_FREE(mesh.normals);
RL_FREE(mesh.colors);
RL_FREE(mesh.tangents);
RL_FREE(mesh.texcoords2);
RL_FREE(mesh.indices);
RL_FREE(mesh.animVertices);
RL_FREE(mesh.animNormals);
RL_FREE(mesh.boneWeights);
RL_FREE(mesh.boneIds);
RL_FREE(mesh.boneMatrices);
}
// Export mesh data to file
bool ExportMesh(Mesh mesh, const char *fileName)
{
bool success = false;
if (IsFileExtension(fileName, ".obj"))
{
// Estimated data size, it should be enough...
int vc = mesh.vertexCount;
int dataSize = vc*(int)strlen("v -0000.000000f -0000.000000f -0000.000000f\n") +
vc*(int)strlen("vt -0.000000f -0.000000f\n") +
vc*(int)strlen("vn -0.0000f -0.0000f -0.0000f\n") +
mesh.triangleCount*snprintf(NULL, 0, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", vc, vc, vc, vc, vc, vc, vc, vc, vc);
// NOTE: Text data buffer size is estimated considering mesh data size
char *txtData = (char *)RL_CALLOC(dataSize + 1000, sizeof(char));
int byteCount = 0;
byteCount += sprintf(txtData + byteCount, "# //////////////////////////////////////////////////////////////////////////////////\n");
byteCount += sprintf(txtData + byteCount, "# // //\n");
byteCount += sprintf(txtData + byteCount, "# // rMeshOBJ exporter v1.0 - Mesh exported as triangle faces and not optimized //\n");
byteCount += sprintf(txtData + byteCount, "# // //\n");
byteCount += sprintf(txtData + byteCount, "# // more info and bugs-report: github.com/raysan5/raylib //\n");
byteCount += sprintf(txtData + byteCount, "# // feedback and support: ray[at]raylib.com //\n");
byteCount += sprintf(txtData + byteCount, "# // //\n");
byteCount += sprintf(txtData + byteCount, "# // Copyright (c) 2018-2024 Ramon Santamaria (@raysan5) //\n");
byteCount += sprintf(txtData + byteCount, "# // //\n");
byteCount += sprintf(txtData + byteCount, "# //////////////////////////////////////////////////////////////////////////////////\n\n");
byteCount += sprintf(txtData + byteCount, "# Vertex Count: %i\n", mesh.vertexCount);
byteCount += sprintf(txtData + byteCount, "# Triangle Count: %i\n\n", mesh.triangleCount);
byteCount += sprintf(txtData + byteCount, "g mesh\n");
for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3)
{
byteCount += sprintf(txtData + byteCount, "v %.6f %.6f %.6f\n", mesh.vertices[v], mesh.vertices[v + 1], mesh.vertices[v + 2]);
}
for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 2)
{
byteCount += sprintf(txtData + byteCount, "vt %.6f %.6f\n", mesh.texcoords[v], mesh.texcoords[v + 1]);
}
for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3)
{
byteCount += sprintf(txtData + byteCount, "vn %.4f %.4f %.4f\n", mesh.normals[v], mesh.normals[v + 1], mesh.normals[v + 2]);
}
if (mesh.indices != NULL)
{
for (int i = 0, v = 0; i < mesh.triangleCount; i++, v += 3)
{
byteCount += sprintf(txtData + byteCount, "f %i/%i/%i %i/%i/%i %i/%i/%i\n",
mesh.indices[v] + 1, mesh.indices[v] + 1, mesh.indices[v] + 1,
mesh.indices[v + 1] + 1, mesh.indices[v + 1] + 1, mesh.indices[v + 1] + 1,
mesh.indices[v + 2] + 1, mesh.indices[v + 2] + 1, mesh.indices[v + 2] + 1);
}
}
else
{
for (int i = 0, v = 1; i < mesh.triangleCount; i++, v += 3)
{
byteCount += sprintf(txtData + byteCount, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", v, v, v, v + 1, v + 1, v + 1, v + 2, v + 2, v + 2);
}
}
// NOTE: Text data length exported is determined by '\0' (NULL) character
success = SaveFileText(fileName, txtData);
RL_FREE(txtData);
}
else if (IsFileExtension(fileName, ".raw"))
{
// TODO: Support additional file formats to export mesh vertex data
}
return success;
}
// Export mesh as code file (.h) defining multiple arrays of vertex attributes
bool ExportMeshAsCode(Mesh mesh, const char *fileName)
{
bool success = false;
#ifndef TEXT_BYTES_PER_LINE
#define TEXT_BYTES_PER_LINE 20
#endif
// NOTE: Text data buffer size is fixed to 64MB
char *txtData = (char *)RL_CALLOC(64*1024*1024, sizeof(char)); // 64 MB
int byteCount = 0;
byteCount += sprintf(txtData + byteCount, "////////////////////////////////////////////////////////////////////////////////////////\n");
byteCount += sprintf(txtData + byteCount, "// //\n");
byteCount += sprintf(txtData + byteCount, "// MeshAsCode exporter v1.0 - Mesh vertex data exported as arrays //\n");
byteCount += sprintf(txtData + byteCount, "// //\n");
byteCount += sprintf(txtData + byteCount, "// more info and bugs-report: github.com/raysan5/raylib //\n");
byteCount += sprintf(txtData + byteCount, "// feedback and support: ray[at]raylib.com //\n");
byteCount += sprintf(txtData + byteCount, "// //\n");
byteCount += sprintf(txtData + byteCount, "// Copyright (c) 2023 Ramon Santamaria (@raysan5) //\n");
byteCount += sprintf(txtData + byteCount, "// //\n");
byteCount += sprintf(txtData + byteCount, "////////////////////////////////////////////////////////////////////////////////////////\n\n");
// Get file name from path and convert variable name to uppercase
char varFileName[256] = { 0 };
strcpy(varFileName, GetFileNameWithoutExt(fileName));
for (int i = 0; varFileName[i] != '\0'; i++) if ((varFileName[i] >= 'a') && (varFileName[i] <= 'z')) { varFileName[i] = varFileName[i] - 32; }
// Add image information
byteCount += sprintf(txtData + byteCount, "// Mesh basic information\n");
byteCount += sprintf(txtData + byteCount, "#define %s_VERTEX_COUNT %i\n", varFileName, mesh.vertexCount);
byteCount += sprintf(txtData + byteCount, "#define %s_TRIANGLE_COUNT %i\n\n", varFileName, mesh.triangleCount);
// Define vertex attributes data as separate arrays
//-----------------------------------------------------------------------------------------
if (mesh.vertices != NULL) // Vertex position (XYZ - 3 components per vertex - float)
{
byteCount += sprintf(txtData + byteCount, "static float %s_VERTEX_DATA[%i] = { ", varFileName, mesh.vertexCount*3);
for (int i = 0; i < mesh.vertexCount*3 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.vertices[i]);
byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.vertices[mesh.vertexCount*3 - 1]);
}
if (mesh.texcoords != NULL) // Vertex texture coordinates (UV - 2 components per vertex - float)
{
byteCount += sprintf(txtData + byteCount, "static float %s_TEXCOORD_DATA[%i] = { ", varFileName, mesh.vertexCount*2);
for (int i = 0; i < mesh.vertexCount*2 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.texcoords[i]);
byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.texcoords[mesh.vertexCount*2 - 1]);
}
if (mesh.texcoords2 != NULL) // Vertex texture coordinates (UV - 2 components per vertex - float)
{
byteCount += sprintf(txtData + byteCount, "static float %s_TEXCOORD2_DATA[%i] = { ", varFileName, mesh.vertexCount*2);
for (int i = 0; i < mesh.vertexCount*2 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.texcoords2[i]);
byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.texcoords2[mesh.vertexCount*2 - 1]);
}
if (mesh.normals != NULL) // Vertex normals (XYZ - 3 components per vertex - float)
{
byteCount += sprintf(txtData + byteCount, "static float %s_NORMAL_DATA[%i] = { ", varFileName, mesh.vertexCount*3);
for (int i = 0; i < mesh.vertexCount*3 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.normals[i]);
byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.normals[mesh.vertexCount*3 - 1]);
}
if (mesh.tangents != NULL) // Vertex tangents (XYZW - 4 components per vertex - float)
{
byteCount += sprintf(txtData + byteCount, "static float %s_TANGENT_DATA[%i] = { ", varFileName, mesh.vertexCount*4);
for (int i = 0; i < mesh.vertexCount*4 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.tangents[i]);
byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.tangents[mesh.vertexCount*4 - 1]);
}
if (mesh.colors != NULL) // Vertex colors (RGBA - 4 components per vertex - unsigned char)
{
byteCount += sprintf(txtData + byteCount, "static unsigned char %s_COLOR_DATA[%i] = { ", varFileName, mesh.vertexCount*4);
for (int i = 0; i < mesh.vertexCount*4 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "0x%x,\n" : "0x%x, "), mesh.colors[i]);
byteCount += sprintf(txtData + byteCount, "0x%x };\n\n", mesh.colors[mesh.vertexCount*4 - 1]);
}
if (mesh.indices != NULL) // Vertex indices (3 index per triangle - unsigned short)
{
byteCount += sprintf(txtData + byteCount, "static unsigned short %s_INDEX_DATA[%i] = { ", varFileName, mesh.triangleCount*3);
for (int i = 0; i < mesh.triangleCount*3 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%i,\n" : "%i, "), mesh.indices[i]);
byteCount += sprintf(txtData + byteCount, "%i };\n", mesh.indices[mesh.triangleCount*3 - 1]);
}
//-----------------------------------------------------------------------------------------
// NOTE: Text data size exported is determined by '\0' (NULL) character
success = SaveFileText(fileName, txtData);
RL_FREE(txtData);
//if (success != 0) TRACELOG(LOG_INFO, "FILEIO: [%s] Image as code exported successfully", fileName);
//else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to export image as code", fileName);
return success;
}
#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL)
// Process obj materials
static void ProcessMaterialsOBJ(Material *materials, tinyobj_material_t *mats, int materialCount)
{
// Init model mats
for (int m = 0; m < materialCount; m++)
{
// Init material to default
// NOTE: Uses default shader, which only supports MATERIAL_MAP_DIFFUSE
materials[m] = LoadMaterialDefault();
if (mats == NULL) continue;
// Get default texture, in case no texture is defined
// NOTE: rlgl default texture is a 1x1 pixel UNCOMPRESSED_R8G8B8A8
materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = (Texture2D){ rlGetTextureIdDefault(), 1, 1, 1, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 };
if (mats[m].diffuse_texname != NULL) materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = LoadTexture(mats[m].diffuse_texname); //char *diffuse_texname; // map_Kd
else materials[m].maps[MATERIAL_MAP_DIFFUSE].color = (Color){ (unsigned char)(mats[m].diffuse[0]*255.0f), (unsigned char)(mats[m].diffuse[1]*255.0f), (unsigned char)(mats[m].diffuse[2]*255.0f), 255 }; //float diffuse[3];
materials[m].maps[MATERIAL_MAP_DIFFUSE].value = 0.0f;
if (mats[m].specular_texname != NULL) materials[m].maps[MATERIAL_MAP_SPECULAR].texture = LoadTexture(mats[m].specular_texname); //char *specular_texname; // map_Ks
materials[m].maps[MATERIAL_MAP_SPECULAR].color = (Color){ (unsigned char)(mats[m].specular[0]*255.0f), (unsigned char)(mats[m].specular[1]*255.0f), (unsigned char)(mats[m].specular[2]*255.0f), 255 }; //float specular[3];
materials[m].maps[MATERIAL_MAP_SPECULAR].value = 0.0f;
if (mats[m].bump_texname != NULL) materials[m].maps[MATERIAL_MAP_NORMAL].texture = LoadTexture(mats[m].bump_texname); //char *bump_texname; // map_bump, bump
materials[m].maps[MATERIAL_MAP_NORMAL].color = WHITE;
materials[m].maps[MATERIAL_MAP_NORMAL].value = mats[m].shininess;
materials[m].maps[MATERIAL_MAP_EMISSION].color = (Color){ (unsigned char)(mats[m].emission[0]*255.0f), (unsigned char)(mats[m].emission[1]*255.0f), (unsigned char)(mats[m].emission[2]*255.0f), 255 }; //float emission[3];
if (mats[m].displacement_texname != NULL) materials[m].maps[MATERIAL_MAP_HEIGHT].texture = LoadTexture(mats[m].displacement_texname); //char *displacement_texname; // disp
}
}
#endif
// Load materials from model file
Material *LoadMaterials(const char *fileName, int *materialCount)
{
Material *materials = NULL;
unsigned int count = 0;
// TODO: Support IQM and GLTF for materials parsing
#if defined(SUPPORT_FILEFORMAT_MTL)
if (IsFileExtension(fileName, ".mtl"))
{
tinyobj_material_t *mats = NULL;
int result = tinyobj_parse_mtl_file(&mats, &count, fileName);
if (result != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to parse materials file", fileName);
materials = RL_MALLOC(count*sizeof(Material));
ProcessMaterialsOBJ(materials, mats, count);
tinyobj_materials_free(mats, count);
}
#else
TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to load material file", fileName);
#endif
*materialCount = count;
return materials;
}
// Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps)
Material LoadMaterialDefault(void)
{
Material material = { 0 };
material.maps = (MaterialMap *)RL_CALLOC(MAX_MATERIAL_MAPS, sizeof(MaterialMap));
// Using rlgl default shader
material.shader.id = rlGetShaderIdDefault();
material.shader.locs = rlGetShaderLocsDefault();
// Using rlgl default texture (1x1 pixel, UNCOMPRESSED_R8G8B8A8, 1 mipmap)
material.maps[MATERIAL_MAP_DIFFUSE].texture = (Texture2D){ rlGetTextureIdDefault(), 1, 1, 1, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 };
//material.maps[MATERIAL_MAP_NORMAL].texture; // NOTE: By default, not set
//material.maps[MATERIAL_MAP_SPECULAR].texture; // NOTE: By default, not set
material.maps[MATERIAL_MAP_DIFFUSE].color = WHITE; // Diffuse color
material.maps[MATERIAL_MAP_SPECULAR].color = WHITE; // Specular color
return material;
}
// Check if a material is valid (map textures loaded in GPU)
bool IsMaterialValid(Material material)
{
bool result = false;
if ((material.maps != NULL) && // Validate material contain some map
(material.shader.id > 0)) result = true; // Validate material shader is valid
// TODO: Check if available maps contain loaded textures
return result;
}
// Unload material from memory
void UnloadMaterial(Material material)
{
// Unload material shader (avoid unloading default shader, managed by raylib)
if (material.shader.id != rlGetShaderIdDefault()) UnloadShader(material.shader);
// Unload loaded texture maps (avoid unloading default texture, managed by raylib)
if (material.maps != NULL)
{
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
if (material.maps[i].texture.id != rlGetTextureIdDefault()) rlUnloadTexture(material.maps[i].texture.id);
}
}
RL_FREE(material.maps);
}
// Set texture for a material map type (MATERIAL_MAP_DIFFUSE, MATERIAL_MAP_SPECULAR...)
// NOTE: Previous texture should be manually unloaded
void SetMaterialTexture(Material *material, int mapType, Texture2D texture)
{
material->maps[mapType].texture = texture;
}
// Set the material for a mesh
void SetModelMeshMaterial(Model *model, int meshId, int materialId)
{
if (meshId >= model->meshCount) TRACELOG(LOG_WARNING, "MESH: Id greater than mesh count");
else if (materialId >= model->materialCount) TRACELOG(LOG_WARNING, "MATERIAL: Id greater than material count");
else model->meshMaterial[meshId] = materialId;
}
// Load model animations from file
ModelAnimation *LoadModelAnimations(const char *fileName, int *animCount)
{
ModelAnimation *animations = NULL;
#if defined(SUPPORT_FILEFORMAT_IQM)
if (IsFileExtension(fileName, ".iqm")) animations = LoadModelAnimationsIQM(fileName, animCount);
#endif
#if defined(SUPPORT_FILEFORMAT_M3D)
if (IsFileExtension(fileName, ".m3d")) animations = LoadModelAnimationsM3D(fileName, animCount);
#endif
#if defined(SUPPORT_FILEFORMAT_GLTF)
if (IsFileExtension(fileName, ".gltf;.glb")) animations = LoadModelAnimationsGLTF(fileName, animCount);
#endif
return animations;
}
// Update model animated bones transform matrices for a given frame
// NOTE: Updated data is not uploaded to GPU but kept at model.meshes[i].boneMatrices[boneId],
// to be uploaded to shader at drawing, in case GPU skinning is enabled
void UpdateModelAnimationBones(Model model, ModelAnimation anim, int frame)
{
if ((anim.frameCount > 0) && (anim.bones != NULL) && (anim.framePoses != NULL))
{
if (frame >= anim.frameCount) frame = frame%anim.frameCount;
for (int i = 0; i < model.meshCount; i++)
{
if (model.meshes[i].boneMatrices)
{
assert(model.meshes[i].boneCount == anim.boneCount);
for (int boneId = 0; boneId < model.meshes[i].boneCount; boneId++)
{
Vector3 inTranslation = model.bindPose[boneId].translation;
Quaternion inRotation = model.bindPose[boneId].rotation;
Vector3 inScale = model.bindPose[boneId].scale;
Vector3 outTranslation = anim.framePoses[frame][boneId].translation;
Quaternion outRotation = anim.framePoses[frame][boneId].rotation;
Vector3 outScale = anim.framePoses[frame][boneId].scale;
Vector3 invTranslation = Vector3RotateByQuaternion(Vector3Negate(inTranslation), QuaternionInvert(inRotation));
Quaternion invRotation = QuaternionInvert(inRotation);
Vector3 invScale = Vector3Divide((Vector3){ 1.0f, 1.0f, 1.0f }, inScale);
Vector3 boneTranslation = Vector3Add(
Vector3RotateByQuaternion(Vector3Multiply(outScale, invTranslation),
outRotation), outTranslation);
Quaternion boneRotation = QuaternionMultiply(outRotation, invRotation);
Vector3 boneScale = Vector3Multiply(outScale, invScale);
Matrix boneMatrix = MatrixMultiply(MatrixMultiply(
QuaternionToMatrix(boneRotation),
MatrixTranslate(boneTranslation.x, boneTranslation.y, boneTranslation.z)),
MatrixScale(boneScale.x, boneScale.y, boneScale.z));
model.meshes[i].boneMatrices[boneId] = boneMatrix;
}
}
}
}
}
// at least 2x speed up vs the old method
// Update model animated vertex data (positions and normals) for a given frame
// NOTE: Updated data is uploaded to GPU
void UpdateModelAnimation(Model model, ModelAnimation anim, int frame)
{
UpdateModelAnimationBones(model,anim,frame);
for (int m = 0; m < model.meshCount; m++)
{
Mesh mesh = model.meshes[m];
Vector3 animVertex = { 0 };
Vector3 animNormal = { 0 };
int boneId = 0;
int boneCounter = 0;
float boneWeight = 0.0;
bool updated = false; // Flag to check when anim vertex information is updated
const int vValues = mesh.vertexCount*3;
for (int vCounter = 0; vCounter < vValues; vCounter += 3)
{
mesh.animVertices[vCounter] = 0;
mesh.animVertices[vCounter + 1] = 0;
mesh.animVertices[vCounter + 2] = 0;
if (mesh.animNormals != NULL)
{
mesh.animNormals[vCounter] = 0;
mesh.animNormals[vCounter + 1] = 0;
mesh.animNormals[vCounter + 2] = 0;
}
// Iterates over 4 bones per vertex
for (int j = 0; j < 4; j++, boneCounter++)
{
boneWeight = mesh.boneWeights[boneCounter];
boneId = mesh.boneIds[boneCounter];
// Early stop when no transformation will be applied
if (boneWeight == 0.0f) continue;
animVertex = (Vector3){ mesh.vertices[vCounter], mesh.vertices[vCounter + 1], mesh.vertices[vCounter + 2] };
animVertex = Vector3Transform(animVertex,model.meshes[m].boneMatrices[boneId]);
mesh.animVertices[vCounter] += animVertex.x * boneWeight;
mesh.animVertices[vCounter+1] += animVertex.y * boneWeight;
mesh.animVertices[vCounter+2] += animVertex.z * boneWeight;
updated = true;
// Normals processing
// NOTE: We use meshes.baseNormals (default normal) to calculate meshes.normals (animated normals)
if (mesh.normals != NULL)
{
animNormal = (Vector3){ mesh.normals[vCounter], mesh.normals[vCounter + 1], mesh.normals[vCounter + 2] };
animNormal = Vector3Transform(animNormal,model.meshes[m].boneMatrices[boneId]);
mesh.animNormals[vCounter] += animNormal.x*boneWeight;
mesh.animNormals[vCounter + 1] += animNormal.y*boneWeight;
mesh.animNormals[vCounter + 2] += animNormal.z*boneWeight;
}
}
}
if (updated)
{
rlUpdateVertexBuffer(mesh.vboId[0], mesh.animVertices, mesh.vertexCount*3*sizeof(float), 0); // Update vertex position
rlUpdateVertexBuffer(mesh.vboId[2], mesh.animNormals, mesh.vertexCount*3*sizeof(float), 0); // Update vertex normals
}
}
}
// Unload animation array data
void UnloadModelAnimations(ModelAnimation *animations, int animCount)
{
for (int i = 0; i < animCount; i++) UnloadModelAnimation(animations[i]);
RL_FREE(animations);
}
// Unload animation data
void UnloadModelAnimation(ModelAnimation anim)
{
for (int i = 0; i < anim.frameCount; i++) RL_FREE(anim.framePoses[i]);
RL_FREE(anim.bones);
RL_FREE(anim.framePoses);
}
// Check model animation skeleton match
// NOTE: Only number of bones and parent connections are checked
bool IsModelAnimationValid(Model model, ModelAnimation anim)
{
int result = true;
if (model.boneCount != anim.boneCount) result = false;
else
{
for (int i = 0; i < model.boneCount; i++)
{
if (model.bones[i].parent != anim.bones[i].parent) { result = false; break; }
}
}
return result;
}
#if defined(SUPPORT_MESH_GENERATION)
// Generate polygonal mesh
Mesh GenMeshPoly(int sides, float radius)
{
Mesh mesh = { 0 };
if (sides < 3) return mesh; // Security check
int vertexCount = sides*3;
// Vertices definition
Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
float d = 0.0f, dStep = 360.0f/sides;
for (int v = 0; v < vertexCount - 2; v += 3)
{
vertices[v] = (Vector3){ 0.0f, 0.0f, 0.0f };
vertices[v + 1] = (Vector3){ sinf(DEG2RAD*d)*radius, 0.0f, cosf(DEG2RAD*d)*radius };
vertices[v + 2] = (Vector3){ sinf(DEG2RAD*(d+dStep))*radius, 0.0f, cosf(DEG2RAD*(d+dStep))*radius };
d += dStep;
}
// Normals definition
Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up;
// TexCoords definition
Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2));
for (int n = 0; n < vertexCount; n++) texcoords[n] = (Vector2){ 0.0f, 0.0f };
mesh.vertexCount = vertexCount;
mesh.triangleCount = sides;
mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
// Mesh vertices position array
for (int i = 0; i < mesh.vertexCount; i++)
{
mesh.vertices[3*i] = vertices[i].x;
mesh.vertices[3*i + 1] = vertices[i].y;
mesh.vertices[3*i + 2] = vertices[i].z;
}
// Mesh texcoords array
for (int i = 0; i < mesh.vertexCount; i++)
{
mesh.texcoords[2*i] = texcoords[i].x;
mesh.texcoords[2*i + 1] = texcoords[i].y;
}
// Mesh normals array
for (int i = 0; i < mesh.vertexCount; i++)
{
mesh.normals[3*i] = normals[i].x;
mesh.normals[3*i + 1] = normals[i].y;
mesh.normals[3*i + 2] = normals[i].z;
}
RL_FREE(vertices);
RL_FREE(normals);
RL_FREE(texcoords);
// Upload vertex data to GPU (static mesh)
// NOTE: mesh.vboId array is allocated inside UploadMesh()
UploadMesh(&mesh, false);
return mesh;
}
// Generate plane mesh (with subdivisions)
Mesh GenMeshPlane(float width, float length, int resX, int resZ)
{
Mesh mesh = { 0 };
#define CUSTOM_MESH_GEN_PLANE
#if defined(CUSTOM_MESH_GEN_PLANE)
resX++;
resZ++;
// Vertices definition
int vertexCount = resX*resZ; // vertices get reused for the faces
Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
for (int z = 0; z < resZ; z++)
{
// [-length/2, length/2]
float zPos = ((float)z/(resZ - 1) - 0.5f)*length;
for (int x = 0; x < resX; x++)
{
// [-width/2, width/2]
float xPos = ((float)x/(resX - 1) - 0.5f)*width;
vertices[x + z*resX] = (Vector3){ xPos, 0.0f, zPos };
}
}
// Normals definition
Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up;
// TexCoords definition
Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2));
for (int v = 0; v < resZ; v++)
{
for (int u = 0; u < resX; u++)
{
texcoords[u + v*resX] = (Vector2){ (float)u/(resX - 1), (float)v/(resZ - 1) };
}
}
// Triangles definition (indices)
int numFaces = (resX - 1)*(resZ - 1);
int *triangles = (int *)RL_MALLOC(numFaces*6*sizeof(int));
int t = 0;
for (int face = 0; face < numFaces; face++)
{
// Retrieve lower left corner from face ind
int i = face + face/(resX - 1);
triangles[t++] = i + resX;
triangles[t++] = i + 1;
triangles[t++] = i;
triangles[t++] = i + resX;
triangles[t++] = i + resX + 1;
triangles[t++] = i + 1;
}
mesh.vertexCount = vertexCount;
mesh.triangleCount = numFaces*2;
mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
mesh.indices = (unsigned short *)RL_MALLOC(mesh.triangleCount*3*sizeof(unsigned short));
// Mesh vertices position array
for (int i = 0; i < mesh.vertexCount; i++)
{
mesh.vertices[3*i] = vertices[i].x;
mesh.vertices[3*i + 1] = vertices[i].y;
mesh.vertices[3*i + 2] = vertices[i].z;
}
// Mesh texcoords array
for (int i = 0; i < mesh.vertexCount; i++)
{
mesh.texcoords[2*i] = texcoords[i].x;
mesh.texcoords[2*i + 1] = texcoords[i].y;
}
// Mesh normals array
for (int i = 0; i < mesh.vertexCount; i++)
{
mesh.normals[3*i] = normals[i].x;
mesh.normals[3*i + 1] = normals[i].y;
mesh.normals[3*i + 2] = normals[i].z;
}
// Mesh indices array initialization
for (int i = 0; i < mesh.triangleCount*3; i++) mesh.indices[i] = triangles[i];
RL_FREE(vertices);
RL_FREE(normals);
RL_FREE(texcoords);
RL_FREE(triangles);
#else // Use par_shapes library to generate plane mesh
par_shapes_mesh *plane = par_shapes_create_plane(resX, resZ); // No normals/texcoords generated!!!
par_shapes_scale(plane, width, length, 1.0f);
par_shapes_rotate(plane, -PI/2.0f, (float[]){ 1, 0, 0 });
par_shapes_translate(plane, -width/2, 0.0f, length/2);
mesh.vertices = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(plane->ntriangles*3*2*sizeof(float));
mesh.normals = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
mesh.vertexCount = plane->ntriangles*3;
mesh.triangleCount = plane->ntriangles;
for (int k = 0; k < mesh.vertexCount; k++)
{
mesh.vertices[k*3] = plane->points[plane->triangles[k]*3];
mesh.vertices[k*3 + 1] = plane->points[plane->triangles[k]*3 + 1];
mesh.vertices[k*3 + 2] = plane->points[plane->triangles[k]*3 + 2];
mesh.normals[k*3] = plane->normals[plane->triangles[k]*3];
mesh.normals[k*3 + 1] = plane->normals[plane->triangles[k]*3 + 1];
mesh.normals[k*3 + 2] = plane->normals[plane->triangles[k]*3 + 2];
mesh.texcoords[k*2] = plane->tcoords[plane->triangles[k]*2];
mesh.texcoords[k*2 + 1] = plane->tcoords[plane->triangles[k]*2 + 1];
}
par_shapes_free_mesh(plane);
#endif
// Upload vertex data to GPU (static mesh)
UploadMesh(&mesh, false);
return mesh;
}
// Generated cuboid mesh
Mesh GenMeshCube(float width, float height, float length)
{
Mesh mesh = { 0 };
#define CUSTOM_MESH_GEN_CUBE
#if defined(CUSTOM_MESH_GEN_CUBE)
float vertices[] = {
-width/2, -height/2, length/2,
width/2, -height/2, length/2,
width/2, height/2, length/2,
-width/2, height/2, length/2,
-width/2, -height/2, -length/2,
-width/2, height/2, -length/2,
width/2, height/2, -length/2,
width/2, -height/2, -length/2,
-width/2, height/2, -length/2,
-width/2, height/2, length/2,
width/2, height/2, length/2,
width/2, height/2, -length/2,
-width/2, -height/2, -length/2,
width/2, -height/2, -length/2,
width/2, -height/2, length/2,
-width/2, -height/2, length/2,
width/2, -height/2, -length/2,
width/2, height/2, -length/2,
width/2, height/2, length/2,
width/2, -height/2, length/2,
-width/2, -height/2, -length/2,
-width/2, -height/2, length/2,
-width/2, height/2, length/2,
-width/2, height/2, -length/2
};
float texcoords[] = {
0.0f, 0.0f,
1.0f, 0.0f,
1.0f, 1.0f,
0.0f, 1.0f,
1.0f, 0.0f,
1.0f, 1.0f,
0.0f, 1.0f,
0.0f, 0.0f,
0.0f, 1.0f,
0.0f, 0.0f,
1.0f, 0.0f,
1.0f, 1.0f,
1.0f, 1.0f,
0.0f, 1.0f,
0.0f, 0.0f,
1.0f, 0.0f,
1.0f, 0.0f,
1.0f, 1.0f,
0.0f, 1.0f,
0.0f, 0.0f,
0.0f, 0.0f,
1.0f, 0.0f,
1.0f, 1.0f,
0.0f, 1.0f
};
float normals[] = {
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f,
0.0f, 0.0f,-1.0f,
0.0f, 0.0f,-1.0f,
0.0f, 0.0f,-1.0f,
0.0f, 0.0f,-1.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f,-1.0f, 0.0f,
0.0f,-1.0f, 0.0f,
0.0f,-1.0f, 0.0f,
0.0f,-1.0f, 0.0f,
1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f,
-1.0f, 0.0f, 0.0f,
-1.0f, 0.0f, 0.0f,
-1.0f, 0.0f, 0.0f,
-1.0f, 0.0f, 0.0f
};
mesh.vertices = (float *)RL_MALLOC(24*3*sizeof(float));
memcpy(mesh.vertices, vertices, 24*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(24*2*sizeof(float));
memcpy(mesh.texcoords, texcoords, 24*2*sizeof(float));
mesh.normals = (float *)RL_MALLOC(24*3*sizeof(float));
memcpy(mesh.normals, normals, 24*3*sizeof(float));
mesh.indices = (unsigned short *)RL_MALLOC(36*sizeof(unsigned short));
int k = 0;
// Indices can be initialized right now
for (int i = 0; i < 36; i += 6)
{
mesh.indices[i] = 4*k;
mesh.indices[i + 1] = 4*k + 1;
mesh.indices[i + 2] = 4*k + 2;
mesh.indices[i + 3] = 4*k;
mesh.indices[i + 4] = 4*k + 2;
mesh.indices[i + 5] = 4*k + 3;
k++;
}
mesh.vertexCount = 24;
mesh.triangleCount = 12;
#else // Use par_shapes library to generate cube mesh
/*
// Platonic solids:
par_shapes_mesh* par_shapes_create_tetrahedron(); // 4 sides polyhedron (pyramid)
par_shapes_mesh* par_shapes_create_cube(); // 6 sides polyhedron (cube)
par_shapes_mesh* par_shapes_create_octahedron(); // 8 sides polyhedron (diamond)
par_shapes_mesh* par_shapes_create_dodecahedron(); // 12 sides polyhedron
par_shapes_mesh* par_shapes_create_icosahedron(); // 20 sides polyhedron
*/
// Platonic solid generation: cube (6 sides)
// NOTE: No normals/texcoords generated by default
par_shapes_mesh *cube = par_shapes_create_cube();
cube->tcoords = PAR_MALLOC(float, 2*cube->npoints);
for (int i = 0; i < 2*cube->npoints; i++) cube->tcoords[i] = 0.0f;
par_shapes_scale(cube, width, height, length);
par_shapes_translate(cube, -width/2, 0.0f, -length/2);
par_shapes_compute_normals(cube);
mesh.vertices = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(cube->ntriangles*3*2*sizeof(float));
mesh.normals = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float));
mesh.vertexCount = cube->ntriangles*3;
mesh.triangleCount = cube->ntriangles;
for (int k = 0; k < mesh.vertexCount; k++)
{
mesh.vertices[k*3] = cube->points[cube->triangles[k]*3];
mesh.vertices[k*3 + 1] = cube->points[cube->triangles[k]*3 + 1];
mesh.vertices[k*3 + 2] = cube->points[cube->triangles[k]*3 + 2];
mesh.normals[k*3] = cube->normals[cube->triangles[k]*3];
mesh.normals[k*3 + 1] = cube->normals[cube->triangles[k]*3 + 1];
mesh.normals[k*3 + 2] = cube->normals[cube->triangles[k]*3 + 2];
mesh.texcoords[k*2] = cube->tcoords[cube->triangles[k]*2];
mesh.texcoords[k*2 + 1] = cube->tcoords[cube->triangles[k]*2 + 1];
}
par_shapes_free_mesh(cube);
#endif
// Upload vertex data to GPU (static mesh)
UploadMesh(&mesh, false);
return mesh;
}
// Generate sphere mesh (standard sphere)
Mesh GenMeshSphere(float radius, int rings, int slices)
{
Mesh mesh = { 0 };
if ((rings >= 3) && (slices >= 3))
{
par_shapes_set_epsilon_degenerate_sphere(0.0);
par_shapes_mesh *sphere = par_shapes_create_parametric_sphere(slices, rings);
par_shapes_scale(sphere, radius, radius, radius);
// NOTE: Soft normals are computed internally
mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float));
mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
mesh.vertexCount = sphere->ntriangles*3;
mesh.triangleCount = sphere->ntriangles;
for (int k = 0; k < mesh.vertexCount; k++)
{
mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3];
mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1];
mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2];
mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3];
mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1];
mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2];
mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2];
mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1];
}
par_shapes_free_mesh(sphere);
// Upload vertex data to GPU (static mesh)
UploadMesh(&mesh, false);
}
else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: sphere");
return mesh;
}
// Generate hemisphere mesh (half sphere, no bottom cap)
Mesh GenMeshHemiSphere(float radius, int rings, int slices)
{
Mesh mesh = { 0 };
if ((rings >= 3) && (slices >= 3))
{
if (radius < 0.0f) radius = 0.0f;
par_shapes_mesh *sphere = par_shapes_create_hemisphere(slices, rings);
par_shapes_scale(sphere, radius, radius, radius);
// NOTE: Soft normals are computed internally
mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float));
mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
mesh.vertexCount = sphere->ntriangles*3;
mesh.triangleCount = sphere->ntriangles;
for (int k = 0; k < mesh.vertexCount; k++)
{
mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3];
mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1];
mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2];
mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3];
mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1];
mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2];
mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2];
mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1];
}
par_shapes_free_mesh(sphere);
// Upload vertex data to GPU (static mesh)
UploadMesh(&mesh, false);
}
else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: hemisphere");
return mesh;
}
// Generate cylinder mesh
Mesh GenMeshCylinder(float radius, float height, int slices)
{
Mesh mesh = { 0 };
if (slices >= 3)
{
// Instance a cylinder that sits on the Z=0 plane using the given tessellation
// levels across the UV domain. Think of "slices" like a number of pizza
// slices, and "stacks" like a number of stacked rings
// Height and radius are both 1.0, but they can easily be changed with par_shapes_scale
par_shapes_mesh *cylinder = par_shapes_create_cylinder(slices, 8);
par_shapes_scale(cylinder, radius, radius, height);
par_shapes_rotate(cylinder, -PI/2.0f, (float[]){ 1, 0, 0 });
// Generate an orientable disk shape (top cap)
par_shapes_mesh *capTop = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, 1 });
capTop->tcoords = PAR_MALLOC(float, 2*capTop->npoints);
for (int i = 0; i < 2*capTop->npoints; i++) capTop->tcoords[i] = 0.0f;
par_shapes_rotate(capTop, -PI/2.0f, (float[]){ 1, 0, 0 });
par_shapes_rotate(capTop, 90*DEG2RAD, (float[]){ 0, 1, 0 });
par_shapes_translate(capTop, 0, height, 0);
// Generate an orientable disk shape (bottom cap)
par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 });
capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints);
for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f;
par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 });
par_shapes_rotate(capBottom, -90*DEG2RAD, (float[]){ 0, 1, 0 });
par_shapes_merge_and_free(cylinder, capTop);
par_shapes_merge_and_free(cylinder, capBottom);
mesh.vertices = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(cylinder->ntriangles*3*2*sizeof(float));
mesh.normals = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float));
mesh.vertexCount = cylinder->ntriangles*3;
mesh.triangleCount = cylinder->ntriangles;
for (int k = 0; k < mesh.vertexCount; k++)
{
mesh.vertices[k*3] = cylinder->points[cylinder->triangles[k]*3];
mesh.vertices[k*3 + 1] = cylinder->points[cylinder->triangles[k]*3 + 1];
mesh.vertices[k*3 + 2] = cylinder->points[cylinder->triangles[k]*3 + 2];
mesh.normals[k*3] = cylinder->normals[cylinder->triangles[k]*3];
mesh.normals[k*3 + 1] = cylinder->normals[cylinder->triangles[k]*3 + 1];
mesh.normals[k*3 + 2] = cylinder->normals[cylinder->triangles[k]*3 + 2];
mesh.texcoords[k*2] = cylinder->tcoords[cylinder->triangles[k]*2];
mesh.texcoords[k*2 + 1] = cylinder->tcoords[cylinder->triangles[k]*2 + 1];
}
par_shapes_free_mesh(cylinder);
// Upload vertex data to GPU (static mesh)
UploadMesh(&mesh, false);
}
else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: cylinder");
return mesh;
}
// Generate cone/pyramid mesh
Mesh GenMeshCone(float radius, float height, int slices)
{
Mesh mesh = { 0 };
if (slices >= 3)
{
// Instance a cone that sits on the Z=0 plane using the given tessellation
// levels across the UV domain. Think of "slices" like a number of pizza
// slices, and "stacks" like a number of stacked rings
// Height and radius are both 1.0, but they can easily be changed with par_shapes_scale
par_shapes_mesh *cone = par_shapes_create_cone(slices, 8);
par_shapes_scale(cone, radius, radius, height);
par_shapes_rotate(cone, -PI/2.0f, (float[]){ 1, 0, 0 });
par_shapes_rotate(cone, PI/2.0f, (float[]){ 0, 1, 0 });
// Generate an orientable disk shape (bottom cap)
par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 });
capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints);
for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f;
par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 });
par_shapes_merge_and_free(cone, capBottom);
mesh.vertices = (float *)RL_MALLOC(cone->ntriangles*3*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(cone->ntriangles*3*2*sizeof(float));
mesh.normals = (float *)RL_MALLOC(cone->ntriangles*3*3*sizeof(float));
mesh.vertexCount = cone->ntriangles*3;
mesh.triangleCount = cone->ntriangles;
for (int k = 0; k < mesh.vertexCount; k++)
{
mesh.vertices[k*3] = cone->points[cone->triangles[k]*3];
mesh.vertices[k*3 + 1] = cone->points[cone->triangles[k]*3 + 1];
mesh.vertices[k*3 + 2] = cone->points[cone->triangles[k]*3 + 2];
mesh.normals[k*3] = cone->normals[cone->triangles[k]*3];
mesh.normals[k*3 + 1] = cone->normals[cone->triangles[k]*3 + 1];
mesh.normals[k*3 + 2] = cone->normals[cone->triangles[k]*3 + 2];
mesh.texcoords[k*2] = cone->tcoords[cone->triangles[k]*2];
mesh.texcoords[k*2 + 1] = cone->tcoords[cone->triangles[k]*2 + 1];
}
par_shapes_free_mesh(cone);
// Upload vertex data to GPU (static mesh)
UploadMesh(&mesh, false);
}
else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: cone");
return mesh;
}
// Generate torus mesh
Mesh GenMeshTorus(float radius, float size, int radSeg, int sides)
{
Mesh mesh = { 0 };
if ((sides >= 3) && (radSeg >= 3))
{
if (radius > 1.0f) radius = 1.0f;
else if (radius < 0.1f) radius = 0.1f;
// Create a donut that sits on the Z=0 plane with the specified inner radius
// The outer radius can be controlled with par_shapes_scale
par_shapes_mesh *torus = par_shapes_create_torus(radSeg, sides, radius);
par_shapes_scale(torus, size/2, size/2, size/2);
mesh.vertices = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(torus->ntriangles*3*2*sizeof(float));
mesh.normals = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float));
mesh.vertexCount = torus->ntriangles*3;
mesh.triangleCount = torus->ntriangles;
for (int k = 0; k < mesh.vertexCount; k++)
{
mesh.vertices[k*3] = torus->points[torus->triangles[k]*3];
mesh.vertices[k*3 + 1] = torus->points[torus->triangles[k]*3 + 1];
mesh.vertices[k*3 + 2] = torus->points[torus->triangles[k]*3 + 2];
mesh.normals[k*3] = torus->normals[torus->triangles[k]*3];
mesh.normals[k*3 + 1] = torus->normals[torus->triangles[k]*3 + 1];
mesh.normals[k*3 + 2] = torus->normals[torus->triangles[k]*3 + 2];
mesh.texcoords[k*2] = torus->tcoords[torus->triangles[k]*2];
mesh.texcoords[k*2 + 1] = torus->tcoords[torus->triangles[k]*2 + 1];
}
par_shapes_free_mesh(torus);
// Upload vertex data to GPU (static mesh)
UploadMesh(&mesh, false);
}
else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: torus");
return mesh;
}
// Generate trefoil knot mesh
Mesh GenMeshKnot(float radius, float size, int radSeg, int sides)
{
Mesh mesh = { 0 };
if ((sides >= 3) && (radSeg >= 3))
{
if (radius > 3.0f) radius = 3.0f;
else if (radius < 0.5f) radius = 0.5f;
par_shapes_mesh *knot = par_shapes_create_trefoil_knot(radSeg, sides, radius);
par_shapes_scale(knot, size, size, size);
mesh.vertices = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(knot->ntriangles*3*2*sizeof(float));
mesh.normals = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float));
mesh.vertexCount = knot->ntriangles*3;
mesh.triangleCount = knot->ntriangles;
for (int k = 0; k < mesh.vertexCount; k++)
{
mesh.vertices[k*3] = knot->points[knot->triangles[k]*3];
mesh.vertices[k*3 + 1] = knot->points[knot->triangles[k]*3 + 1];
mesh.vertices[k*3 + 2] = knot->points[knot->triangles[k]*3 + 2];
mesh.normals[k*3] = knot->normals[knot->triangles[k]*3];
mesh.normals[k*3 + 1] = knot->normals[knot->triangles[k]*3 + 1];
mesh.normals[k*3 + 2] = knot->normals[knot->triangles[k]*3 + 2];
mesh.texcoords[k*2] = knot->tcoords[knot->triangles[k]*2];
mesh.texcoords[k*2 + 1] = knot->tcoords[knot->triangles[k]*2 + 1];
}
par_shapes_free_mesh(knot);
// Upload vertex data to GPU (static mesh)
UploadMesh(&mesh, false);
}
else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: knot");
return mesh;
}
// Generate a mesh from heightmap
// NOTE: Vertex data is uploaded to GPU
Mesh GenMeshHeightmap(Image heightmap, Vector3 size)
{
#define GRAY_VALUE(c) ((float)(c.r + c.g + c.b)/3.0f)
Mesh mesh = { 0 };
int mapX = heightmap.width;
int mapZ = heightmap.height;
Color *pixels = LoadImageColors(heightmap);
// NOTE: One vertex per pixel
mesh.triangleCount = (mapX - 1)*(mapZ - 1)*2; // One quad every four pixels
mesh.vertexCount = mesh.triangleCount*3;
mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
mesh.colors = NULL;
int vCounter = 0; // Used to count vertices float by float
int tcCounter = 0; // Used to count texcoords float by float
int nCounter = 0; // Used to count normals float by float
Vector3 scaleFactor = { size.x/(mapX - 1), size.y/255.0f, size.z/(mapZ - 1) };
Vector3 vA = { 0 };
Vector3 vB = { 0 };
Vector3 vC = { 0 };
Vector3 vN = { 0 };
for (int z = 0; z < mapZ-1; z++)
{
for (int x = 0; x < mapX-1; x++)
{
// Fill vertices array with data
//----------------------------------------------------------
// one triangle - 3 vertex
mesh.vertices[vCounter] = (float)x*scaleFactor.x;
mesh.vertices[vCounter + 1] = GRAY_VALUE(pixels[x + z*mapX])*scaleFactor.y;
mesh.vertices[vCounter + 2] = (float)z*scaleFactor.z;
mesh.vertices[vCounter + 3] = (float)x*scaleFactor.x;
mesh.vertices[vCounter + 4] = GRAY_VALUE(pixels[x + (z + 1)*mapX])*scaleFactor.y;
mesh.vertices[vCounter + 5] = (float)(z + 1)*scaleFactor.z;
mesh.vertices[vCounter + 6] = (float)(x + 1)*scaleFactor.x;
mesh.vertices[vCounter + 7] = GRAY_VALUE(pixels[(x + 1) + z*mapX])*scaleFactor.y;
mesh.vertices[vCounter + 8] = (float)z*scaleFactor.z;
// Another triangle - 3 vertex
mesh.vertices[vCounter + 9] = mesh.vertices[vCounter + 6];
mesh.vertices[vCounter + 10] = mesh.vertices[vCounter + 7];
mesh.vertices[vCounter + 11] = mesh.vertices[vCounter + 8];
mesh.vertices[vCounter + 12] = mesh.vertices[vCounter + 3];
mesh.vertices[vCounter + 13] = mesh.vertices[vCounter + 4];
mesh.vertices[vCounter + 14] = mesh.vertices[vCounter + 5];
mesh.vertices[vCounter + 15] = (float)(x + 1)*scaleFactor.x;
mesh.vertices[vCounter + 16] = GRAY_VALUE(pixels[(x + 1) + (z + 1)*mapX])*scaleFactor.y;
mesh.vertices[vCounter + 17] = (float)(z + 1)*scaleFactor.z;
vCounter += 18; // 6 vertex, 18 floats
// Fill texcoords array with data
//--------------------------------------------------------------
mesh.texcoords[tcCounter] = (float)x/(mapX - 1);
mesh.texcoords[tcCounter + 1] = (float)z/(mapZ - 1);
mesh.texcoords[tcCounter + 2] = (float)x/(mapX - 1);
mesh.texcoords[tcCounter + 3] = (float)(z + 1)/(mapZ - 1);
mesh.texcoords[tcCounter + 4] = (float)(x + 1)/(mapX - 1);
mesh.texcoords[tcCounter + 5] = (float)z/(mapZ - 1);
mesh.texcoords[tcCounter + 6] = mesh.texcoords[tcCounter + 4];
mesh.texcoords[tcCounter + 7] = mesh.texcoords[tcCounter + 5];
mesh.texcoords[tcCounter + 8] = mesh.texcoords[tcCounter + 2];
mesh.texcoords[tcCounter + 9] = mesh.texcoords[tcCounter + 3];
mesh.texcoords[tcCounter + 10] = (float)(x + 1)/(mapX - 1);
mesh.texcoords[tcCounter + 11] = (float)(z + 1)/(mapZ - 1);
tcCounter += 12; // 6 texcoords, 12 floats
// Fill normals array with data
//--------------------------------------------------------------
for (int i = 0; i < 18; i += 9)
{
vA.x = mesh.vertices[nCounter + i];
vA.y = mesh.vertices[nCounter + i + 1];
vA.z = mesh.vertices[nCounter + i + 2];
vB.x = mesh.vertices[nCounter + i + 3];
vB.y = mesh.vertices[nCounter + i + 4];
vB.z = mesh.vertices[nCounter + i + 5];
vC.x = mesh.vertices[nCounter + i + 6];
vC.y = mesh.vertices[nCounter + i + 7];
vC.z = mesh.vertices[nCounter + i + 8];
vN = Vector3Normalize(Vector3CrossProduct(Vector3Subtract(vB, vA), Vector3Subtract(vC, vA)));
mesh.normals[nCounter + i] = vN.x;
mesh.normals[nCounter + i + 1] = vN.y;
mesh.normals[nCounter + i + 2] = vN.z;
mesh.normals[nCounter + i + 3] = vN.x;
mesh.normals[nCounter + i + 4] = vN.y;
mesh.normals[nCounter + i + 5] = vN.z;
mesh.normals[nCounter + i + 6] = vN.x;
mesh.normals[nCounter + i + 7] = vN.y;
mesh.normals[nCounter + i + 8] = vN.z;
}
nCounter += 18; // 6 vertex, 18 floats
}
}
UnloadImageColors(pixels); // Unload pixels color data
// Upload vertex data to GPU (static mesh)
UploadMesh(&mesh, false);
return mesh;
}
// Generate a cubes mesh from pixel data
// NOTE: Vertex data is uploaded to GPU
Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize)
{
#define COLOR_EQUAL(col1, col2) ((col1.r == col2.r)&&(col1.g == col2.g)&&(col1.b == col2.b)&&(col1.a == col2.a))
Mesh mesh = { 0 };
Color *pixels = LoadImageColors(cubicmap);
// NOTE: Max possible number of triangles numCubes*(12 triangles by cube)
int maxTriangles = cubicmap.width*cubicmap.height*12;
int vCounter = 0; // Used to count vertices
int tcCounter = 0; // Used to count texcoords
int nCounter = 0; // Used to count normals
float w = cubeSize.x;
float h = cubeSize.z;
float h2 = cubeSize.y;
Vector3 *mapVertices = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3));
Vector2 *mapTexcoords = (Vector2 *)RL_MALLOC(maxTriangles*3*sizeof(Vector2));
Vector3 *mapNormals = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3));
// Define the 6 normals of the cube, we will combine them accordingly later...
Vector3 n1 = { 1.0f, 0.0f, 0.0f };
Vector3 n2 = { -1.0f, 0.0f, 0.0f };
Vector3 n3 = { 0.0f, 1.0f, 0.0f };
Vector3 n4 = { 0.0f, -1.0f, 0.0f };
Vector3 n5 = { 0.0f, 0.0f, -1.0f };
Vector3 n6 = { 0.0f, 0.0f, 1.0f };
// NOTE: We use texture rectangles to define different textures for top-bottom-front-back-right-left (6)
typedef struct RectangleF {
float x;
float y;
float width;
float height;
} RectangleF;
RectangleF rightTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
RectangleF leftTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
RectangleF frontTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
RectangleF backTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
RectangleF topTexUV = { 0.0f, 0.5f, 0.5f, 0.5f };
RectangleF bottomTexUV = { 0.5f, 0.5f, 0.5f, 0.5f };
for (int z = 0; z < cubicmap.height; ++z)
{
for (int x = 0; x < cubicmap.width; ++x)
{
// Define the 8 vertex of the cube, we will combine them accordingly later...
Vector3 v1 = { w*(x - 0.5f), h2, h*(z - 0.5f) };
Vector3 v2 = { w*(x - 0.5f), h2, h*(z + 0.5f) };
Vector3 v3 = { w*(x + 0.5f), h2, h*(z + 0.5f) };
Vector3 v4 = { w*(x + 0.5f), h2, h*(z - 0.5f) };
Vector3 v5 = { w*(x + 0.5f), 0, h*(z - 0.5f) };
Vector3 v6 = { w*(x - 0.5f), 0, h*(z - 0.5f) };
Vector3 v7 = { w*(x - 0.5f), 0, h*(z + 0.5f) };
Vector3 v8 = { w*(x + 0.5f), 0, h*(z + 0.5f) };
// We check pixel color to be WHITE -> draw full cube
if (COLOR_EQUAL(pixels[z*cubicmap.width + x], WHITE))
{
// Define triangles and checking collateral cubes
//------------------------------------------------
// Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
// WARNING: Not required for a WHITE cubes, created to allow seeing the map from outside
mapVertices[vCounter] = v1;
mapVertices[vCounter + 1] = v2;
mapVertices[vCounter + 2] = v3;
mapVertices[vCounter + 3] = v1;
mapVertices[vCounter + 4] = v3;
mapVertices[vCounter + 5] = v4;
vCounter += 6;
mapNormals[nCounter] = n3;
mapNormals[nCounter + 1] = n3;
mapNormals[nCounter + 2] = n3;
mapNormals[nCounter + 3] = n3;
mapNormals[nCounter + 4] = n3;
mapNormals[nCounter + 5] = n3;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
tcCounter += 6;
// Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
mapVertices[vCounter] = v6;
mapVertices[vCounter + 1] = v8;
mapVertices[vCounter + 2] = v7;
mapVertices[vCounter + 3] = v6;
mapVertices[vCounter + 4] = v5;
mapVertices[vCounter + 5] = v8;
vCounter += 6;
mapNormals[nCounter] = n4;
mapNormals[nCounter + 1] = n4;
mapNormals[nCounter + 2] = n4;
mapNormals[nCounter + 3] = n4;
mapNormals[nCounter + 4] = n4;
mapNormals[nCounter + 5] = n4;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
tcCounter += 6;
// Checking cube on bottom of current cube
if (((z < cubicmap.height - 1) && COLOR_EQUAL(pixels[(z + 1)*cubicmap.width + x], BLACK)) || (z == cubicmap.height - 1))
{
// Define front triangles (2 tris, 6 vertex) --> v2 v7 v3, v3 v7 v8
// NOTE: Collateral occluded faces are not generated
mapVertices[vCounter] = v2;
mapVertices[vCounter + 1] = v7;
mapVertices[vCounter + 2] = v3;
mapVertices[vCounter + 3] = v3;
mapVertices[vCounter + 4] = v7;
mapVertices[vCounter + 5] = v8;
vCounter += 6;
mapNormals[nCounter] = n6;
mapNormals[nCounter + 1] = n6;
mapNormals[nCounter + 2] = n6;
mapNormals[nCounter + 3] = n6;
mapNormals[nCounter + 4] = n6;
mapNormals[nCounter + 5] = n6;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ frontTexUV.x, frontTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
mapTexcoords[tcCounter + 3] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
mapTexcoords[tcCounter + 5] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y + frontTexUV.height };
tcCounter += 6;
}
// Checking cube on top of current cube
if (((z > 0) && COLOR_EQUAL(pixels[(z - 1)*cubicmap.width + x], BLACK)) || (z == 0))
{
// Define back triangles (2 tris, 6 vertex) --> v1 v5 v6, v1 v4 v5
// NOTE: Collateral occluded faces are not generated
mapVertices[vCounter] = v1;
mapVertices[vCounter + 1] = v5;
mapVertices[vCounter + 2] = v6;
mapVertices[vCounter + 3] = v1;
mapVertices[vCounter + 4] = v4;
mapVertices[vCounter + 5] = v5;
vCounter += 6;
mapNormals[nCounter] = n5;
mapNormals[nCounter + 1] = n5;
mapNormals[nCounter + 2] = n5;
mapNormals[nCounter + 3] = n5;
mapNormals[nCounter + 4] = n5;
mapNormals[nCounter + 5] = n5;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y + backTexUV.height };
mapTexcoords[tcCounter + 3] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ backTexUV.x, backTexUV.y };
mapTexcoords[tcCounter + 5] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
tcCounter += 6;
}
// Checking cube on right of current cube
if (((x < cubicmap.width - 1) && COLOR_EQUAL(pixels[z*cubicmap.width + (x + 1)], BLACK)) || (x == cubicmap.width - 1))
{
// Define right triangles (2 tris, 6 vertex) --> v3 v8 v4, v4 v8 v5
// NOTE: Collateral occluded faces are not generated
mapVertices[vCounter] = v3;
mapVertices[vCounter + 1] = v8;
mapVertices[vCounter + 2] = v4;
mapVertices[vCounter + 3] = v4;
mapVertices[vCounter + 4] = v8;
mapVertices[vCounter + 5] = v5;
vCounter += 6;
mapNormals[nCounter] = n1;
mapNormals[nCounter + 1] = n1;
mapNormals[nCounter + 2] = n1;
mapNormals[nCounter + 3] = n1;
mapNormals[nCounter + 4] = n1;
mapNormals[nCounter + 5] = n1;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ rightTexUV.x, rightTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
mapTexcoords[tcCounter + 3] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
mapTexcoords[tcCounter + 5] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y + rightTexUV.height };
tcCounter += 6;
}
// Checking cube on left of current cube
if (((x > 0) && COLOR_EQUAL(pixels[z*cubicmap.width + (x - 1)], BLACK)) || (x == 0))
{
// Define left triangles (2 tris, 6 vertex) --> v1 v7 v2, v1 v6 v7
// NOTE: Collateral occluded faces are not generated
mapVertices[vCounter] = v1;
mapVertices[vCounter + 1] = v7;
mapVertices[vCounter + 2] = v2;
mapVertices[vCounter + 3] = v1;
mapVertices[vCounter + 4] = v6;
mapVertices[vCounter + 5] = v7;
vCounter += 6;
mapNormals[nCounter] = n2;
mapNormals[nCounter + 1] = n2;
mapNormals[nCounter + 2] = n2;
mapNormals[nCounter + 3] = n2;
mapNormals[nCounter + 4] = n2;
mapNormals[nCounter + 5] = n2;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ leftTexUV.x, leftTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y };
mapTexcoords[tcCounter + 3] = (Vector2){ leftTexUV.x, leftTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ leftTexUV.x, leftTexUV.y + leftTexUV.height };
mapTexcoords[tcCounter + 5] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
tcCounter += 6;
}
}
// We check pixel color to be BLACK, we will only draw floor and roof
else if (COLOR_EQUAL(pixels[z*cubicmap.width + x], BLACK))
{
// Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
mapVertices[vCounter] = v1;
mapVertices[vCounter + 1] = v3;
mapVertices[vCounter + 2] = v2;
mapVertices[vCounter + 3] = v1;
mapVertices[vCounter + 4] = v4;
mapVertices[vCounter + 5] = v3;
vCounter += 6;
mapNormals[nCounter] = n4;
mapNormals[nCounter + 1] = n4;
mapNormals[nCounter + 2] = n4;
mapNormals[nCounter + 3] = n4;
mapNormals[nCounter + 4] = n4;
mapNormals[nCounter + 5] = n4;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
tcCounter += 6;
// Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
mapVertices[vCounter] = v6;
mapVertices[vCounter + 1] = v7;
mapVertices[vCounter + 2] = v8;
mapVertices[vCounter + 3] = v6;
mapVertices[vCounter + 4] = v8;
mapVertices[vCounter + 5] = v5;
vCounter += 6;
mapNormals[nCounter] = n3;
mapNormals[nCounter + 1] = n3;
mapNormals[nCounter + 2] = n3;
mapNormals[nCounter + 3] = n3;
mapNormals[nCounter + 4] = n3;
mapNormals[nCounter + 5] = n3;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
tcCounter += 6;
}
}
}
// Move data from mapVertices temp arrays to vertices float array
mesh.vertexCount = vCounter;
mesh.triangleCount = vCounter/3;
mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
mesh.colors = NULL;
int fCounter = 0;
// Move vertices data
for (int i = 0; i < vCounter; i++)
{
mesh.vertices[fCounter] = mapVertices[i].x;
mesh.vertices[fCounter + 1] = mapVertices[i].y;
mesh.vertices[fCounter + 2] = mapVertices[i].z;
fCounter += 3;
}
fCounter = 0;
// Move normals data
for (int i = 0; i < nCounter; i++)
{
mesh.normals[fCounter] = mapNormals[i].x;
mesh.normals[fCounter + 1] = mapNormals[i].y;
mesh.normals[fCounter + 2] = mapNormals[i].z;
fCounter += 3;
}
fCounter = 0;
// Move texcoords data
for (int i = 0; i < tcCounter; i++)
{
mesh.texcoords[fCounter] = mapTexcoords[i].x;
mesh.texcoords[fCounter + 1] = mapTexcoords[i].y;
fCounter += 2;
}
RL_FREE(mapVertices);
RL_FREE(mapNormals);
RL_FREE(mapTexcoords);
UnloadImageColors(pixels); // Unload pixels color data
// Upload vertex data to GPU (static mesh)
UploadMesh(&mesh, false);
return mesh;
}
#endif // SUPPORT_MESH_GENERATION
// Compute mesh bounding box limits
// NOTE: minVertex and maxVertex should be transformed by model transform matrix
BoundingBox GetMeshBoundingBox(Mesh mesh)
{
// Get min and max vertex to construct bounds (AABB)
Vector3 minVertex = { 0 };
Vector3 maxVertex = { 0 };
if (mesh.vertices != NULL)
{
minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
for (int i = 1; i < mesh.vertexCount; i++)
{
minVertex = Vector3Min(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
maxVertex = Vector3Max(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
}
}
// Create the bounding box
BoundingBox box = { 0 };
box.min = minVertex;
box.max = maxVertex;
return box;
}
// Compute mesh tangents
// NOTE: To calculate mesh tangents and binormals we need mesh vertex positions and texture coordinates
// Implementation based on: https://answers.unity.com/questions/7789/calculating-tangents-vector4.html
void GenMeshTangents(Mesh *mesh)
{
if ((mesh->vertices == NULL) || (mesh->texcoords == NULL))
{
TRACELOG(LOG_WARNING, "MESH: Tangents generation requires texcoord vertex attribute data");
return;
}
if (mesh->tangents == NULL) mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float));
else
{
RL_FREE(mesh->tangents);
mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float));
}
Vector3 *tan1 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3));
Vector3 *tan2 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3));
if (mesh->vertexCount % 3 != 0)
{
TRACELOG(LOG_WARNING, "MESH: vertexCount expected to be a multiple of 3. Expect uninitialized values.");
}
for (int i = 0; i <= mesh->vertexCount - 3; i += 3)
{
// Get triangle vertices
Vector3 v1 = { mesh->vertices[(i + 0)*3 + 0], mesh->vertices[(i + 0)*3 + 1], mesh->vertices[(i + 0)*3 + 2] };
Vector3 v2 = { mesh->vertices[(i + 1)*3 + 0], mesh->vertices[(i + 1)*3 + 1], mesh->vertices[(i + 1)*3 + 2] };
Vector3 v3 = { mesh->vertices[(i + 2)*3 + 0], mesh->vertices[(i + 2)*3 + 1], mesh->vertices[(i + 2)*3 + 2] };
// Get triangle texcoords
Vector2 uv1 = { mesh->texcoords[(i + 0)*2 + 0], mesh->texcoords[(i + 0)*2 + 1] };
Vector2 uv2 = { mesh->texcoords[(i + 1)*2 + 0], mesh->texcoords[(i + 1)*2 + 1] };
Vector2 uv3 = { mesh->texcoords[(i + 2)*2 + 0], mesh->texcoords[(i + 2)*2 + 1] };
float x1 = v2.x - v1.x;
float y1 = v2.y - v1.y;
float z1 = v2.z - v1.z;
float x2 = v3.x - v1.x;
float y2 = v3.y - v1.y;
float z2 = v3.z - v1.z;
float s1 = uv2.x - uv1.x;
float t1 = uv2.y - uv1.y;
float s2 = uv3.x - uv1.x;
float t2 = uv3.y - uv1.y;
float div = s1*t2 - s2*t1;
float r = (div == 0.0f)? 0.0f : 1.0f/div;
Vector3 sdir = { (t2*x1 - t1*x2)*r, (t2*y1 - t1*y2)*r, (t2*z1 - t1*z2)*r };
Vector3 tdir = { (s1*x2 - s2*x1)*r, (s1*y2 - s2*y1)*r, (s1*z2 - s2*z1)*r };
tan1[i + 0] = sdir;
tan1[i + 1] = sdir;
tan1[i + 2] = sdir;
tan2[i + 0] = tdir;
tan2[i + 1] = tdir;
tan2[i + 2] = tdir;
}
// Compute tangents considering normals
for (int i = 0; i < mesh->vertexCount; i++)
{
Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
Vector3 tangent = tan1[i];
// TODO: Review, not sure if tangent computation is right, just used reference proposed maths...
#if defined(COMPUTE_TANGENTS_METHOD_01)
Vector3 tmp = Vector3Subtract(tangent, Vector3Scale(normal, Vector3DotProduct(normal, tangent)));
tmp = Vector3Normalize(tmp);
mesh->tangents[i*4 + 0] = tmp.x;
mesh->tangents[i*4 + 1] = tmp.y;
mesh->tangents[i*4 + 2] = tmp.z;
mesh->tangents[i*4 + 3] = 1.0f;
#else
Vector3OrthoNormalize(&normal, &tangent);
mesh->tangents[i*4 + 0] = tangent.x;
mesh->tangents[i*4 + 1] = tangent.y;
mesh->tangents[i*4 + 2] = tangent.z;
mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, tangent), tan2[i]) < 0.0f)? -1.0f : 1.0f;
#endif
}
RL_FREE(tan1);
RL_FREE(tan2);
if (mesh->vboId != NULL)
{
if (mesh->vboId[SHADER_LOC_VERTEX_TANGENT] != 0)
{
// Update existing vertex buffer
rlUpdateVertexBuffer(mesh->vboId[SHADER_LOC_VERTEX_TANGENT], mesh->tangents, mesh->vertexCount*4*sizeof(float), 0);
}
else
{
// Load a new tangent attributes buffer
mesh->vboId[SHADER_LOC_VERTEX_TANGENT] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), false);
}
rlEnableVertexArray(mesh->vaoId);
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT, 4, RL_FLOAT, 0, 0, 0);
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT);
rlDisableVertexArray();
}
TRACELOG(LOG_INFO, "MESH: Tangents data computed and uploaded for provided mesh");
}
// Draw a model (with texture if set)
void DrawModel(Model model, Vector3 position, float scale, Color tint)
{
Vector3 vScale = { scale, scale, scale };
Vector3 rotationAxis = { 0.0f, 1.0f, 0.0f };
DrawModelEx(model, position, rotationAxis, 0.0f, vScale, tint);
}
// Draw a model with extended parameters
void DrawModelEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
{
// Calculate transformation matrix from function parameters
// Get transform matrix (rotation -> scale -> translation)
Matrix matScale = MatrixScale(scale.x, scale.y, scale.z);
Matrix matRotation = MatrixRotate(rotationAxis, rotationAngle*DEG2RAD);
Matrix matTranslation = MatrixTranslate(position.x, position.y, position.z);
Matrix matTransform = MatrixMultiply(MatrixMultiply(matScale, matRotation), matTranslation);
// Combine model transformation matrix (model.transform) with matrix generated by function parameters (matTransform)
model.transform = MatrixMultiply(model.transform, matTransform);
for (int i = 0; i < model.meshCount; i++)
{
Color color = model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color;
Color colorTint = WHITE;
colorTint.r = (unsigned char)(((int)color.r*(int)tint.r)/255);
colorTint.g = (unsigned char)(((int)color.g*(int)tint.g)/255);
colorTint.b = (unsigned char)(((int)color.b*(int)tint.b)/255);
colorTint.a = (unsigned char)(((int)color.a*(int)tint.a)/255);
model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = colorTint;
DrawMesh(model.meshes[i], model.materials[model.meshMaterial[i]], model.transform);
model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = color;
}
}
// Draw a model wires (with texture if set)
void DrawModelWires(Model model, Vector3 position, float scale, Color tint)
{
rlEnableWireMode();
DrawModel(model, position, scale, tint);
rlDisableWireMode();
}
// Draw a model wires (with texture if set) with extended parameters
void DrawModelWiresEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
{
rlEnableWireMode();
DrawModelEx(model, position, rotationAxis, rotationAngle, scale, tint);
rlDisableWireMode();
}
// Draw a model points
void DrawModelPoints(Model model, Vector3 position, float scale, Color tint)
{
rlEnablePointMode();
rlDisableBackfaceCulling();
DrawModel(model, position, scale, tint);
rlEnableBackfaceCulling();
rlDisableWireMode();
}
// Draw a model points
void DrawModelPointsEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
{
rlEnablePointMode();
rlDisableBackfaceCulling();
DrawModelEx(model, position, rotationAxis, rotationAngle, scale, tint);
rlEnableBackfaceCulling();
rlDisableWireMode();
}
// Draw a billboard
void DrawBillboard(Camera camera, Texture2D texture, Vector3 position, float scale, Color tint)
{
Rectangle source = { 0.0f, 0.0f, (float)texture.width, (float)texture.height };
DrawBillboardRec(camera, texture, source, position, (Vector2) { scale*fabsf((float)source.width/source.height), scale }, tint);
}
// Draw a billboard (part of a texture defined by a rectangle)
void DrawBillboardRec(Camera camera, Texture2D texture, Rectangle source, Vector3 position, Vector2 size, Color tint)
{
// NOTE: Billboard locked on axis-Y
Vector3 up = { 0.0f, 1.0f, 0.0f };
DrawBillboardPro(camera, texture, source, position, up, size, Vector2Scale(size, 0.5), 0.0f, tint);
}
// Draw a billboard with additional parameters
void DrawBillboardPro(Camera camera, Texture2D texture, Rectangle source, Vector3 position, Vector3 up, Vector2 size, Vector2 origin, float rotation, Color tint)
{
// Compute the up vector and the right vector
Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up);
Vector3 right = { matView.m0, matView.m4, matView.m8 };
right = Vector3Scale(right, size.x);
up = Vector3Scale(up, size.y);
// Flip the content of the billboard while maintaining the counterclockwise edge rendering order
if (size.x < 0.0f)
{
source.x += size.x;
source.width *= -1.0;
right = Vector3Negate(right);
origin.x *= -1.0f;
}
if (size.y < 0.0f)
{
source.y += size.y;
source.height *= -1.0;
up = Vector3Negate(up);
origin.y *= -1.0f;
}
// Draw the texture region described by source on the following rectangle in 3D space:
//
// size.x <--.
// 3 ^---------------------------+ 2 \ rotation
// | | /
// | |
// | origin.x position |
// up |.............. | size.y
// | . |
// | . origin.y |
// | . |
// 0 +---------------------------> 1
// right
Vector3 forward;
if (rotation != 0.0) forward = Vector3CrossProduct(right, up);
Vector3 origin3D = Vector3Add(Vector3Scale(Vector3Normalize(right), origin.x), Vector3Scale(Vector3Normalize(up), origin.y));
Vector3 points[4];
points[0] = Vector3Zero();
points[1] = right;
points[2] = Vector3Add(up, right);
points[3] = up;
for (int i = 0; i < 4; i++)
{
points[i] = Vector3Subtract(points[i], origin3D);
if (rotation != 0.0) points[i] = Vector3RotateByAxisAngle(points[i], forward, rotation * DEG2RAD);
points[i] = Vector3Add(points[i], position);
}
Vector2 texcoords[4];
texcoords[0] = (Vector2) { (float)source.x/texture.width, (float)(source.y + source.height)/texture.height };
texcoords[1] = (Vector2) { (float)(source.x + source.width)/texture.width, (float)(source.y + source.height)/texture.height };
texcoords[2] = (Vector2) { (float)(source.x + source.width)/texture.width, (float)source.y/texture.height };
texcoords[3] = (Vector2) { (float)source.x/texture.width, (float)source.y/texture.height };
rlSetTexture(texture.id);
rlBegin(RL_QUADS);
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
for (int i = 0; i < 4; i++)
{
rlTexCoord2f(texcoords[i].x, texcoords[i].y);
rlVertex3f(points[i].x, points[i].y, points[i].z);
}
rlEnd();
rlSetTexture(0);
}
// Draw a bounding box with wires
void DrawBoundingBox(BoundingBox box, Color color)
{
Vector3 size = { 0 };
size.x = fabsf(box.max.x - box.min.x);
size.y = fabsf(box.max.y - box.min.y);
size.z = fabsf(box.max.z - box.min.z);
Vector3 center = { box.min.x + size.x/2.0f, box.min.y + size.y/2.0f, box.min.z + size.z/2.0f };
DrawCubeWires(center, size.x, size.y, size.z, color);
}
// Check collision between two spheres
bool CheckCollisionSpheres(Vector3 center1, float radius1, Vector3 center2, float radius2)
{
bool collision = false;
// Simple way to check for collision, just checking distance between two points
// Unfortunately, sqrtf() is a costly operation, so we avoid it with following solution
/*
float dx = center1.x - center2.x; // X distance between centers
float dy = center1.y - center2.y; // Y distance between centers
float dz = center1.z - center2.z; // Z distance between centers
float distance = sqrtf(dx*dx + dy*dy + dz*dz); // Distance between centers
if (distance <= (radius1 + radius2)) collision = true;
*/
// Check for distances squared to avoid sqrtf()
if (Vector3DotProduct(Vector3Subtract(center2, center1), Vector3Subtract(center2, center1)) <= (radius1 + radius2)*(radius1 + radius2)) collision = true;
return collision;
}
// Check collision between two boxes
// NOTE: Boxes are defined by two points minimum and maximum
bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2)
{
bool collision = true;
if ((box1.max.x >= box2.min.x) && (box1.min.x <= box2.max.x))
{
if ((box1.max.y < box2.min.y) || (box1.min.y > box2.max.y)) collision = false;
if ((box1.max.z < box2.min.z) || (box1.min.z > box2.max.z)) collision = false;
}
else collision = false;
return collision;
}
// Check collision between box and sphere
bool CheckCollisionBoxSphere(BoundingBox box, Vector3 center, float radius)
{
bool collision = false;
float dmin = 0;
if (center.x < box.min.x) dmin += powf(center.x - box.min.x, 2);
else if (center.x > box.max.x) dmin += powf(center.x - box.max.x, 2);
if (center.y < box.min.y) dmin += powf(center.y - box.min.y, 2);
else if (center.y > box.max.y) dmin += powf(center.y - box.max.y, 2);
if (center.z < box.min.z) dmin += powf(center.z - box.min.z, 2);
else if (center.z > box.max.z) dmin += powf(center.z - box.max.z, 2);
if (dmin <= (radius*radius)) collision = true;
return collision;
}
// Get collision info between ray and sphere
RayCollision GetRayCollisionSphere(Ray ray, Vector3 center, float radius)
{
RayCollision collision = { 0 };
Vector3 raySpherePos = Vector3Subtract(center, ray.position);
float vector = Vector3DotProduct(raySpherePos, ray.direction);
float distance = Vector3Length(raySpherePos);
float d = radius*radius - (distance*distance - vector*vector);
collision.hit = d >= 0.0f;
// Check if ray origin is inside the sphere to calculate the correct collision point
if (distance < radius)
{
collision.distance = vector + sqrtf(d);
// Calculate collision point
collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance));
// Calculate collision normal (pointing outwards)
collision.normal = Vector3Negate(Vector3Normalize(Vector3Subtract(collision.point, center)));
}
else
{
collision.distance = vector - sqrtf(d);
// Calculate collision point
collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance));
// Calculate collision normal (pointing inwards)
collision.normal = Vector3Normalize(Vector3Subtract(collision.point, center));
}
return collision;
}
// Get collision info between ray and box
RayCollision GetRayCollisionBox(Ray ray, BoundingBox box)
{
RayCollision collision = { 0 };
// Note: If ray.position is inside the box, the distance is negative (as if the ray was reversed)
// Reversing ray.direction will give use the correct result
bool insideBox = (ray.position.x > box.min.x) && (ray.position.x < box.max.x) &&
(ray.position.y > box.min.y) && (ray.position.y < box.max.y) &&
(ray.position.z > box.min.z) && (ray.position.z < box.max.z);
if (insideBox) ray.direction = Vector3Negate(ray.direction);
float t[11] = { 0 };
t[8] = 1.0f/ray.direction.x;
t[9] = 1.0f/ray.direction.y;
t[10] = 1.0f/ray.direction.z;
t[0] = (box.min.x - ray.position.x)*t[8];
t[1] = (box.max.x - ray.position.x)*t[8];
t[2] = (box.min.y - ray.position.y)*t[9];
t[3] = (box.max.y - ray.position.y)*t[9];
t[4] = (box.min.z - ray.position.z)*t[10];
t[5] = (box.max.z - ray.position.z)*t[10];
t[6] = (float)fmax(fmax(fmin(t[0], t[1]), fmin(t[2], t[3])), fmin(t[4], t[5]));
t[7] = (float)fmin(fmin(fmax(t[0], t[1]), fmax(t[2], t[3])), fmax(t[4], t[5]));
collision.hit = !((t[7] < 0) || (t[6] > t[7]));
collision.distance = t[6];
collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance));
// Get box center point
collision.normal = Vector3Lerp(box.min, box.max, 0.5f);
// Get vector center point->hit point
collision.normal = Vector3Subtract(collision.point, collision.normal);
// Scale vector to unit cube
// NOTE: We use an additional .01 to fix numerical errors
collision.normal = Vector3Scale(collision.normal, 2.01f);
collision.normal = Vector3Divide(collision.normal, Vector3Subtract(box.max, box.min));
// The relevant elements of the vector are now slightly larger than 1.0f (or smaller than -1.0f)
// and the others are somewhere between -1.0 and 1.0 casting to int is exactly our wanted normal!
collision.normal.x = (float)((int)collision.normal.x);
collision.normal.y = (float)((int)collision.normal.y);
collision.normal.z = (float)((int)collision.normal.z);
collision.normal = Vector3Normalize(collision.normal);
if (insideBox)
{
// Reset ray.direction
ray.direction = Vector3Negate(ray.direction);
// Fix result
collision.distance *= -1.0f;
collision.normal = Vector3Negate(collision.normal);
}
return collision;
}
// Get collision info between ray and mesh
RayCollision GetRayCollisionMesh(Ray ray, Mesh mesh, Matrix transform)
{
RayCollision collision = { 0 };
// Check if mesh vertex data on CPU for testing
if (mesh.vertices != NULL)
{
int triangleCount = mesh.triangleCount;
// Test against all triangles in mesh
for (int i = 0; i < triangleCount; i++)
{
Vector3 a, b, c;
Vector3* vertdata = (Vector3*)mesh.vertices;
if (mesh.indices)
{
a = vertdata[mesh.indices[i*3 + 0]];
b = vertdata[mesh.indices[i*3 + 1]];
c = vertdata[mesh.indices[i*3 + 2]];
}
else
{
a = vertdata[i*3 + 0];
b = vertdata[i*3 + 1];
c = vertdata[i*3 + 2];
}
a = Vector3Transform(a, transform);
b = Vector3Transform(b, transform);
c = Vector3Transform(c, transform);
RayCollision triHitInfo = GetRayCollisionTriangle(ray, a, b, c);
if (triHitInfo.hit)
{
// Save the closest hit triangle
if ((!collision.hit) || (collision.distance > triHitInfo.distance)) collision = triHitInfo;
}
}
}
return collision;
}
// Get collision info between ray and triangle
// NOTE: The points are expected to be in counter-clockwise winding
// NOTE: Based on https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
RayCollision GetRayCollisionTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3)
{
#define EPSILON 0.000001f // A small number
RayCollision collision = { 0 };
Vector3 edge1 = { 0 };
Vector3 edge2 = { 0 };
Vector3 p, q, tv;
float det, invDet, u, v, t;
// Find vectors for two edges sharing V1
edge1 = Vector3Subtract(p2, p1);
edge2 = Vector3Subtract(p3, p1);
// Begin calculating determinant - also used to calculate u parameter
p = Vector3CrossProduct(ray.direction, edge2);
// If determinant is near zero, ray lies in plane of triangle or ray is parallel to plane of triangle
det = Vector3DotProduct(edge1, p);
// Avoid culling!
if ((det > -EPSILON) && (det < EPSILON)) return collision;
invDet = 1.0f/det;
// Calculate distance from V1 to ray origin
tv = Vector3Subtract(ray.position, p1);
// Calculate u parameter and test bound
u = Vector3DotProduct(tv, p)*invDet;
// The intersection lies outside the triangle
if ((u < 0.0f) || (u > 1.0f)) return collision;
// Prepare to test v parameter
q = Vector3CrossProduct(tv, edge1);
// Calculate V parameter and test bound
v = Vector3DotProduct(ray.direction, q)*invDet;
// The intersection lies outside the triangle
if ((v < 0.0f) || ((u + v) > 1.0f)) return collision;
t = Vector3DotProduct(edge2, q)*invDet;
if (t > EPSILON)
{
// Ray hit, get hit point and normal
collision.hit = true;
collision.distance = t;
collision.normal = Vector3Normalize(Vector3CrossProduct(edge1, edge2));
collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, t));
}
return collision;
}
// Get collision info between ray and quad
// NOTE: The points are expected to be in counter-clockwise winding
RayCollision GetRayCollisionQuad(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3, Vector3 p4)
{
RayCollision collision = { 0 };
collision = GetRayCollisionTriangle(ray, p1, p2, p4);
if (!collision.hit) collision = GetRayCollisionTriangle(ray, p2, p3, p4);
return collision;
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
#if defined(SUPPORT_FILEFORMAT_IQM) || defined(SUPPORT_FILEFORMAT_GLTF)
// Build pose from parent joints
// NOTE: Required for animations loading (required by IQM and GLTF)
static void BuildPoseFromParentJoints(BoneInfo *bones, int boneCount, Transform *transforms)
{
for (int i = 0; i < boneCount; i++)
{
if (bones[i].parent >= 0)
{
if (bones[i].parent > i)
{
TRACELOG(LOG_WARNING, "Assumes bones are toplogically sorted, but bone %d has parent %d. Skipping.", i, bones[i].parent);
continue;
}
transforms[i].rotation = QuaternionMultiply(transforms[bones[i].parent].rotation, transforms[i].rotation);
transforms[i].translation = Vector3RotateByQuaternion(transforms[i].translation, transforms[bones[i].parent].rotation);
transforms[i].translation = Vector3Add(transforms[i].translation, transforms[bones[i].parent].translation);
transforms[i].scale = Vector3Multiply(transforms[i].scale, transforms[bones[i].parent].scale);
}
}
}
#endif
#if defined(SUPPORT_FILEFORMAT_OBJ)
// Load OBJ mesh data
//
// Keep the following information in mind when reading this
// - A mesh is created for every material present in the obj file
// - the model.meshCount is therefore the materialCount returned from tinyobj
// - the mesh is automatically triangulated by tinyobj
static Model LoadOBJ(const char *fileName)
{
tinyobj_attrib_t objAttributes = { 0 };
tinyobj_shape_t* objShapes = NULL;
unsigned int objShapeCount = 0;
tinyobj_material_t* objMaterials = NULL;
unsigned int objMaterialCount = 0;
Model model = { 0 };
model.transform = MatrixIdentity();
char* fileText = LoadFileText(fileName);
if (fileText == NULL)
{
TRACELOG(LOG_ERROR, "MODEL Unable to read obj file %s", fileName);
return model;
}
char currentDir[1024] = { 0 };
strcpy(currentDir, GetWorkingDirectory()); // Save current working directory
const char* workingDir = GetDirectoryPath(fileName); // Switch to OBJ directory for material path correctness
if (CHDIR(workingDir) != 0)
{
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", workingDir);
}
unsigned int dataSize = (unsigned int)strlen(fileText);
unsigned int flags = TINYOBJ_FLAG_TRIANGULATE;
int ret = tinyobj_parse_obj(&objAttributes, &objShapes, &objShapeCount, &objMaterials, &objMaterialCount, fileText, dataSize, flags);
if (ret != TINYOBJ_SUCCESS)
{
TRACELOG(LOG_ERROR, "MODEL Unable to read obj data %s", fileName);
return model;
}
UnloadFileText(fileText);
unsigned int faceVertIndex = 0;
unsigned int nextShape = 1;
int lastMaterial = -1;
unsigned int meshIndex = 0;
// count meshes
unsigned int nextShapeEnd = objAttributes.num_face_num_verts;
// see how many verts till the next shape
if (objShapeCount > 1) nextShapeEnd = objShapes[nextShape].face_offset;
// walk all the faces
for (unsigned int faceId = 0; faceId < objAttributes.num_faces; faceId++)
{
if (faceId >= nextShapeEnd)
{
// try to find the last vert in the next shape
nextShape++;
if (nextShape < objShapeCount) nextShapeEnd = objShapes[nextShape].face_offset;
else nextShapeEnd = objAttributes.num_face_num_verts; // this is actually the total number of face verts in the file, not faces
meshIndex++;
}
else if (lastMaterial != -1 && objAttributes.material_ids[faceId] != lastMaterial)
{
meshIndex++;// if this is a new material, we need to allocate a new mesh
}
lastMaterial = objAttributes.material_ids[faceId];
faceVertIndex += objAttributes.face_num_verts[faceId];
}
// allocate the base meshes and materials
model.meshCount = meshIndex + 1;
model.meshes = (Mesh*)MemAlloc(sizeof(Mesh) * model.meshCount);
if (objMaterialCount > 0)
{
model.materialCount = objMaterialCount;
model.materials = (Material*)MemAlloc(sizeof(Material) * objMaterialCount);
}
else // we must allocate at least one material
{
model.materialCount = 1;
model.materials = (Material*)MemAlloc(sizeof(Material) * 1);
}
model.meshMaterial = (int*)MemAlloc(sizeof(int) * model.meshCount);
// see how many verts are in each mesh
unsigned int* localMeshVertexCounts = (unsigned int*)MemAlloc(sizeof(unsigned int) * model.meshCount);
faceVertIndex = 0;
nextShapeEnd = objAttributes.num_face_num_verts;
lastMaterial = -1;
meshIndex = 0;
unsigned int localMeshVertexCount = 0;
nextShape = 1;
if (objShapeCount > 1)
nextShapeEnd = objShapes[nextShape].face_offset;
// walk all the faces
for (unsigned int faceId = 0; faceId < objAttributes.num_faces; faceId++)
{
bool newMesh = false; // do we need a new mesh?
if (faceId >= nextShapeEnd)
{
// try to find the last vert in the next shape
nextShape++;
if (nextShape < objShapeCount) nextShapeEnd = objShapes[nextShape].face_offset;
else nextShapeEnd = objAttributes.num_face_num_verts; // this is actually the total number of face verts in the file, not faces
newMesh = true;
}
else if (lastMaterial != -1 && objAttributes.material_ids[faceId] != lastMaterial)
{
newMesh = true;
}
lastMaterial = objAttributes.material_ids[faceId];
if (newMesh)
{
localMeshVertexCounts[meshIndex] = localMeshVertexCount;
localMeshVertexCount = 0;
meshIndex++;
}
faceVertIndex += objAttributes.face_num_verts[faceId];
localMeshVertexCount += objAttributes.face_num_verts[faceId];
}
localMeshVertexCounts[meshIndex] = localMeshVertexCount;
for (int i = 0; i < model.meshCount; i++)
{
// allocate the buffers for each mesh
unsigned int vertexCount = localMeshVertexCounts[i];
model.meshes[i].vertexCount = vertexCount;
model.meshes[i].triangleCount = vertexCount / 3;
model.meshes[i].vertices = (float*)MemAlloc(sizeof(float) * vertexCount * 3);
model.meshes[i].normals = (float*)MemAlloc(sizeof(float) * vertexCount * 3);
model.meshes[i].texcoords = (float*)MemAlloc(sizeof(float) * vertexCount * 2);
model.meshes[i].colors = (unsigned char*)MemAlloc(sizeof(unsigned char) * vertexCount * 4);
}
MemFree(localMeshVertexCounts);
localMeshVertexCounts = NULL;
// fill meshes
faceVertIndex = 0;
nextShapeEnd = objAttributes.num_face_num_verts;
// see how many verts till the next shape
nextShape = 1;
if (objShapeCount > 1) nextShapeEnd = objShapes[nextShape].face_offset;
lastMaterial = -1;
meshIndex = 0;
localMeshVertexCount = 0;
// walk all the faces
for (unsigned int faceId = 0; faceId < objAttributes.num_faces; faceId++)
{
bool newMesh = false; // do we need a new mesh?
if (faceId >= nextShapeEnd)
{
// try to find the last vert in the next shape
nextShape++;
if (nextShape < objShapeCount) nextShapeEnd = objShapes[nextShape].face_offset;
else nextShapeEnd = objAttributes.num_face_num_verts; // this is actually the total number of face verts in the file, not faces
newMesh = true;
}
// if this is a new material, we need to allocate a new mesh
if (lastMaterial != -1 && objAttributes.material_ids[faceId] != lastMaterial) newMesh = true;
lastMaterial = objAttributes.material_ids[faceId];
if (newMesh)
{
localMeshVertexCount = 0;
meshIndex++;
}
int matId = 0;
if (lastMaterial >= 0 && lastMaterial < (int)objMaterialCount)
matId = lastMaterial;
model.meshMaterial[meshIndex] = matId;
for (int f = 0; f < objAttributes.face_num_verts[faceId]; f++)
{
int vertIndex = objAttributes.faces[faceVertIndex].v_idx;
int normalIndex = objAttributes.faces[faceVertIndex].vn_idx;
int texcordIndex = objAttributes.faces[faceVertIndex].vt_idx;
for (int i = 0; i < 3; i++)
model.meshes[meshIndex].vertices[localMeshVertexCount * 3 + i] = objAttributes.vertices[vertIndex * 3 + i];
for (int i = 0; i < 3; i++)
model.meshes[meshIndex].normals[localMeshVertexCount * 3 + i] = objAttributes.normals[normalIndex * 3 + i];
for (int i = 0; i < 2; i++)
model.meshes[meshIndex].texcoords[localMeshVertexCount * 2 + i] = objAttributes.texcoords[texcordIndex * 2 + i];
model.meshes[meshIndex].texcoords[localMeshVertexCount * 2 + 1] = 1.0f - model.meshes[meshIndex].texcoords[localMeshVertexCount * 2 + 1];
for (int i = 0; i < 4; i++)
model.meshes[meshIndex].colors[localMeshVertexCount * 4 + i] = 255;
faceVertIndex++;
localMeshVertexCount++;
}
}
if (objMaterialCount > 0) ProcessMaterialsOBJ(model.materials, objMaterials, objMaterialCount);
else model.materials[0] = LoadMaterialDefault(); // Set default material for the mesh
tinyobj_attrib_free(&objAttributes);
tinyobj_shapes_free(objShapes, objShapeCount);
tinyobj_materials_free(objMaterials, objMaterialCount);
for (int i = 0; i < model.meshCount; i++)
UploadMesh(model.meshes + i, true);
// Restore current working directory
if (CHDIR(currentDir) != 0)
{
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", currentDir);
}
return model;
}
#endif
#if defined(SUPPORT_FILEFORMAT_IQM)
// Load IQM mesh data
static Model LoadIQM(const char *fileName)
{
#define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
#define IQM_VERSION 2 // only IQM version 2 supported
#define BONE_NAME_LENGTH 32 // BoneInfo name string length
#define MESH_NAME_LENGTH 32 // Mesh name string length
#define MATERIAL_NAME_LENGTH 32 // Material name string length
int dataSize = 0;
unsigned char *fileData = LoadFileData(fileName, &dataSize);
unsigned char *fileDataPtr = fileData;
// IQM file structs
//-----------------------------------------------------------------------------------
typedef struct IQMHeader {
char magic[16];
unsigned int version;
unsigned int dataSize;
unsigned int flags;
unsigned int num_text, ofs_text;
unsigned int num_meshes, ofs_meshes;
unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
unsigned int num_triangles, ofs_triangles, ofs_adjacency;
unsigned int num_joints, ofs_joints;
unsigned int num_poses, ofs_poses;
unsigned int num_anims, ofs_anims;
unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
unsigned int num_comment, ofs_comment;
unsigned int num_extensions, ofs_extensions;
} IQMHeader;
typedef struct IQMMesh {
unsigned int name;
unsigned int material;
unsigned int first_vertex, num_vertexes;
unsigned int first_triangle, num_triangles;
} IQMMesh;
typedef struct IQMTriangle {
unsigned int vertex[3];
} IQMTriangle;
typedef struct IQMJoint {
unsigned int name;
int parent;
float translate[3], rotate[4], scale[3];
} IQMJoint;
typedef struct IQMVertexArray {
unsigned int type;
unsigned int flags;
unsigned int format;
unsigned int size;
unsigned int offset;
} IQMVertexArray;
// NOTE: Below IQM structures are not used but listed for reference
/*
typedef struct IQMAdjacency {
unsigned int triangle[3];
} IQMAdjacency;
typedef struct IQMPose {
int parent;
unsigned int mask;
float channeloffset[10];
float channelscale[10];
} IQMPose;
typedef struct IQMAnim {
unsigned int name;
unsigned int first_frame, num_frames;
float framerate;
unsigned int flags;
} IQMAnim;
typedef struct IQMBounds {
float bbmin[3], bbmax[3];
float xyradius, radius;
} IQMBounds;
*/
//-----------------------------------------------------------------------------------
// IQM vertex data types
enum {
IQM_POSITION = 0,
IQM_TEXCOORD = 1,
IQM_NORMAL = 2,
IQM_TANGENT = 3, // NOTE: Tangents unused by default
IQM_BLENDINDEXES = 4,
IQM_BLENDWEIGHTS = 5,
IQM_COLOR = 6,
IQM_CUSTOM = 0x10 // NOTE: Custom vertex values unused by default
};
Model model = { 0 };
IQMMesh *imesh = NULL;
IQMTriangle *tri = NULL;
IQMVertexArray *va = NULL;
IQMJoint *ijoint = NULL;
float *vertex = NULL;
float *normal = NULL;
float *text = NULL;
char *blendi = NULL;
unsigned char *blendw = NULL;
unsigned char *color = NULL;
// In case file can not be read, return an empty model
if (fileDataPtr == NULL) return model;
const char *basePath = GetDirectoryPath(fileName);
// Read IQM header
IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr;
if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0)
{
TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName);
return model;
}
if (iqmHeader->version != IQM_VERSION)
{
TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version);
return model;
}
//fileDataPtr += sizeof(IQMHeader); // Move file data pointer
// Meshes data processing
imesh = RL_MALLOC(iqmHeader->num_meshes*sizeof(IQMMesh));
//fseek(iqmFile, iqmHeader->ofs_meshes, SEEK_SET);
//fread(imesh, sizeof(IQMMesh)*iqmHeader->num_meshes, 1, iqmFile);
memcpy(imesh, fileDataPtr + iqmHeader->ofs_meshes, iqmHeader->num_meshes*sizeof(IQMMesh));
model.meshCount = iqmHeader->num_meshes;
model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh));
model.materialCount = model.meshCount;
model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
char name[MESH_NAME_LENGTH] = { 0 };
char material[MATERIAL_NAME_LENGTH] = { 0 };
for (int i = 0; i < model.meshCount; i++)
{
//fseek(iqmFile, iqmHeader->ofs_text + imesh[i].name, SEEK_SET);
//fread(name, sizeof(char), MESH_NAME_LENGTH, iqmFile);
memcpy(name, fileDataPtr + iqmHeader->ofs_text + imesh[i].name, MESH_NAME_LENGTH*sizeof(char));
//fseek(iqmFile, iqmHeader->ofs_text + imesh[i].material, SEEK_SET);
//fread(material, sizeof(char), MATERIAL_NAME_LENGTH, iqmFile);
memcpy(material, fileDataPtr + iqmHeader->ofs_text + imesh[i].material, MATERIAL_NAME_LENGTH*sizeof(char));
model.materials[i] = LoadMaterialDefault();
model.materials[i].maps[MATERIAL_MAP_ALBEDO].texture = LoadTexture(TextFormat("%s/%s", basePath, material));
model.meshMaterial[i] = i;
TRACELOG(LOG_DEBUG, "MODEL: [%s] mesh name (%s), material (%s)", fileName, name, material);
model.meshes[i].vertexCount = imesh[i].num_vertexes;
model.meshes[i].vertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex positions
model.meshes[i].normals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex normals
model.meshes[i].texcoords = RL_CALLOC(model.meshes[i].vertexCount*2, sizeof(float)); // Default vertex texcoords
model.meshes[i].boneIds = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(unsigned char)); // Up-to 4 bones supported!
model.meshes[i].boneWeights = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float)); // Up-to 4 bones supported!
model.meshes[i].triangleCount = imesh[i].num_triangles;
model.meshes[i].indices = RL_CALLOC(model.meshes[i].triangleCount*3, sizeof(unsigned short));
// Animated vertex data, what we actually process for rendering
// NOTE: Animated vertex should be re-uploaded to GPU (if not using GPU skinning)
model.meshes[i].animVertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
model.meshes[i].animNormals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
}
// Triangles data processing
tri = RL_MALLOC(iqmHeader->num_triangles*sizeof(IQMTriangle));
//fseek(iqmFile, iqmHeader->ofs_triangles, SEEK_SET);
//fread(tri, sizeof(IQMTriangle), iqmHeader->num_triangles, iqmFile);
memcpy(tri, fileDataPtr + iqmHeader->ofs_triangles, iqmHeader->num_triangles*sizeof(IQMTriangle));
for (int m = 0; m < model.meshCount; m++)
{
int tcounter = 0;
for (unsigned int i = imesh[m].first_triangle; i < (imesh[m].first_triangle + imesh[m].num_triangles); i++)
{
// IQM triangles indexes are stored in counter-clockwise, but raylib processes the index in linear order,
// expecting they point to the counter-clockwise vertex triangle, so we need to reverse triangle indexes
// NOTE: raylib renders vertex data in counter-clockwise order (standard convention) by default
model.meshes[m].indices[tcounter + 2] = tri[i].vertex[0] - imesh[m].first_vertex;
model.meshes[m].indices[tcounter + 1] = tri[i].vertex[1] - imesh[m].first_vertex;
model.meshes[m].indices[tcounter] = tri[i].vertex[2] - imesh[m].first_vertex;
tcounter += 3;
}
}
// Vertex arrays data processing
va = RL_MALLOC(iqmHeader->num_vertexarrays*sizeof(IQMVertexArray));
//fseek(iqmFile, iqmHeader->ofs_vertexarrays, SEEK_SET);
//fread(va, sizeof(IQMVertexArray), iqmHeader->num_vertexarrays, iqmFile);
memcpy(va, fileDataPtr + iqmHeader->ofs_vertexarrays, iqmHeader->num_vertexarrays*sizeof(IQMVertexArray));
for (unsigned int i = 0; i < iqmHeader->num_vertexarrays; i++)
{
switch (va[i].type)
{
case IQM_POSITION:
{
vertex = RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float));
//fseek(iqmFile, va[i].offset, SEEK_SET);
//fread(vertex, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile);
memcpy(vertex, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float));
for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
{
int vCounter = 0;
for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
{
model.meshes[m].vertices[vCounter] = vertex[i];
model.meshes[m].animVertices[vCounter] = vertex[i];
vCounter++;
}
}
} break;
case IQM_NORMAL:
{
normal = RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float));
//fseek(iqmFile, va[i].offset, SEEK_SET);
//fread(normal, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile);
memcpy(normal, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float));
for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
{
int vCounter = 0;
for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
{
model.meshes[m].normals[vCounter] = normal[i];
model.meshes[m].animNormals[vCounter] = normal[i];
vCounter++;
}
}
} break;
case IQM_TEXCOORD:
{
text = RL_MALLOC(iqmHeader->num_vertexes*2*sizeof(float));
//fseek(iqmFile, va[i].offset, SEEK_SET);
//fread(text, iqmHeader->num_vertexes*2*sizeof(float), 1, iqmFile);
memcpy(text, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*2*sizeof(float));
for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
{
int vCounter = 0;
for (unsigned int i = imesh[m].first_vertex*2; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*2; i++)
{
model.meshes[m].texcoords[vCounter] = text[i];
vCounter++;
}
}
} break;
case IQM_BLENDINDEXES:
{
blendi = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(char));
//fseek(iqmFile, va[i].offset, SEEK_SET);
//fread(blendi, iqmHeader->num_vertexes*4*sizeof(char), 1, iqmFile);
memcpy(blendi, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(char));
for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
{
int boneCounter = 0;
for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
{
model.meshes[m].boneIds[boneCounter] = blendi[i];
boneCounter++;
}
}
} break;
case IQM_BLENDWEIGHTS:
{
blendw = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(unsigned char));
//fseek(iqmFile, va[i].offset, SEEK_SET);
//fread(blendw, iqmHeader->num_vertexes*4*sizeof(unsigned char), 1, iqmFile);
memcpy(blendw, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(unsigned char));
for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
{
int boneCounter = 0;
for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
{
model.meshes[m].boneWeights[boneCounter] = blendw[i]/255.0f;
boneCounter++;
}
}
} break;
case IQM_COLOR:
{
color = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(unsigned char));
//fseek(iqmFile, va[i].offset, SEEK_SET);
//fread(blendw, iqmHeader->num_vertexes*4*sizeof(unsigned char), 1, iqmFile);
memcpy(color, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(unsigned char));
for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
{
model.meshes[m].colors = RL_CALLOC(model.meshes[m].vertexCount*4, sizeof(unsigned char));
int vCounter = 0;
for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
{
model.meshes[m].colors[vCounter] = color[i];
vCounter++;
}
}
} break;
}
}
// Bones (joints) data processing
ijoint = RL_MALLOC(iqmHeader->num_joints*sizeof(IQMJoint));
//fseek(iqmFile, iqmHeader->ofs_joints, SEEK_SET);
//fread(ijoint, sizeof(IQMJoint), iqmHeader->num_joints, iqmFile);
memcpy(ijoint, fileDataPtr + iqmHeader->ofs_joints, iqmHeader->num_joints*sizeof(IQMJoint));
model.boneCount = iqmHeader->num_joints;
model.bones = RL_MALLOC(iqmHeader->num_joints*sizeof(BoneInfo));
model.bindPose = RL_MALLOC(iqmHeader->num_joints*sizeof(Transform));
for (unsigned int i = 0; i < iqmHeader->num_joints; i++)
{
// Bones
model.bones[i].parent = ijoint[i].parent;
//fseek(iqmFile, iqmHeader->ofs_text + ijoint[i].name, SEEK_SET);
//fread(model.bones[i].name, sizeof(char), BONE_NAME_LENGTH, iqmFile);
memcpy(model.bones[i].name, fileDataPtr + iqmHeader->ofs_text + ijoint[i].name, BONE_NAME_LENGTH*sizeof(char));
// Bind pose (base pose)
model.bindPose[i].translation.x = ijoint[i].translate[0];
model.bindPose[i].translation.y = ijoint[i].translate[1];
model.bindPose[i].translation.z = ijoint[i].translate[2];
model.bindPose[i].rotation.x = ijoint[i].rotate[0];
model.bindPose[i].rotation.y = ijoint[i].rotate[1];
model.bindPose[i].rotation.z = ijoint[i].rotate[2];
model.bindPose[i].rotation.w = ijoint[i].rotate[3];
model.bindPose[i].scale.x = ijoint[i].scale[0];
model.bindPose[i].scale.y = ijoint[i].scale[1];
model.bindPose[i].scale.z = ijoint[i].scale[2];
}
BuildPoseFromParentJoints(model.bones, model.boneCount, model.bindPose);
for (int i = 0; i < model.meshCount; i++)
{
model.meshes[i].boneCount = model.boneCount;
model.meshes[i].boneMatrices = RL_CALLOC(model.meshes[i].boneCount, sizeof(Matrix));
for (int j = 0; j < model.meshes[i].boneCount; j++)
{
model.meshes[i].boneMatrices[j] = MatrixIdentity();
}
}
UnloadFileData(fileData);
RL_FREE(imesh);
RL_FREE(tri);
RL_FREE(va);
RL_FREE(vertex);
RL_FREE(normal);
RL_FREE(text);
RL_FREE(blendi);
RL_FREE(blendw);
RL_FREE(ijoint);
RL_FREE(color);
return model;
}
// Load IQM animation data
static ModelAnimation *LoadModelAnimationsIQM(const char *fileName, int *animCount)
{
#define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
#define IQM_VERSION 2 // only IQM version 2 supported
int dataSize = 0;
unsigned char *fileData = LoadFileData(fileName, &dataSize);
unsigned char *fileDataPtr = fileData;
typedef struct IQMHeader {
char magic[16];
unsigned int version;
unsigned int dataSize;
unsigned int flags;
unsigned int num_text, ofs_text;
unsigned int num_meshes, ofs_meshes;
unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
unsigned int num_triangles, ofs_triangles, ofs_adjacency;
unsigned int num_joints, ofs_joints;
unsigned int num_poses, ofs_poses;
unsigned int num_anims, ofs_anims;
unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
unsigned int num_comment, ofs_comment;
unsigned int num_extensions, ofs_extensions;
} IQMHeader;
typedef struct IQMJoint {
unsigned int name;
int parent;
float translate[3], rotate[4], scale[3];
} IQMJoint;
typedef struct IQMPose {
int parent;
unsigned int mask;
float channeloffset[10];
float channelscale[10];
} IQMPose;
typedef struct IQMAnim {
unsigned int name;
unsigned int first_frame, num_frames;
float framerate;
unsigned int flags;
} IQMAnim;
// In case file can not be read, return an empty model
if (fileDataPtr == NULL) return NULL;
// Read IQM header
IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr;
if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0)
{
TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName);
return NULL;
}
if (iqmHeader->version != IQM_VERSION)
{
TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version);
return NULL;
}
// Get bones data
IQMPose *poses = RL_MALLOC(iqmHeader->num_poses*sizeof(IQMPose));
//fseek(iqmFile, iqmHeader->ofs_poses, SEEK_SET);
//fread(poses, sizeof(IQMPose), iqmHeader->num_poses, iqmFile);
memcpy(poses, fileDataPtr + iqmHeader->ofs_poses, iqmHeader->num_poses*sizeof(IQMPose));
// Get animations data
*animCount = iqmHeader->num_anims;
IQMAnim *anim = RL_MALLOC(iqmHeader->num_anims*sizeof(IQMAnim));
//fseek(iqmFile, iqmHeader->ofs_anims, SEEK_SET);
//fread(anim, sizeof(IQMAnim), iqmHeader->num_anims, iqmFile);
memcpy(anim, fileDataPtr + iqmHeader->ofs_anims, iqmHeader->num_anims*sizeof(IQMAnim));
ModelAnimation *animations = RL_MALLOC(iqmHeader->num_anims*sizeof(ModelAnimation));
// frameposes
unsigned short *framedata = RL_MALLOC(iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short));
//fseek(iqmFile, iqmHeader->ofs_frames, SEEK_SET);
//fread(framedata, sizeof(unsigned short), iqmHeader->num_frames*iqmHeader->num_framechannels, iqmFile);
memcpy(framedata, fileDataPtr + iqmHeader->ofs_frames, iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short));
// joints
IQMJoint *joints = RL_MALLOC(iqmHeader->num_joints*sizeof(IQMJoint));
memcpy(joints, fileDataPtr + iqmHeader->ofs_joints, iqmHeader->num_joints*sizeof(IQMJoint));
for (unsigned int a = 0; a < iqmHeader->num_anims; a++)
{
animations[a].frameCount = anim[a].num_frames;
animations[a].boneCount = iqmHeader->num_poses;
animations[a].bones = RL_MALLOC(iqmHeader->num_poses*sizeof(BoneInfo));
animations[a].framePoses = RL_MALLOC(anim[a].num_frames*sizeof(Transform *));
memcpy(animations[a].name, fileDataPtr + iqmHeader->ofs_text + anim[a].name, 32); // I don't like this 32 here
TraceLog(LOG_INFO, "IQM Anim %s", animations[a].name);
// animations[a].framerate = anim.framerate; // TODO: Use animation framerate data?
for (unsigned int j = 0; j < iqmHeader->num_poses; j++)
{
// If animations and skeleton are in the same file, copy bone names to anim
if (iqmHeader->num_joints > 0)
memcpy(animations[a].bones[j].name, fileDataPtr + iqmHeader->ofs_text + joints[j].name, BONE_NAME_LENGTH*sizeof(char));
else
strcpy(animations[a].bones[j].name, "ANIMJOINTNAME"); // default bone name otherwise
animations[a].bones[j].parent = poses[j].parent;
}
for (unsigned int j = 0; j < anim[a].num_frames; j++) animations[a].framePoses[j] = RL_MALLOC(iqmHeader->num_poses*sizeof(Transform));
int dcounter = anim[a].first_frame*iqmHeader->num_framechannels;
for (unsigned int frame = 0; frame < anim[a].num_frames; frame++)
{
for (unsigned int i = 0; i < iqmHeader->num_poses; i++)
{
animations[a].framePoses[frame][i].translation.x = poses[i].channeloffset[0];
if (poses[i].mask & 0x01)
{
animations[a].framePoses[frame][i].translation.x += framedata[dcounter]*poses[i].channelscale[0];
dcounter++;
}
animations[a].framePoses[frame][i].translation.y = poses[i].channeloffset[1];
if (poses[i].mask & 0x02)
{
animations[a].framePoses[frame][i].translation.y += framedata[dcounter]*poses[i].channelscale[1];
dcounter++;
}
animations[a].framePoses[frame][i].translation.z = poses[i].channeloffset[2];
if (poses[i].mask & 0x04)
{
animations[a].framePoses[frame][i].translation.z += framedata[dcounter]*poses[i].channelscale[2];
dcounter++;
}
animations[a].framePoses[frame][i].rotation.x = poses[i].channeloffset[3];
if (poses[i].mask & 0x08)
{
animations[a].framePoses[frame][i].rotation.x += framedata[dcounter]*poses[i].channelscale[3];
dcounter++;
}
animations[a].framePoses[frame][i].rotation.y = poses[i].channeloffset[4];
if (poses[i].mask & 0x10)
{
animations[a].framePoses[frame][i].rotation.y += framedata[dcounter]*poses[i].channelscale[4];
dcounter++;
}
animations[a].framePoses[frame][i].rotation.z = poses[i].channeloffset[5];
if (poses[i].mask & 0x20)
{
animations[a].framePoses[frame][i].rotation.z += framedata[dcounter]*poses[i].channelscale[5];
dcounter++;
}
animations[a].framePoses[frame][i].rotation.w = poses[i].channeloffset[6];
if (poses[i].mask & 0x40)
{
animations[a].framePoses[frame][i].rotation.w += framedata[dcounter]*poses[i].channelscale[6];
dcounter++;
}
animations[a].framePoses[frame][i].scale.x = poses[i].channeloffset[7];
if (poses[i].mask & 0x80)
{
animations[a].framePoses[frame][i].scale.x += framedata[dcounter]*poses[i].channelscale[7];
dcounter++;
}
animations[a].framePoses[frame][i].scale.y = poses[i].channeloffset[8];
if (poses[i].mask & 0x100)
{
animations[a].framePoses[frame][i].scale.y += framedata[dcounter]*poses[i].channelscale[8];
dcounter++;
}
animations[a].framePoses[frame][i].scale.z = poses[i].channeloffset[9];
if (poses[i].mask & 0x200)
{
animations[a].framePoses[frame][i].scale.z += framedata[dcounter]*poses[i].channelscale[9];
dcounter++;
}
animations[a].framePoses[frame][i].rotation = QuaternionNormalize(animations[a].framePoses[frame][i].rotation);
}
}
// Build frameposes
for (unsigned int frame = 0; frame < anim[a].num_frames; frame++)
{
for (int i = 0; i < animations[a].boneCount; i++)
{
if (animations[a].bones[i].parent >= 0)
{
animations[a].framePoses[frame][i].rotation = QuaternionMultiply(animations[a].framePoses[frame][animations[a].bones[i].parent].rotation, animations[a].framePoses[frame][i].rotation);
animations[a].framePoses[frame][i].translation = Vector3RotateByQuaternion(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].rotation);
animations[a].framePoses[frame][i].translation = Vector3Add(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].translation);
animations[a].framePoses[frame][i].scale = Vector3Multiply(animations[a].framePoses[frame][i].scale, animations[a].framePoses[frame][animations[a].bones[i].parent].scale);
}
}
}
}
UnloadFileData(fileData);
RL_FREE(joints);
RL_FREE(framedata);
RL_FREE(poses);
RL_FREE(anim);
return animations;
}
#endif
#if defined(SUPPORT_FILEFORMAT_GLTF)
// Load file data callback for cgltf
static cgltf_result LoadFileGLTFCallback(const struct cgltf_memory_options *memoryOptions, const struct cgltf_file_options *fileOptions, const char *path, cgltf_size *size, void **data)
{
int filesize;
unsigned char *filedata = LoadFileData(path, &filesize);
if (filedata == NULL) return cgltf_result_io_error;
*size = filesize;
*data = filedata;
return cgltf_result_success;
}
// Release file data callback for cgltf
static void ReleaseFileGLTFCallback(const struct cgltf_memory_options *memoryOptions, const struct cgltf_file_options *fileOptions, void *data)
{
UnloadFileData(data);
}
// Load image from different glTF provided methods (uri, path, buffer_view)
static Image LoadImageFromCgltfImage(cgltf_image *cgltfImage, const char *texPath)
{
Image image = { 0 };
if (cgltfImage->uri != NULL) // Check if image data is provided as an uri (base64 or path)
{
if ((strlen(cgltfImage->uri) > 5) &&
(cgltfImage->uri[0] == 'd') &&
(cgltfImage->uri[1] == 'a') &&
(cgltfImage->uri[2] == 't') &&
(cgltfImage->uri[3] == 'a') &&
(cgltfImage->uri[4] == ':')) // Check if image is provided as base64 text data
{
// Data URI Format: data:<mediatype>;base64,<data>
// Find the comma
int i = 0;
while ((cgltfImage->uri[i] != ',') && (cgltfImage->uri[i] != 0)) i++;
if (cgltfImage->uri[i] == 0) TRACELOG(LOG_WARNING, "IMAGE: glTF data URI is not a valid image");
else
{
int base64Size = (int)strlen(cgltfImage->uri + i + 1);
while (cgltfImage->uri[i + base64Size] == '=') base64Size--; // Ignore optional paddings
int numberOfEncodedBits = base64Size*6 - (base64Size*6) % 8 ; // Encoded bits minus extra bits, so it becomes a multiple of 8 bits
int outSize = numberOfEncodedBits/8 ; // Actual encoded bytes
void *data = NULL;
cgltf_options options = { 0 };
options.file.read = LoadFileGLTFCallback;
options.file.release = ReleaseFileGLTFCallback;
cgltf_result result = cgltf_load_buffer_base64(&options, outSize, cgltfImage->uri + i + 1, &data);
if (result == cgltf_result_success)
{
image = LoadImageFromMemory(".png", (unsigned char *)data, outSize);
RL_FREE(data);
}
}
}
else // Check if image is provided as image path
{
image = LoadImage(TextFormat("%s/%s", texPath, cgltfImage->uri));
}
}
else if (cgltfImage->buffer_view != NULL && cgltfImage->buffer_view->buffer->data != NULL) // Check if image is provided as data buffer
{
unsigned char *data = RL_MALLOC(cgltfImage->buffer_view->size);
int offset = (int)cgltfImage->buffer_view->offset;
int stride = (int)cgltfImage->buffer_view->stride? (int)cgltfImage->buffer_view->stride : 1;
// Copy buffer data to memory for loading
for (unsigned int i = 0; i < cgltfImage->buffer_view->size; i++)
{
data[i] = ((unsigned char *)cgltfImage->buffer_view->buffer->data)[offset];
offset += stride;
}
// Check mime_type for image: (cgltfImage->mime_type == "image/png")
// NOTE: Detected that some models define mime_type as "image\\/png"
if ((strcmp(cgltfImage->mime_type, "image\\/png") == 0) ||
(strcmp(cgltfImage->mime_type, "image/png") == 0)) image = LoadImageFromMemory(".png", data, (int)cgltfImage->buffer_view->size);
else if ((strcmp(cgltfImage->mime_type, "image\\/jpeg") == 0) ||
(strcmp(cgltfImage->mime_type, "image/jpeg") == 0)) image = LoadImageFromMemory(".jpg", data, (int)cgltfImage->buffer_view->size);
else TRACELOG(LOG_WARNING, "MODEL: glTF image data MIME type not recognized", TextFormat("%s/%s", texPath, cgltfImage->uri));
RL_FREE(data);
}
return image;
}
// Load bone info from GLTF skin data
static BoneInfo *LoadBoneInfoGLTF(cgltf_skin skin, int *boneCount)
{
*boneCount = (int)skin.joints_count;
BoneInfo *bones = RL_MALLOC(skin.joints_count*sizeof(BoneInfo));
for (unsigned int i = 0; i < skin.joints_count; i++)
{
cgltf_node node = *skin.joints[i];
if (node.name != NULL)
{
strncpy(bones[i].name, node.name, sizeof(bones[i].name));
bones[i].name[sizeof(bones[i].name) - 1] = '\0';
}
// Find parent bone index
int parentIndex = -1;
for (unsigned int j = 0; j < skin.joints_count; j++)
{
if (skin.joints[j] == node.parent)
{
parentIndex = (int)j;
break;
}
}
bones[i].parent = parentIndex;
}
return bones;
}
// Load glTF file into model struct, .gltf and .glb supported
static Model LoadGLTF(const char *fileName)
{
/*********************************************************************************************
Function implemented by Wilhem Barbier(@wbrbr), with modifications by Tyler Bezera(@gamerfiend)
Transform handling implemented by Paul Melis (@paulmelis).
Reviewed by Ramon Santamaria (@raysan5)
FEATURES:
- Supports .gltf and .glb files
- Supports embedded (base64) or external textures
- Supports PBR metallic/roughness flow, loads material textures, values and colors
PBR specular/glossiness flow and extended texture flows not supported
- Supports multiple meshes per model (every primitives is loaded as a separate mesh)
- Supports basic animations
- Transforms, including parent-child relations, are applied on the mesh data, but the
hierarchy is not kept (as it can't be represented).
- Mesh instances in the glTF file (i.e. same mesh linked from multiple nodes)
are turned into separate raylib Meshes.
RESTRICTIONS:
- Only triangle meshes supported
- Vertex attribute types and formats supported:
> Vertices (position): vec3: float
> Normals: vec3: float
> Texcoords: vec2: float
> Colors: vec4: u8, u16, f32 (normalized)
> Indices: u16, u32 (truncated to u16)
- Scenes defined in the glTF file are ignored. All nodes in the file
are used.
***********************************************************************************************/
// Macro to simplify attributes loading code
#define LOAD_ATTRIBUTE(accesor, numComp, srcType, dstPtr) LOAD_ATTRIBUTE_CAST(accesor, numComp, srcType, dstPtr, srcType)
#define LOAD_ATTRIBUTE_CAST(accesor, numComp, srcType, dstPtr, dstType) \
{ \
int n = 0; \
srcType *buffer = (srcType *)accesor->buffer_view->buffer->data + accesor->buffer_view->offset/sizeof(srcType) + accesor->offset/sizeof(srcType); \
for (unsigned int k = 0; k < accesor->count; k++) \
{\
for (int l = 0; l < numComp; l++) \
{\
dstPtr[numComp*k + l] = (dstType)buffer[n + l];\
}\
n += (int)(accesor->stride/sizeof(srcType));\
}\
}
Model model = { 0 };
// glTF file loading
int dataSize = 0;
unsigned char *fileData = LoadFileData(fileName, &dataSize);
if (fileData == NULL) return model;
// glTF data loading
cgltf_options options = { 0 };
options.file.read = LoadFileGLTFCallback;
options.file.release = ReleaseFileGLTFCallback;
cgltf_data *data = NULL;
cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data);
if (result == cgltf_result_success)
{
if (data->file_type == cgltf_file_type_glb) TRACELOG(LOG_INFO, "MODEL: [%s] Model basic data (glb) loaded successfully", fileName);
else if (data->file_type == cgltf_file_type_gltf) TRACELOG(LOG_INFO, "MODEL: [%s] Model basic data (glTF) loaded successfully", fileName);
else TRACELOG(LOG_WARNING, "MODEL: [%s] Model format not recognized", fileName);
TRACELOG(LOG_INFO, " > Meshes count: %i", data->meshes_count);
TRACELOG(LOG_INFO, " > Materials count: %i (+1 default)", data->materials_count);
TRACELOG(LOG_DEBUG, " > Buffers count: %i", data->buffers_count);
TRACELOG(LOG_DEBUG, " > Images count: %i", data->images_count);
TRACELOG(LOG_DEBUG, " > Textures count: %i", data->textures_count);
// Force reading data buffers (fills buffer_view->buffer->data)
// NOTE: If an uri is defined to base64 data or external path, it's automatically loaded
result = cgltf_load_buffers(&options, data, fileName);
if (result != cgltf_result_success) TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load mesh/material buffers", fileName);
int primitivesCount = 0;
// NOTE: We will load every primitive in the glTF as a separate raylib Mesh.
// Determine total number of meshes needed from the node hierarchy.
for (unsigned int i = 0; i < data->nodes_count; i++)
{
cgltf_node *node = &(data->nodes[i]);
cgltf_mesh *mesh = node->mesh;
if (!mesh)
continue;
for (unsigned int p = 0; p < mesh->primitives_count; p++)
{
if (mesh->primitives[p].type == cgltf_primitive_type_triangles)
primitivesCount++;
}
}
TRACELOG(LOG_DEBUG, " > Primitives (triangles only) count based on hierarchy : %i", primitivesCount);
// Load our model data: meshes and materials
model.meshCount = primitivesCount;
model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh));
// NOTE: We keep an extra slot for default material, in case some mesh requires it
model.materialCount = (int)data->materials_count + 1;
model.materials = RL_CALLOC(model.materialCount, sizeof(Material));
model.materials[0] = LoadMaterialDefault(); // Load default material (index: 0)
// Load mesh-material indices, by default all meshes are mapped to material index: 0
model.meshMaterial = RL_CALLOC(model.meshCount, sizeof(int));
// Load materials data
//----------------------------------------------------------------------------------------------------
for (unsigned int i = 0, j = 1; i < data->materials_count; i++, j++)
{
model.materials[j] = LoadMaterialDefault();
const char *texPath = GetDirectoryPath(fileName);
// Check glTF material flow: PBR metallic/roughness flow
// NOTE: Alternatively, materials can follow PBR specular/glossiness flow
if (data->materials[i].has_pbr_metallic_roughness)
{
// Load base color texture (albedo)
if (data->materials[i].pbr_metallic_roughness.base_color_texture.texture)
{
Image imAlbedo = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.base_color_texture.texture->image, texPath);
if (imAlbedo.data != NULL)
{
model.materials[j].maps[MATERIAL_MAP_ALBEDO].texture = LoadTextureFromImage(imAlbedo);
UnloadImage(imAlbedo);
}
}
// Load base color factor (tint)
model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.r = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[0]*255);
model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.g = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[1]*255);
model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.b = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[2]*255);
model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.a = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[3]*255);
// Load metallic/roughness texture
if (data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture)
{
Image imMetallicRoughness = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture->image, texPath);
if (imMetallicRoughness.data != NULL)
{
model.materials[j].maps[MATERIAL_MAP_ROUGHNESS].texture = LoadTextureFromImage(imMetallicRoughness);
UnloadImage(imMetallicRoughness);
}
// Load metallic/roughness material properties
float roughness = data->materials[i].pbr_metallic_roughness.roughness_factor;
model.materials[j].maps[MATERIAL_MAP_ROUGHNESS].value = roughness;
float metallic = data->materials[i].pbr_metallic_roughness.metallic_factor;
model.materials[j].maps[MATERIAL_MAP_METALNESS].value = metallic;
}
// Load normal texture
if (data->materials[i].normal_texture.texture)
{
Image imNormal = LoadImageFromCgltfImage(data->materials[i].normal_texture.texture->image, texPath);
if (imNormal.data != NULL)
{
model.materials[j].maps[MATERIAL_MAP_NORMAL].texture = LoadTextureFromImage(imNormal);
UnloadImage(imNormal);
}
}
// Load ambient occlusion texture
if (data->materials[i].occlusion_texture.texture)
{
Image imOcclusion = LoadImageFromCgltfImage(data->materials[i].occlusion_texture.texture->image, texPath);
if (imOcclusion.data != NULL)
{
model.materials[j].maps[MATERIAL_MAP_OCCLUSION].texture = LoadTextureFromImage(imOcclusion);
UnloadImage(imOcclusion);
}
}
// Load emissive texture
if (data->materials[i].emissive_texture.texture)
{
Image imEmissive = LoadImageFromCgltfImage(data->materials[i].emissive_texture.texture->image, texPath);
if (imEmissive.data != NULL)
{
model.materials[j].maps[MATERIAL_MAP_EMISSION].texture = LoadTextureFromImage(imEmissive);
UnloadImage(imEmissive);
}
// Load emissive color factor
model.materials[j].maps[MATERIAL_MAP_EMISSION].color.r = (unsigned char)(data->materials[i].emissive_factor[0]*255);
model.materials[j].maps[MATERIAL_MAP_EMISSION].color.g = (unsigned char)(data->materials[i].emissive_factor[1]*255);
model.materials[j].maps[MATERIAL_MAP_EMISSION].color.b = (unsigned char)(data->materials[i].emissive_factor[2]*255);
model.materials[j].maps[MATERIAL_MAP_EMISSION].color.a = 255;
}
}
// Other possible materials not supported by raylib pipeline:
// has_clearcoat, has_transmission, has_volume, has_ior, has specular, has_sheen
}
// Visit each node in the hierarchy and process any mesh linked from it.
// Each primitive within a glTF node becomes a Raylib Mesh.
// The local-to-world transform of each node is used to transform the
// points/normals/tangents of the created Mesh(es).
// Any glTF mesh linked from more than one Node (i.e. instancing)
// is turned into multiple Mesh's, as each Node will have its own
// transform applied.
// Note: the code below disregards the scenes defined in the file, all nodes are used.
//----------------------------------------------------------------------------------------------------
int meshIndex = 0;
for (unsigned int i = 0; i < data->nodes_count; i++)
{
cgltf_node *node = &(data->nodes[i]);
cgltf_mesh *mesh = node->mesh;
if (!mesh)
continue;
cgltf_float worldTransform[16];
cgltf_node_transform_world(node, worldTransform);
Matrix worldMatrix = {
worldTransform[0], worldTransform[4], worldTransform[8], worldTransform[12],
worldTransform[1], worldTransform[5], worldTransform[9], worldTransform[13],
worldTransform[2], worldTransform[6], worldTransform[10], worldTransform[14],
worldTransform[3], worldTransform[7], worldTransform[11], worldTransform[15]
};
Matrix worldMatrixNormals = MatrixTranspose(MatrixInvert(worldMatrix));
for (unsigned int p = 0; p < mesh->primitives_count; p++)
{
// NOTE: We only support primitives defined by triangles
// Other alternatives: points, lines, line_strip, triangle_strip
if (mesh->primitives[p].type != cgltf_primitive_type_triangles) continue;
// NOTE: Attributes data could be provided in several data formats (8, 8u, 16u, 32...),
// Only some formats for each attribute type are supported, read info at the top of this function!
for (unsigned int j = 0; j < mesh->primitives[p].attributes_count; j++)
{
// Check the different attributes for every primitive
if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_position) // POSITION, vec3, float
{
cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data;
// WARNING: SPECS: POSITION accessor MUST have its min and max properties defined
if ((attribute->type == cgltf_type_vec3) && (attribute->component_type == cgltf_component_type_r_32f))
{
// Init raylib mesh vertices to copy glTF attribute data
model.meshes[meshIndex].vertexCount = (int)attribute->count;
model.meshes[meshIndex].vertices = RL_MALLOC(attribute->count*3*sizeof(float));
// Load 3 components of float data type into mesh.vertices
LOAD_ATTRIBUTE(attribute, 3, float, model.meshes[meshIndex].vertices)
// Transform the vertices
float *vertices = model.meshes[meshIndex].vertices;
for (unsigned int k = 0; k < attribute->count; k++)
{
Vector3 vt = Vector3Transform((Vector3){ vertices[3*k], vertices[3*k+1], vertices[3*k+2] }, worldMatrix);
vertices[3*k] = vt.x;
vertices[3*k+1] = vt.y;
vertices[3*k+2] = vt.z;
}
}
else TRACELOG(LOG_WARNING, "MODEL: [%s] Vertices attribute data format not supported, use vec3 float", fileName);
}
else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_normal) // NORMAL, vec3, float
{
cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data;
if ((attribute->type == cgltf_type_vec3) && (attribute->component_type == cgltf_component_type_r_32f))
{
// Init raylib mesh normals to copy glTF attribute data
model.meshes[meshIndex].normals = RL_MALLOC(attribute->count*3*sizeof(float));
// Load 3 components of float data type into mesh.normals
LOAD_ATTRIBUTE(attribute, 3, float, model.meshes[meshIndex].normals)
// Transform the normals
float *normals = model.meshes[meshIndex].normals;
for (unsigned int k = 0; k < attribute->count; k++)
{
Vector3 nt = Vector3Transform((Vector3){ normals[3*k], normals[3*k+1], normals[3*k+2] }, worldMatrixNormals);
normals[3*k] = nt.x;
normals[3*k+1] = nt.y;
normals[3*k+2] = nt.z;
}
}
else TRACELOG(LOG_WARNING, "MODEL: [%s] Normal attribute data format not supported, use vec3 float", fileName);
}
else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_tangent) // TANGENT, vec3, float
{
cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data;
if ((attribute->type == cgltf_type_vec4) && (attribute->component_type == cgltf_component_type_r_32f))
{
// Init raylib mesh tangent to copy glTF attribute data
model.meshes[meshIndex].tangents = RL_MALLOC(attribute->count*4*sizeof(float));
// Load 4 components of float data type into mesh.tangents
LOAD_ATTRIBUTE(attribute, 4, float, model.meshes[meshIndex].tangents)
// Transform the tangents
float *tangents = model.meshes[meshIndex].tangents;
for (unsigned int k = 0; k < attribute->count; k++)
{
Vector3 tt = Vector3Transform((Vector3){ tangents[3*k], tangents[3*k+1], tangents[3*k+2] }, worldMatrix);
tangents[3*k] = tt.x;
tangents[3*k+1] = tt.y;
tangents[3*k+2] = tt.z;
}
}
else TRACELOG(LOG_WARNING, "MODEL: [%s] Tangent attribute data format not supported, use vec4 float", fileName);
}
else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_texcoord) // TEXCOORD_n, vec2, float/u8n/u16n
{
// Support up to 2 texture coordinates attributes
float *texcoordPtr = NULL;
cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data;
if (attribute->type == cgltf_type_vec2)
{
if (attribute->component_type == cgltf_component_type_r_32f) // vec2, float
{
// Init raylib mesh texcoords to copy glTF attribute data
texcoordPtr = (float *)RL_MALLOC(attribute->count*2*sizeof(float));
// Load 3 components of float data type into mesh.texcoords
LOAD_ATTRIBUTE(attribute, 2, float, texcoordPtr)
}
else if (attribute->component_type == cgltf_component_type_r_8u) // vec2, u8n
{
// Init raylib mesh texcoords to copy glTF attribute data
texcoordPtr = (float *)RL_MALLOC(attribute->count*2*sizeof(float));
// Load data into a temp buffer to be converted to raylib data type
unsigned char *temp = (unsigned char *)RL_MALLOC(attribute->count*2*sizeof(unsigned char));
LOAD_ATTRIBUTE(attribute, 2, unsigned char, temp);
// Convert data to raylib texcoord data type (float)
for (unsigned int t = 0; t < attribute->count*2; t++) texcoordPtr[t] = (float)temp[t]/255.0f;
RL_FREE(temp);
}
else if (attribute->component_type == cgltf_component_type_r_16u) // vec2, u16n
{
// Init raylib mesh texcoords to copy glTF attribute data
texcoordPtr = (float *)RL_MALLOC(attribute->count*2*sizeof(float));
// Load data into a temp buffer to be converted to raylib data type
unsigned short *temp = (unsigned short *)RL_MALLOC(attribute->count*2*sizeof(unsigned short));
LOAD_ATTRIBUTE(attribute, 2, unsigned short, temp);
// Convert data to raylib texcoord data type (float)
for (unsigned int t = 0; t < attribute->count*2; t++) texcoordPtr[t] = (float)temp[t]/65535.0f;
RL_FREE(temp);
}
else TRACELOG(LOG_WARNING, "MODEL: [%s] Texcoords attribute data format not supported", fileName);
}
else TRACELOG(LOG_WARNING, "MODEL: [%s] Texcoords attribute data format not supported, use vec2 float", fileName);
int index = mesh->primitives[p].attributes[j].index;
if (index == 0) model.meshes[meshIndex].texcoords = texcoordPtr;
else if (index == 1) model.meshes[meshIndex].texcoords2 = texcoordPtr;
else
{
TRACELOG(LOG_WARNING, "MODEL: [%s] No more than 2 texture coordinates attributes supported", fileName);
if (texcoordPtr != NULL) RL_FREE(texcoordPtr);
}
}
else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_color) // COLOR_n, vec3/vec4, float/u8n/u16n
{
cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data;
// WARNING: SPECS: All components of each COLOR_n accessor element MUST be clamped to [0.0, 1.0] range
if (attribute->type == cgltf_type_vec3) // RGB
{
if (attribute->component_type == cgltf_component_type_r_8u)
{
// Init raylib mesh color to copy glTF attribute data
model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char));
// Load data into a temp buffer to be converted to raylib data type
unsigned char *temp = RL_MALLOC(attribute->count*3*sizeof(unsigned char));
LOAD_ATTRIBUTE(attribute, 3, unsigned char, temp);
// Convert data to raylib color data type (4 bytes)
for (unsigned int c = 0, k = 0; c < (attribute->count*4 - 3); c += 4, k += 3)
{
model.meshes[meshIndex].colors[c] = temp[k];
model.meshes[meshIndex].colors[c + 1] = temp[k + 1];
model.meshes[meshIndex].colors[c + 2] = temp[k + 2];
model.meshes[meshIndex].colors[c + 3] = 255;
}
RL_FREE(temp);
}
else if (attribute->component_type == cgltf_component_type_r_16u)
{
// Init raylib mesh color to copy glTF attribute data
model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char));
// Load data into a temp buffer to be converted to raylib data type
unsigned short *temp = RL_MALLOC(attribute->count*3*sizeof(unsigned short));
LOAD_ATTRIBUTE(attribute, 3, unsigned short, temp);
// Convert data to raylib color data type (4 bytes)
for (unsigned int c = 0, k = 0; c < (attribute->count*4 - 3); c += 4, k += 3)
{
model.meshes[meshIndex].colors[c] = (unsigned char)(((float)temp[k]/65535.0f)*255.0f);
model.meshes[meshIndex].colors[c + 1] = (unsigned char)(((float)temp[k + 1]/65535.0f)*255.0f);
model.meshes[meshIndex].colors[c + 2] = (unsigned char)(((float)temp[k + 2]/65535.0f)*255.0f);
model.meshes[meshIndex].colors[c + 3] = 255;
}
RL_FREE(temp);
}
else if (attribute->component_type == cgltf_component_type_r_32f)
{
// Init raylib mesh color to copy glTF attribute data
model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char));
// Load data into a temp buffer to be converted to raylib data type
float *temp = RL_MALLOC(attribute->count*3*sizeof(float));
LOAD_ATTRIBUTE(attribute, 3, float, temp);
// Convert data to raylib color data type (4 bytes)
for (unsigned int c = 0, k = 0; c < (attribute->count*4 - 3); c += 4, k += 3)
{
model.meshes[meshIndex].colors[c] = (unsigned char)(temp[k]*255.0f);
model.meshes[meshIndex].colors[c + 1] = (unsigned char)(temp[k + 1]*255.0f);
model.meshes[meshIndex].colors[c + 2] = (unsigned char)(temp[k + 2]*255.0f);
model.meshes[meshIndex].colors[c + 3] = 255;
}
RL_FREE(temp);
}
else TRACELOG(LOG_WARNING, "MODEL: [%s] Color attribute data format not supported", fileName);
}
else if (attribute->type == cgltf_type_vec4) // RGBA
{
if (attribute->component_type == cgltf_component_type_r_8u)
{
// Init raylib mesh color to copy glTF attribute data
model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char));
// Load 4 components of unsigned char data type into mesh.colors
LOAD_ATTRIBUTE(attribute, 4, unsigned char, model.meshes[meshIndex].colors)
}
else if (attribute->component_type == cgltf_component_type_r_16u)
{
// Init raylib mesh color to copy glTF attribute data
model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char));
// Load data into a temp buffer to be converted to raylib data type
unsigned short *temp = RL_MALLOC(attribute->count*4*sizeof(unsigned short));
LOAD_ATTRIBUTE(attribute, 4, unsigned short, temp);
// Convert data to raylib color data type (4 bytes)
for (unsigned int c = 0; c < attribute->count*4; c++) model.meshes[meshIndex].colors[c] = (unsigned char)(((float)temp[c]/65535.0f)*255.0f);
RL_FREE(temp);
}
else if (attribute->component_type == cgltf_component_type_r_32f)
{
// Init raylib mesh color to copy glTF attribute data
model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char));
// Load data into a temp buffer to be converted to raylib data type
float *temp = RL_MALLOC(attribute->count*4*sizeof(float));
LOAD_ATTRIBUTE(attribute, 4, float, temp);
// Convert data to raylib color data type (4 bytes), we expect the color data normalized
for (unsigned int c = 0; c < attribute->count*4; c++) model.meshes[meshIndex].colors[c] = (unsigned char)(temp[c]*255.0f);
RL_FREE(temp);
}
else TRACELOG(LOG_WARNING, "MODEL: [%s] Color attribute data format not supported", fileName);
}
else TRACELOG(LOG_WARNING, "MODEL: [%s] Color attribute data format not supported", fileName);
}
// NOTE: Attributes related to animations are processed separately
}
// Load primitive indices data (if provided)
if (mesh->primitives[p].indices != NULL)
{
cgltf_accessor *attribute = mesh->primitives[p].indices;
model.meshes[meshIndex].triangleCount = (int)attribute->count/3;
if (attribute->component_type == cgltf_component_type_r_16u)
{
// Init raylib mesh indices to copy glTF attribute data
model.meshes[meshIndex].indices = RL_MALLOC(attribute->count*sizeof(unsigned short));
// Load unsigned short data type into mesh.indices
LOAD_ATTRIBUTE(attribute, 1, unsigned short, model.meshes[meshIndex].indices)
}
else if (attribute->component_type == cgltf_component_type_r_8u)
{
// Init raylib mesh indices to copy glTF attribute data
model.meshes[meshIndex].indices = RL_MALLOC(attribute->count * sizeof(unsigned short));
LOAD_ATTRIBUTE_CAST(attribute, 1, unsigned char, model.meshes[meshIndex].indices, unsigned short)
}
else if (attribute->component_type == cgltf_component_type_r_32u)
{
// Init raylib mesh indices to copy glTF attribute data
model.meshes[meshIndex].indices = RL_MALLOC(attribute->count*sizeof(unsigned short));
LOAD_ATTRIBUTE_CAST(attribute, 1, unsigned int, model.meshes[meshIndex].indices, unsigned short);
TRACELOG(LOG_WARNING, "MODEL: [%s] Indices data converted from u32 to u16, possible loss of data", fileName);
}
else
{
TRACELOG(LOG_WARNING, "MODEL: [%s] Indices data format not supported, use u16", fileName);
}
}
else model.meshes[meshIndex].triangleCount = model.meshes[meshIndex].vertexCount/3; // Unindexed mesh
// Assign to the primitive mesh the corresponding material index
// NOTE: If no material defined, mesh uses the already assigned default material (index: 0)
for (unsigned int m = 0; m < data->materials_count; m++)
{
// The primitive actually keeps the pointer to the corresponding material,
// raylib instead assigns to the mesh the by its index, as loaded in model.materials array
// To get the index, we check if material pointers match, and we assign the corresponding index,
// skipping index 0, the default material
if (&data->materials[m] == mesh->primitives[p].material)
{
model.meshMaterial[meshIndex] = m + 1;
break;
}
}
meshIndex++; // Move to next mesh
}
}
// Load glTF meshes animation data
// REF: https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#skins
// REF: https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#skinned-mesh-attributes
//
// LIMITATIONS:
// - Only supports 1 armature per file, and skips loading it if there are multiple armatures
// - Only supports linear interpolation (default method in Blender when checked "Always Sample Animations" when exporting a GLTF file)
// - Only supports translation/rotation/scale animation channel.path, weights not considered (i.e. morph targets)
//----------------------------------------------------------------------------------------------------
if (data->skins_count > 0)
{
cgltf_skin skin = data->skins[0];
model.bones = LoadBoneInfoGLTF(skin, &model.boneCount);
model.bindPose = RL_MALLOC(model.boneCount*sizeof(Transform));
for (int i = 0; i < model.boneCount; i++)
{
cgltf_node* node = skin.joints[i];
cgltf_float worldTransform[16];
cgltf_node_transform_world(node, worldTransform);
Matrix worldMatrix = {
worldTransform[0], worldTransform[4], worldTransform[8], worldTransform[12],
worldTransform[1], worldTransform[5], worldTransform[9], worldTransform[13],
worldTransform[2], worldTransform[6], worldTransform[10], worldTransform[14],
worldTransform[3], worldTransform[7], worldTransform[11], worldTransform[15]
};
MatrixDecompose(worldMatrix, &(model.bindPose[i].translation), &(model.bindPose[i].rotation), &(model.bindPose[i].scale));
}
}
if (data->skins_count > 1)
{
TRACELOG(LOG_WARNING, "MODEL: [%s] can only load one skin (armature) per model, but gltf skins_count == %i", fileName, data->skins_count);
}
meshIndex = 0;
for (unsigned int i = 0; i < data->nodes_count; i++)
{
cgltf_node *node = &(data->nodes[i]);
cgltf_mesh *mesh = node->mesh;
if (!mesh)
continue;
for (unsigned int p = 0; p < mesh->primitives_count; p++)
{
// NOTE: We only support primitives defined by triangles
if (mesh->primitives[p].type != cgltf_primitive_type_triangles) continue;
for (unsigned int j = 0; j < mesh->primitives[p].attributes_count; j++)
{
// NOTE: JOINTS_1 + WEIGHT_1 will be used for +4 joints influencing a vertex -> Not supported by raylib
if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_joints) // JOINTS_n (vec4: 4 bones max per vertex / u8, u16)
{
cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data;
// NOTE: JOINTS_n can only be vec4 and u8/u16
// SPECS: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes-overview
// WARNING: raylib only supports model.meshes[].boneIds as u8 (unsigned char),
// if data is provided in any other format, it is converted to supported format but
// it could imply data loss (a warning message is issued in that case)
if (attribute->type == cgltf_type_vec4)
{
if (attribute->component_type == cgltf_component_type_r_8u)
{
// Init raylib mesh boneIds to copy glTF attribute data
model.meshes[meshIndex].boneIds = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(unsigned char));
// Load attribute: vec4, u8 (unsigned char)
LOAD_ATTRIBUTE(attribute, 4, unsigned char, model.meshes[meshIndex].boneIds)
}
else if (attribute->component_type == cgltf_component_type_r_16u)
{
// Init raylib mesh boneIds to copy glTF attribute data
model.meshes[meshIndex].boneIds = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(unsigned char));
// Load data into a temp buffer to be converted to raylib data type
unsigned short *temp = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(unsigned short));
LOAD_ATTRIBUTE(attribute, 4, unsigned short, temp);
// Convert data to raylib color data type (4 bytes)
bool boneIdOverflowWarning = false;
for (int b = 0; b < model.meshes[meshIndex].vertexCount*4; b++)
{
if ((temp[b] > 255) && !boneIdOverflowWarning)
{
TRACELOG(LOG_WARNING, "MODEL: [%s] Joint attribute data format (u16) overflow", fileName);
boneIdOverflowWarning = true;
}
// Despite the possible overflow, we convert data to unsigned char
model.meshes[meshIndex].boneIds[b] = (unsigned char)temp[b];
}
RL_FREE(temp);
}
else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint attribute data format not supported", fileName);
}
else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint attribute data format not supported", fileName);
}
else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_weights) // WEIGHTS_n (vec4, u8n/u16n/f32)
{
cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data;
if (attribute->type == cgltf_type_vec4)
{
// TODO: Support component types: u8, u16?
if (attribute->component_type == cgltf_component_type_r_8u)
{
// Init raylib mesh bone weight to copy glTF attribute data
model.meshes[meshIndex].boneWeights = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(float));
// Load data into a temp buffer to be converted to raylib data type
unsigned char *temp = RL_MALLOC(attribute->count*4*sizeof(unsigned char));
LOAD_ATTRIBUTE(attribute, 4, unsigned char, temp);
// Convert data to raylib bone weight data type (4 bytes)
for (unsigned int b = 0; b < attribute->count*4; b++) model.meshes[meshIndex].boneWeights[b] = (float)temp[b]/255.0f;
RL_FREE(temp);
}
else if (attribute->component_type == cgltf_component_type_r_16u)
{
// Init raylib mesh bone weight to copy glTF attribute data
model.meshes[meshIndex].boneWeights = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(float));
// Load data into a temp buffer to be converted to raylib data type
unsigned short *temp = RL_MALLOC(attribute->count*4*sizeof(unsigned short));
LOAD_ATTRIBUTE(attribute, 4, unsigned short, temp);
// Convert data to raylib bone weight data type
for (unsigned int b = 0; b < attribute->count*4; b++) model.meshes[meshIndex].boneWeights[b] = (float)temp[b]/65535.0f;
RL_FREE(temp);
}
else if (attribute->component_type == cgltf_component_type_r_32f)
{
// Init raylib mesh bone weight to copy glTF attribute data
model.meshes[meshIndex].boneWeights = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(float));
// Load 4 components of float data type into mesh.boneWeights
// for cgltf_attribute_type_weights we have:
// - data.meshes[0] (256 vertices)
// - 256 values, provided as cgltf_type_vec4 of float (4 byte per joint, stride 16)
LOAD_ATTRIBUTE(attribute, 4, float, model.meshes[meshIndex].boneWeights)
}
else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint weight attribute data format not supported, use vec4 float", fileName);
}
else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint weight attribute data format not supported, use vec4 float", fileName);
}
}
// Animated vertex data
model.meshes[meshIndex].animVertices = RL_CALLOC(model.meshes[meshIndex].vertexCount*3, sizeof(float));
memcpy(model.meshes[meshIndex].animVertices, model.meshes[meshIndex].vertices, model.meshes[meshIndex].vertexCount*3*sizeof(float));
model.meshes[meshIndex].animNormals = RL_CALLOC(model.meshes[meshIndex].vertexCount*3, sizeof(float));
if (model.meshes[meshIndex].normals != NULL)
{
memcpy(model.meshes[meshIndex].animNormals, model.meshes[meshIndex].normals, model.meshes[meshIndex].vertexCount*3*sizeof(float));
}
// Bone Transform Matrices
model.meshes[meshIndex].boneCount = model.boneCount;
model.meshes[meshIndex].boneMatrices = RL_CALLOC(model.meshes[meshIndex].boneCount, sizeof(Matrix));
for (int j = 0; j < model.meshes[meshIndex].boneCount; j++)
{
model.meshes[meshIndex].boneMatrices[j] = MatrixIdentity();
}
meshIndex++; // Move to next mesh
}
}
// Free all cgltf loaded data
cgltf_free(data);
}
else TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load glTF data", fileName);
// WARNING: cgltf requires the file pointer available while reading data
UnloadFileData(fileData);
return model;
}
// Get interpolated pose for bone sampler at a specific time. Returns true on success
static bool GetPoseAtTimeGLTF(cgltf_interpolation_type interpolationType, cgltf_accessor *input, cgltf_accessor *output, float time, void *data)
{
if (interpolationType >= cgltf_interpolation_type_max_enum) return false;
// Input and output should have the same count
float tstart = 0.0f;
float tend = 0.0f;
int keyframe = 0; // Defaults to first pose
for (int i = 0; i < (int)input->count - 1; i++)
{
cgltf_bool r1 = cgltf_accessor_read_float(input, i, &tstart, 1);
if (!r1) return false;
cgltf_bool r2 = cgltf_accessor_read_float(input, i + 1, &tend, 1);
if (!r2) return false;
if ((tstart <= time) && (time < tend))
{
keyframe = i;
break;
}
}
// Constant animation, no need to interpolate
if (FloatEquals(tend, tstart)) return true;
float duration = fmaxf((tend - tstart), EPSILON);
float t = (time - tstart)/duration;
t = (t < 0.0f)? 0.0f : t;
t = (t > 1.0f)? 1.0f : t;
if (output->component_type != cgltf_component_type_r_32f) return false;
if (output->type == cgltf_type_vec3)
{
switch (interpolationType)
{
case cgltf_interpolation_type_step:
{
float tmp[3] = { 0.0f };
cgltf_accessor_read_float(output, keyframe, tmp, 3);
Vector3 v1 = {tmp[0], tmp[1], tmp[2]};
Vector3 *r = data;
*r = v1;
} break;
case cgltf_interpolation_type_linear:
{
float tmp[3] = { 0.0f };
cgltf_accessor_read_float(output, keyframe, tmp, 3);
Vector3 v1 = {tmp[0], tmp[1], tmp[2]};
cgltf_accessor_read_float(output, keyframe+1, tmp, 3);
Vector3 v2 = {tmp[0], tmp[1], tmp[2]};
Vector3 *r = data;
*r = Vector3Lerp(v1, v2, t);
} break;
case cgltf_interpolation_type_cubic_spline:
{
float tmp[3] = { 0.0f };
cgltf_accessor_read_float(output, 3*keyframe+1, tmp, 3);
Vector3 v1 = {tmp[0], tmp[1], tmp[2]};
cgltf_accessor_read_float(output, 3*keyframe+2, tmp, 3);
Vector3 tangent1 = {tmp[0], tmp[1], tmp[2]};
cgltf_accessor_read_float(output, 3*(keyframe+1)+1, tmp, 3);
Vector3 v2 = {tmp[0], tmp[1], tmp[2]};
cgltf_accessor_read_float(output, 3*(keyframe+1), tmp, 3);
Vector3 tangent2 = {tmp[0], tmp[1], tmp[2]};
Vector3 *r = data;
*r = Vector3CubicHermite(v1, tangent1, v2, tangent2, t);
} break;
default: break;
}
}
else if (output->type == cgltf_type_vec4)
{
// Only v4 is for rotations, so we know it's a quaternion
switch (interpolationType)
{
case cgltf_interpolation_type_step:
{
float tmp[4] = { 0.0f };
cgltf_accessor_read_float(output, keyframe, tmp, 4);
Vector4 v1 = {tmp[0], tmp[1], tmp[2], tmp[3]};
Vector4 *r = data;
*r = v1;
} break;
case cgltf_interpolation_type_linear:
{
float tmp[4] = { 0.0f };
cgltf_accessor_read_float(output, keyframe, tmp, 4);
Vector4 v1 = {tmp[0], tmp[1], tmp[2], tmp[3]};
cgltf_accessor_read_float(output, keyframe+1, tmp, 4);
Vector4 v2 = {tmp[0], tmp[1], tmp[2], tmp[3]};
Vector4 *r = data;
*r = QuaternionSlerp(v1, v2, t);
} break;
case cgltf_interpolation_type_cubic_spline:
{
float tmp[4] = { 0.0f };
cgltf_accessor_read_float(output, 3*keyframe+1, tmp, 4);
Vector4 v1 = {tmp[0], tmp[1], tmp[2], tmp[3]};
cgltf_accessor_read_float(output, 3*keyframe+2, tmp, 4);
Vector4 outTangent1 = {tmp[0], tmp[1], tmp[2], 0.0f};
cgltf_accessor_read_float(output, 3*(keyframe+1)+1, tmp, 4);
Vector4 v2 = {tmp[0], tmp[1], tmp[2], tmp[3]};
cgltf_accessor_read_float(output, 3*(keyframe+1), tmp, 4);
Vector4 inTangent2 = {tmp[0], tmp[1], tmp[2], 0.0f};
Vector4 *r = data;
v1 = QuaternionNormalize(v1);
v2 = QuaternionNormalize(v2);
if (Vector4DotProduct(v1, v2) < 0.0f)
{
v2 = Vector4Negate(v2);
}
outTangent1 = Vector4Scale(outTangent1, duration);
inTangent2 = Vector4Scale(inTangent2, duration);
*r = QuaternionCubicHermiteSpline(v1, outTangent1, v2, inTangent2, t);
} break;
default: break;
}
}
return true;
}
#define GLTF_ANIMDELAY 17 // Animation frames delay, (~1000 ms/60 FPS = 16.666666* ms)
static ModelAnimation *LoadModelAnimationsGLTF(const char *fileName, int *animCount)
{
// glTF file loading
int dataSize = 0;
unsigned char *fileData = LoadFileData(fileName, &dataSize);
ModelAnimation *animations = NULL;
// glTF data loading
cgltf_options options = { 0 };
options.file.read = LoadFileGLTFCallback;
options.file.release = ReleaseFileGLTFCallback;
cgltf_data *data = NULL;
cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data);
if (result != cgltf_result_success)
{
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load glTF data", fileName);
*animCount = 0;
return NULL;
}
result = cgltf_load_buffers(&options, data, fileName);
if (result != cgltf_result_success) TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load animation buffers", fileName);
if (result == cgltf_result_success)
{
if (data->skins_count > 0)
{
cgltf_skin skin = data->skins[0];
*animCount = (int)data->animations_count;
animations = RL_MALLOC(data->animations_count*sizeof(ModelAnimation));
for (unsigned int i = 0; i < data->animations_count; i++)
{
animations[i].bones = LoadBoneInfoGLTF(skin, &animations[i].boneCount);
cgltf_animation animData = data->animations[i];
struct Channels {
cgltf_animation_channel *translate;
cgltf_animation_channel *rotate;
cgltf_animation_channel *scale;
cgltf_interpolation_type interpolationType;
};
struct Channels *boneChannels = RL_CALLOC(animations[i].boneCount, sizeof(struct Channels));
float animDuration = 0.0f;
for (unsigned int j = 0; j < animData.channels_count; j++)
{
cgltf_animation_channel channel = animData.channels[j];
int boneIndex = -1;
for (unsigned int k = 0; k < skin.joints_count; k++)
{
if (animData.channels[j].target_node == skin.joints[k])
{
boneIndex = k;
break;
}
}
if (boneIndex == -1)
{
// Animation channel for a node not in the armature
continue;
}
boneChannels[boneIndex].interpolationType = animData.channels[j].sampler->interpolation;
if (animData.channels[j].sampler->interpolation != cgltf_interpolation_type_max_enum)
{
if (channel.target_path == cgltf_animation_path_type_translation)
{
boneChannels[boneIndex].translate = &animData.channels[j];
}
else if (channel.target_path == cgltf_animation_path_type_rotation)
{
boneChannels[boneIndex].rotate = &animData.channels[j];
}
else if (channel.target_path == cgltf_animation_path_type_scale)
{
boneChannels[boneIndex].scale = &animData.channels[j];
}
else
{
TRACELOG(LOG_WARNING, "MODEL: [%s] Unsupported target_path on channel %d's sampler for animation %d. Skipping.", fileName, j, i);
}
}
else TRACELOG(LOG_WARNING, "MODEL: [%s] Invalid interpolation curve encountered for GLTF animation.", fileName);
float t = 0.0f;
cgltf_bool r = cgltf_accessor_read_float(channel.sampler->input, channel.sampler->input->count - 1, &t, 1);
if (!r)
{
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load input time", fileName);
continue;
}
animDuration = (t > animDuration)? t : animDuration;
}
if (animData.name != NULL)
{
strncpy(animations[i].name, animData.name, sizeof(animations[i].name));
animations[i].name[sizeof(animations[i].name) - 1] = '\0';
}
animations[i].frameCount = (int)(animDuration*1000.0f/GLTF_ANIMDELAY) + 1;
animations[i].framePoses = RL_MALLOC(animations[i].frameCount*sizeof(Transform *));
for (int j = 0; j < animations[i].frameCount; j++)
{
animations[i].framePoses[j] = RL_MALLOC(animations[i].boneCount*sizeof(Transform));
float time = ((float) j*GLTF_ANIMDELAY)/1000.0f;
for (int k = 0; k < animations[i].boneCount; k++)
{
Vector3 translation = {skin.joints[k]->translation[0], skin.joints[k]->translation[1], skin.joints[k]->translation[2]};
Quaternion rotation = {skin.joints[k]->rotation[0], skin.joints[k]->rotation[1], skin.joints[k]->rotation[2], skin.joints[k]->rotation[3]};
Vector3 scale = {skin.joints[k]->scale[0], skin.joints[k]->scale[1], skin.joints[k]->scale[2]};
if (boneChannels[k].translate)
{
if (!GetPoseAtTimeGLTF(boneChannels[k].interpolationType, boneChannels[k].translate->sampler->input, boneChannels[k].translate->sampler->output, time, &translation))
{
TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load translate pose data for bone %s", fileName, animations[i].bones[k].name);
}
}
if (boneChannels[k].rotate)
{
if (!GetPoseAtTimeGLTF(boneChannels[k].interpolationType, boneChannels[k].rotate->sampler->input, boneChannels[k].rotate->sampler->output, time, &rotation))
{
TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load rotate pose data for bone %s", fileName, animations[i].bones[k].name);
}
}
if (boneChannels[k].scale)
{
if (!GetPoseAtTimeGLTF(boneChannels[k].interpolationType, boneChannels[k].scale->sampler->input, boneChannels[k].scale->sampler->output, time, &scale))
{
TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load scale pose data for bone %s", fileName, animations[i].bones[k].name);
}
}
animations[i].framePoses[j][k] = (Transform){
.translation = translation,
.rotation = rotation,
.scale = scale
};
}
BuildPoseFromParentJoints(animations[i].bones, animations[i].boneCount, animations[i].framePoses[j]);
}
TRACELOG(LOG_INFO, "MODEL: [%s] Loaded animation: %s (%d frames, %fs)", fileName, (animData.name != NULL)? animData.name : "NULL", animations[i].frameCount, animDuration);
RL_FREE(boneChannels);
}
}
if (data->skins_count > 1)
{
TRACELOG(LOG_WARNING, "MODEL: [%s] expected exactly one skin to load animation data from, but found %i", fileName, data->skins_count);
}
cgltf_free(data);
}
UnloadFileData(fileData);
return animations;
}
#endif
#if defined(SUPPORT_FILEFORMAT_VOX)
// Load VOX (MagicaVoxel) mesh data
static Model LoadVOX(const char *fileName)
{
Model model = { 0 };
int nbvertices = 0;
int meshescount = 0;
// Read vox file into buffer
int dataSize = 0;
unsigned char *fileData = LoadFileData(fileName, &dataSize);
if (fileData == 0)
{
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load VOX file", fileName);
return model;
}
// Read and build voxarray description
VoxArray3D voxarray = { 0 };
int ret = Vox_LoadFromMemory(fileData, dataSize, &voxarray);
if (ret != VOX_SUCCESS)
{
// Error
UnloadFileData(fileData);
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load VOX data", fileName);
return model;
}
else
{
// Success: Compute meshes count
nbvertices = voxarray.vertices.used;
meshescount = 1 + (nbvertices/65536);
TRACELOG(LOG_INFO, "MODEL: [%s] VOX data loaded successfully : %i vertices/%i meshes", fileName, nbvertices, meshescount);
}
// Build models from meshes
model.transform = MatrixIdentity();
model.meshCount = meshescount;
model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
model.materialCount = 1;
model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
model.materials[0] = LoadMaterialDefault();
// Init model meshes
int verticesRemain = voxarray.vertices.used;
int verticesMax = 65532; // 5461 voxels x 12 vertices per voxel -> 65532 (must be inf 65536)
// 6*4 = 12 vertices per voxel
Vector3 *pvertices = (Vector3 *)voxarray.vertices.array;
Vector3 *pnormals = (Vector3 *)voxarray.normals.array;
Color *pcolors = (Color *)voxarray.colors.array;
unsigned short *pindices = voxarray.indices.array; // 5461*6*6 = 196596 indices max per mesh
int size = 0;
for (int i = 0; i < meshescount; i++)
{
Mesh *pmesh = &model.meshes[i];
memset(pmesh, 0, sizeof(Mesh));
// Copy vertices
pmesh->vertexCount = (int)fmin(verticesMax, verticesRemain);
size = pmesh->vertexCount*sizeof(float)*3;
pmesh->vertices = (float *)RL_MALLOC(size);
memcpy(pmesh->vertices, pvertices, size);
// Copy normals
pmesh->normals = (float *)RL_MALLOC(size);
memcpy(pmesh->normals, pnormals, size);
// Copy indices
size = voxarray.indices.used*sizeof(unsigned short);
pmesh->indices = (unsigned short *)RL_MALLOC(size);
memcpy(pmesh->indices, pindices, size);
pmesh->triangleCount = (pmesh->vertexCount/4)*2;
// Copy colors
size = pmesh->vertexCount*sizeof(Color);
pmesh->colors = RL_MALLOC(size);
memcpy(pmesh->colors, pcolors, size);
// First material index
model.meshMaterial[i] = 0;
verticesRemain -= verticesMax;
pvertices += verticesMax;
pnormals += verticesMax;
pcolors += verticesMax;
}
// Free buffers
Vox_FreeArrays(&voxarray);
UnloadFileData(fileData);
return model;
}
#endif
#if defined(SUPPORT_FILEFORMAT_M3D)
// Hook LoadFileData()/UnloadFileData() calls to M3D loaders
unsigned char *m3d_loaderhook(char *fn, unsigned int *len) { return LoadFileData((const char *)fn, (int *)len); }
void m3d_freehook(void *data) { UnloadFileData((unsigned char *)data); }
// Load M3D mesh data
static Model LoadM3D(const char *fileName)
{
Model model = { 0 };
m3d_t *m3d = NULL;
m3dp_t *prop = NULL;
int i, j, k, l, n, mi = -2, vcolor = 0;
int dataSize = 0;
unsigned char *fileData = LoadFileData(fileName, &dataSize);
if (fileData != NULL)
{
m3d = m3d_load(fileData, m3d_loaderhook, m3d_freehook, NULL);
if (!m3d || M3D_ERR_ISFATAL(m3d->errcode))
{
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load M3D data, error code %d", fileName, m3d? m3d->errcode : -2);
if (m3d) m3d_free(m3d);
UnloadFileData(fileData);
return model;
}
else TRACELOG(LOG_INFO, "MODEL: [%s] M3D data loaded successfully: %i faces/%i materials", fileName, m3d->numface, m3d->nummaterial);
// no face? this is probably just a material library
if (!m3d->numface)
{
m3d_free(m3d);
UnloadFileData(fileData);
return model;
}
if (m3d->nummaterial > 0)
{
model.meshCount = model.materialCount = m3d->nummaterial;
TRACELOG(LOG_INFO, "MODEL: model has %i material meshes", model.materialCount);
}
else
{
model.meshCount = 1; model.materialCount = 0;
TRACELOG(LOG_INFO, "MODEL: No materials, putting all meshes in a default material");
}
// We always need a default material, so we add +1
model.materialCount++;
// Faces must be in non-decreasing materialid order. Verify that quickly, sorting them otherwise
// WARNING: Sorting is not needed, valid M3D model files should already be sorted
// Just keeping the sorting function for reference (Check PR #3363 #3385)
/*
for (i = 1; i < m3d->numface; i++)
{
if (m3d->face[i-1].materialid <= m3d->face[i].materialid) continue;
// face[i-1] > face[i]. slide face[i] lower
m3df_t slider = m3d->face[i];
j = i-1;
do
{ // face[j] > slider, face[j+1] is svailable vacant gap
m3d->face[j+1] = m3d->face[j];
j = j-1;
}
while (j >= 0 && m3d->face[j].materialid > slider.materialid);
m3d->face[j+1] = slider;
}
*/
model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
model.materials = (Material *)RL_CALLOC(model.materialCount + 1, sizeof(Material));
// Map no material to index 0 with default shader, everything else materialid + 1
model.materials[0] = LoadMaterialDefault();
for (i = l = 0, k = -1; i < (int)m3d->numface; i++, l++)
{
// Materials are grouped together
if (mi != m3d->face[i].materialid)
{
// there should be only one material switch per material kind, but be bulletproof for non-optimal model files
if (k + 1 >= model.meshCount)
{
model.meshCount++;
model.meshes = (Mesh *)RL_REALLOC(model.meshes, model.meshCount*sizeof(Mesh));
memset(&model.meshes[model.meshCount - 1], 0, sizeof(Mesh));
model.meshMaterial = (int *)RL_REALLOC(model.meshMaterial, model.meshCount*sizeof(int));
}
k++;
mi = m3d->face[i].materialid;
// Only allocate colors VertexBuffer if there's a color vertex in the model for this material batch
// if all colors are fully transparent black for all verteces of this materal, then we assume no vertex colors
for (j = i, l = vcolor = 0; (j < (int)m3d->numface) && (mi == m3d->face[j].materialid); j++, l++)
{
if (!m3d->vertex[m3d->face[j].vertex[0]].color ||
!m3d->vertex[m3d->face[j].vertex[1]].color ||
!m3d->vertex[m3d->face[j].vertex[2]].color) vcolor = 1;
}
model.meshes[k].vertexCount = l*3;
model.meshes[k].triangleCount = l;
model.meshes[k].vertices = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float));
model.meshes[k].texcoords = (float *)RL_CALLOC(model.meshes[k].vertexCount*2, sizeof(float));
model.meshes[k].normals = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float));
// If no map is provided, or we have colors defined, we allocate storage for vertex colors
// M3D specs only consider vertex colors if no material is provided, however raylib uses both and mixes the colors
if ((mi == M3D_UNDEF) || vcolor) model.meshes[k].colors = RL_CALLOC(model.meshes[k].vertexCount*4, sizeof(unsigned char));
// If no map is provided and we allocated vertex colors, set them to white
if ((mi == M3D_UNDEF) && (model.meshes[k].colors != NULL))
{
for (int c = 0; c < model.meshes[k].vertexCount*4; c++) model.meshes[k].colors[c] = 255;
}
if (m3d->numbone && m3d->numskin)
{
model.meshes[k].boneIds = (unsigned char *)RL_CALLOC(model.meshes[k].vertexCount*4, sizeof(unsigned char));
model.meshes[k].boneWeights = (float *)RL_CALLOC(model.meshes[k].vertexCount*4, sizeof(float));
model.meshes[k].animVertices = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float));
model.meshes[k].animNormals = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float));
}
model.meshMaterial[k] = mi + 1;
l = 0;
}
// Process meshes per material, add triangles
model.meshes[k].vertices[l*9 + 0] = m3d->vertex[m3d->face[i].vertex[0]].x*m3d->scale;
model.meshes[k].vertices[l*9 + 1] = m3d->vertex[m3d->face[i].vertex[0]].y*m3d->scale;
model.meshes[k].vertices[l*9 + 2] = m3d->vertex[m3d->face[i].vertex[0]].z*m3d->scale;
model.meshes[k].vertices[l*9 + 3] = m3d->vertex[m3d->face[i].vertex[1]].x*m3d->scale;
model.meshes[k].vertices[l*9 + 4] = m3d->vertex[m3d->face[i].vertex[1]].y*m3d->scale;
model.meshes[k].vertices[l*9 + 5] = m3d->vertex[m3d->face[i].vertex[1]].z*m3d->scale;
model.meshes[k].vertices[l*9 + 6] = m3d->vertex[m3d->face[i].vertex[2]].x*m3d->scale;
model.meshes[k].vertices[l*9 + 7] = m3d->vertex[m3d->face[i].vertex[2]].y*m3d->scale;
model.meshes[k].vertices[l*9 + 8] = m3d->vertex[m3d->face[i].vertex[2]].z*m3d->scale;
// Without vertex color (full transparency), we use the default color
if (model.meshes[k].colors != NULL)
{
if (m3d->vertex[m3d->face[i].vertex[0]].color & 0xFF000000)
memcpy(&model.meshes[k].colors[l*12 + 0], &m3d->vertex[m3d->face[i].vertex[0]].color, 4);
if (m3d->vertex[m3d->face[i].vertex[1]].color & 0xFF000000)
memcpy(&model.meshes[k].colors[l*12 + 4], &m3d->vertex[m3d->face[i].vertex[1]].color, 4);
if (m3d->vertex[m3d->face[i].vertex[2]].color & 0xFF000000)
memcpy(&model.meshes[k].colors[l*12 + 8], &m3d->vertex[m3d->face[i].vertex[2]].color, 4);
}
if (m3d->face[i].texcoord[0] != M3D_UNDEF)
{
model.meshes[k].texcoords[l*6 + 0] = m3d->tmap[m3d->face[i].texcoord[0]].u;
model.meshes[k].texcoords[l*6 + 1] = 1.0f - m3d->tmap[m3d->face[i].texcoord[0]].v;
model.meshes[k].texcoords[l*6 + 2] = m3d->tmap[m3d->face[i].texcoord[1]].u;
model.meshes[k].texcoords[l*6 + 3] = 1.0f - m3d->tmap[m3d->face[i].texcoord[1]].v;
model.meshes[k].texcoords[l*6 + 4] = m3d->tmap[m3d->face[i].texcoord[2]].u;
model.meshes[k].texcoords[l*6 + 5] = 1.0f - m3d->tmap[m3d->face[i].texcoord[2]].v;
}
if (m3d->face[i].normal[0] != M3D_UNDEF)
{
model.meshes[k].normals[l*9 + 0] = m3d->vertex[m3d->face[i].normal[0]].x;
model.meshes[k].normals[l*9 + 1] = m3d->vertex[m3d->face[i].normal[0]].y;
model.meshes[k].normals[l*9 + 2] = m3d->vertex[m3d->face[i].normal[0]].z;
model.meshes[k].normals[l*9 + 3] = m3d->vertex[m3d->face[i].normal[1]].x;
model.meshes[k].normals[l*9 + 4] = m3d->vertex[m3d->face[i].normal[1]].y;
model.meshes[k].normals[l*9 + 5] = m3d->vertex[m3d->face[i].normal[1]].z;
model.meshes[k].normals[l*9 + 6] = m3d->vertex[m3d->face[i].normal[2]].x;
model.meshes[k].normals[l*9 + 7] = m3d->vertex[m3d->face[i].normal[2]].y;
model.meshes[k].normals[l*9 + 8] = m3d->vertex[m3d->face[i].normal[2]].z;
}
// Add skin (vertex / bone weight pairs)
if (m3d->numbone && m3d->numskin)
{
for (n = 0; n < 3; n++)
{
int skinid = m3d->vertex[m3d->face[i].vertex[n]].skinid;
// Check if there is a skin for this mesh, should be, just failsafe
if ((skinid != M3D_UNDEF) && (skinid < (int)m3d->numskin))
{
for (j = 0; j < 4; j++)
{
model.meshes[k].boneIds[l*12 + n*4 + j] = m3d->skin[skinid].boneid[j];
model.meshes[k].boneWeights[l*12 + n*4 + j] = m3d->skin[skinid].weight[j];
}
}
else
{
// raylib does not handle boneless meshes with skeletal animations, so
// we put all vertices without a bone into a special "no bone" bone
model.meshes[k].boneIds[l*12 + n*4] = m3d->numbone;
model.meshes[k].boneWeights[l*12 + n*4] = 1.0f;
}
}
}
}
// Load materials
for (i = 0; i < (int)m3d->nummaterial; i++)
{
model.materials[i + 1] = LoadMaterialDefault();
for (j = 0; j < m3d->material[i].numprop; j++)
{
prop = &m3d->material[i].prop[j];
switch (prop->type)
{
case m3dp_Kd:
{
memcpy(&model.materials[i + 1].maps[MATERIAL_MAP_DIFFUSE].color, &prop->value.color, 4);
model.materials[i + 1].maps[MATERIAL_MAP_DIFFUSE].value = 0.0f;
} break;
case m3dp_Ks:
{
memcpy(&model.materials[i + 1].maps[MATERIAL_MAP_SPECULAR].color, &prop->value.color, 4);
} break;
case m3dp_Ns:
{
model.materials[i + 1].maps[MATERIAL_MAP_SPECULAR].value = prop->value.fnum;
} break;
case m3dp_Ke:
{
memcpy(&model.materials[i + 1].maps[MATERIAL_MAP_EMISSION].color, &prop->value.color, 4);
model.materials[i + 1].maps[MATERIAL_MAP_EMISSION].value = 0.0f;
} break;
case m3dp_Pm:
{
model.materials[i + 1].maps[MATERIAL_MAP_METALNESS].value = prop->value.fnum;
} break;
case m3dp_Pr:
{
model.materials[i + 1].maps[MATERIAL_MAP_ROUGHNESS].value = prop->value.fnum;
} break;
case m3dp_Ps:
{
model.materials[i + 1].maps[MATERIAL_MAP_NORMAL].color = WHITE;
model.materials[i + 1].maps[MATERIAL_MAP_NORMAL].value = prop->value.fnum;
} break;
default:
{
if (prop->type >= 128)
{
Image image = { 0 };
image.data = m3d->texture[prop->value.textureid].d;
image.width = m3d->texture[prop->value.textureid].w;
image.height = m3d->texture[prop->value.textureid].h;
image.mipmaps = 1;
image.format = (m3d->texture[prop->value.textureid].f == 4)? PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 :
((m3d->texture[prop->value.textureid].f == 3)? PIXELFORMAT_UNCOMPRESSED_R8G8B8 :
((m3d->texture[prop->value.textureid].f == 2)? PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA : PIXELFORMAT_UNCOMPRESSED_GRAYSCALE));
switch (prop->type)
{
case m3dp_map_Kd: model.materials[i + 1].maps[MATERIAL_MAP_DIFFUSE].texture = LoadTextureFromImage(image); break;
case m3dp_map_Ks: model.materials[i + 1].maps[MATERIAL_MAP_SPECULAR].texture = LoadTextureFromImage(image); break;
case m3dp_map_Ke: model.materials[i + 1].maps[MATERIAL_MAP_EMISSION].texture = LoadTextureFromImage(image); break;
case m3dp_map_Km: model.materials[i + 1].maps[MATERIAL_MAP_NORMAL].texture = LoadTextureFromImage(image); break;
case m3dp_map_Ka: model.materials[i + 1].maps[MATERIAL_MAP_OCCLUSION].texture = LoadTextureFromImage(image); break;
case m3dp_map_Pm: model.materials[i + 1].maps[MATERIAL_MAP_ROUGHNESS].texture = LoadTextureFromImage(image); break;
default: break;
}
}
} break;
}
}
}
// Load bones
if (m3d->numbone)
{
model.boneCount = m3d->numbone + 1;
model.bones = RL_CALLOC(model.boneCount, sizeof(BoneInfo));
model.bindPose = RL_CALLOC(model.boneCount, sizeof(Transform));
for (i = 0; i < (int)m3d->numbone; i++)
{
model.bones[i].parent = m3d->bone[i].parent;
strncpy(model.bones[i].name, m3d->bone[i].name, sizeof(model.bones[i].name));
model.bindPose[i].translation.x = m3d->vertex[m3d->bone[i].pos].x*m3d->scale;
model.bindPose[i].translation.y = m3d->vertex[m3d->bone[i].pos].y*m3d->scale;
model.bindPose[i].translation.z = m3d->vertex[m3d->bone[i].pos].z*m3d->scale;
model.bindPose[i].rotation.x = m3d->vertex[m3d->bone[i].ori].x;
model.bindPose[i].rotation.y = m3d->vertex[m3d->bone[i].ori].y;
model.bindPose[i].rotation.z = m3d->vertex[m3d->bone[i].ori].z;
model.bindPose[i].rotation.w = m3d->vertex[m3d->bone[i].ori].w;
// TODO: If the orientation quaternion is not normalized, then that's encoding scaling
model.bindPose[i].rotation = QuaternionNormalize(model.bindPose[i].rotation);
model.bindPose[i].scale.x = model.bindPose[i].scale.y = model.bindPose[i].scale.z = 1.0f;
// Child bones are stored in parent bone relative space, convert that into model space
if (model.bones[i].parent >= 0)
{
model.bindPose[i].rotation = QuaternionMultiply(model.bindPose[model.bones[i].parent].rotation, model.bindPose[i].rotation);
model.bindPose[i].translation = Vector3RotateByQuaternion(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].rotation);
model.bindPose[i].translation = Vector3Add(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].translation);
model.bindPose[i].scale = Vector3Multiply(model.bindPose[i].scale, model.bindPose[model.bones[i].parent].scale);
}
}
// Add a special "no bone" bone
model.bones[i].parent = -1;
strcpy(model.bones[i].name, "NO BONE");
model.bindPose[i].translation.x = 0.0f;
model.bindPose[i].translation.y = 0.0f;
model.bindPose[i].translation.z = 0.0f;
model.bindPose[i].rotation.x = 0.0f;
model.bindPose[i].rotation.y = 0.0f;
model.bindPose[i].rotation.z = 0.0f;
model.bindPose[i].rotation.w = 1.0f;
model.bindPose[i].scale.x = model.bindPose[i].scale.y = model.bindPose[i].scale.z = 1.0f;
}
// Load bone-pose default mesh into animation vertices. These will be updated when UpdateModelAnimation gets
// called, but not before, however DrawMesh uses these if they exist (so not good if they are left empty)
if (m3d->numbone && m3d->numskin)
{
for (i = 0; i < model.meshCount; i++)
{
memcpy(model.meshes[i].animVertices, model.meshes[i].vertices, model.meshes[i].vertexCount*3*sizeof(float));
memcpy(model.meshes[i].animNormals, model.meshes[i].normals, model.meshes[i].vertexCount*3*sizeof(float));
model.meshes[i].boneCount = model.boneCount;
model.meshes[i].boneMatrices = RL_CALLOC(model.meshes[i].boneCount, sizeof(Matrix));
for (j = 0; j < model.meshes[i].boneCount; j++)
{
model.meshes[i].boneMatrices[j] = MatrixIdentity();
}
}
}
m3d_free(m3d);
UnloadFileData(fileData);
}
return model;
}
#define M3D_ANIMDELAY 17 // Animation frames delay, (~1000 ms/60 FPS = 16.666666* ms)
// Load M3D animation data
static ModelAnimation *LoadModelAnimationsM3D(const char *fileName, int *animCount)
{
ModelAnimation *animations = NULL;
m3d_t *m3d = NULL;
int i = 0, j = 0;
*animCount = 0;
int dataSize = 0;
unsigned char *fileData = LoadFileData(fileName, &dataSize);
if (fileData != NULL)
{
m3d = m3d_load(fileData, m3d_loaderhook, m3d_freehook, NULL);
if (!m3d || M3D_ERR_ISFATAL(m3d->errcode))
{
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load M3D data, error code %d", fileName, m3d? m3d->errcode : -2);
UnloadFileData(fileData);
return NULL;
}
else TRACELOG(LOG_INFO, "MODEL: [%s] M3D data loaded successfully: %i animations, %i bones, %i skins", fileName,
m3d->numaction, m3d->numbone, m3d->numskin);
// No animation or bone+skin?
if (!m3d->numaction || !m3d->numbone || !m3d->numskin)
{
m3d_free(m3d);
UnloadFileData(fileData);
return NULL;
}
animations = RL_MALLOC(m3d->numaction*sizeof(ModelAnimation));
*animCount = m3d->numaction;
for (unsigned int a = 0; a < m3d->numaction; a++)
{
animations[a].frameCount = m3d->action[a].durationmsec/M3D_ANIMDELAY;
animations[a].boneCount = m3d->numbone + 1;
animations[a].bones = RL_MALLOC((m3d->numbone + 1)*sizeof(BoneInfo));
animations[a].framePoses = RL_MALLOC(animations[a].frameCount*sizeof(Transform *));
strncpy(animations[a].name, m3d->action[a].name, sizeof(animations[a].name));
animations[a].name[sizeof(animations[a].name) - 1] = '\0';
TRACELOG(LOG_INFO, "MODEL: [%s] animation #%i: %i msec, %i frames", fileName, a, m3d->action[a].durationmsec, animations[a].frameCount);
for (i = 0; i < (int)m3d->numbone; i++)
{
animations[a].bones[i].parent = m3d->bone[i].parent;
strncpy(animations[a].bones[i].name, m3d->bone[i].name, sizeof(animations[a].bones[i].name));
}
// A special, never transformed "no bone" bone, used for boneless vertices
animations[a].bones[i].parent = -1;
strcpy(animations[a].bones[i].name, "NO BONE");
// M3D stores frames at arbitrary intervals with sparse skeletons. We need full skeletons at
// regular intervals, so let the M3D SDK do the heavy lifting and calculate interpolated bones
for (i = 0; i < animations[a].frameCount; i++)
{
animations[a].framePoses[i] = RL_MALLOC((m3d->numbone + 1)*sizeof(Transform));
m3db_t *pose = m3d_pose(m3d, a, i*M3D_ANIMDELAY);
if (pose != NULL)
{
for (j = 0; j < (int)m3d->numbone; j++)
{
animations[a].framePoses[i][j].translation.x = m3d->vertex[pose[j].pos].x*m3d->scale;
animations[a].framePoses[i][j].translation.y = m3d->vertex[pose[j].pos].y*m3d->scale;
animations[a].framePoses[i][j].translation.z = m3d->vertex[pose[j].pos].z*m3d->scale;
animations[a].framePoses[i][j].rotation.x = m3d->vertex[pose[j].ori].x;
animations[a].framePoses[i][j].rotation.y = m3d->vertex[pose[j].ori].y;
animations[a].framePoses[i][j].rotation.z = m3d->vertex[pose[j].ori].z;
animations[a].framePoses[i][j].rotation.w = m3d->vertex[pose[j].ori].w;
animations[a].framePoses[i][j].rotation = QuaternionNormalize(animations[a].framePoses[i][j].rotation);
animations[a].framePoses[i][j].scale.x = animations[a].framePoses[i][j].scale.y = animations[a].framePoses[i][j].scale.z = 1.0f;
// Child bones are stored in parent bone relative space, convert that into model space
if (animations[a].bones[j].parent >= 0)
{
animations[a].framePoses[i][j].rotation = QuaternionMultiply(animations[a].framePoses[i][animations[a].bones[j].parent].rotation, animations[a].framePoses[i][j].rotation);
animations[a].framePoses[i][j].translation = Vector3RotateByQuaternion(animations[a].framePoses[i][j].translation, animations[a].framePoses[i][animations[a].bones[j].parent].rotation);
animations[a].framePoses[i][j].translation = Vector3Add(animations[a].framePoses[i][j].translation, animations[a].framePoses[i][animations[a].bones[j].parent].translation);
animations[a].framePoses[i][j].scale = Vector3Multiply(animations[a].framePoses[i][j].scale, animations[a].framePoses[i][animations[a].bones[j].parent].scale);
}
}
// Default transform for the "no bone" bone
animations[a].framePoses[i][j].translation.x = 0.0f;
animations[a].framePoses[i][j].translation.y = 0.0f;
animations[a].framePoses[i][j].translation.z = 0.0f;
animations[a].framePoses[i][j].rotation.x = 0.0f;
animations[a].framePoses[i][j].rotation.y = 0.0f;
animations[a].framePoses[i][j].rotation.z = 0.0f;
animations[a].framePoses[i][j].rotation.w = 1.0f;
animations[a].framePoses[i][j].scale.x = animations[a].framePoses[i][j].scale.y = animations[a].framePoses[i][j].scale.z = 1.0f;
RL_FREE(pose);
}
}
}
m3d_free(m3d);
UnloadFileData(fileData);
}
return animations;
}
#endif
#endif // SUPPORT_MODULE_RMODELS