/**********************************************************************************************
|
|
*
|
|
* rmem - raylib memory pool and objects pool
|
|
*
|
|
* A quick, efficient, and minimal free list and stack-based allocator
|
|
*
|
|
* PURPOSE:
|
|
* - Aquicker, efficient memory allocator alternative to 'malloc' and friends.
|
|
* - Reduce the possibilities of memory leaks for beginner developers using Raylib.
|
|
* - Being able to flexibly range check memory if necessary.
|
|
*
|
|
* CONFIGURATION:
|
|
*
|
|
* #define RMEM_IMPLEMENTATION
|
|
* Generates the implementation of the library into the included file.
|
|
* If not defined, the library is in header only mode and can be included in other headers
|
|
* or source files without problems. But only ONE file should hold the implementation.
|
|
*
|
|
*
|
|
* LICENSE: zlib/libpng
|
|
*
|
|
* Copyright (c) 2019 Kevin 'Assyrianic' Yonan (@assyrianic) and reviewed by Ramon Santamaria (@raysan5)
|
|
*
|
|
* This software is provided "as-is", without any express or implied warranty. In no event
|
|
* will the authors be held liable for any damages arising from the use of this software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose, including commercial
|
|
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
|
|
*
|
|
* 1. The origin of this software must not be misrepresented; you must not claim that you
|
|
* wrote the original software. If you use this software in a product, an acknowledgment
|
|
* in the product documentation would be appreciated but is not required.
|
|
*
|
|
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
|
|
* as being the original software.
|
|
*
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*
|
|
**********************************************************************************************/
|
|
|
|
#ifndef RMEM_H
|
|
#define RMEM_H
|
|
|
|
#include <inttypes.h>
|
|
#include <stdbool.h>
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Defines and Macros
|
|
//----------------------------------------------------------------------------------
|
|
#if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
|
|
#define RMEMAPI __declspec(dllexport) // We are building library as a Win32 shared library (.dll)
|
|
#elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
|
|
#define RMEMAPI __declspec(dllimport) // We are using library as a Win32 shared library (.dll)
|
|
#else
|
|
#define RMEMAPI // We are building or using library as a static library (or Linux shared library)
|
|
#endif
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Types and Structures Definition
|
|
//----------------------------------------------------------------------------------
|
|
|
|
// Memory Pool
|
|
typedef struct MemNode MemNode;
|
|
struct MemNode {
|
|
size_t size;
|
|
MemNode *next, *prev;
|
|
};
|
|
|
|
typedef struct AllocList {
|
|
MemNode *head, *tail;
|
|
size_t len, maxNodes;
|
|
bool autoDefrag : 1;
|
|
} AllocList;
|
|
|
|
typedef struct Stack {
|
|
uint8_t *mem, *base;
|
|
size_t size;
|
|
} Stack;
|
|
|
|
typedef struct MemPool {
|
|
AllocList freeList;
|
|
Stack stack;
|
|
} MemPool;
|
|
|
|
// Object Pool
|
|
typedef struct ObjPool {
|
|
Stack stack;
|
|
size_t objSize, freeBlocks;
|
|
} ObjPool;
|
|
|
|
|
|
#if defined(__cplusplus)
|
|
extern "C" { // Prevents name mangling of functions
|
|
#endif
|
|
|
|
//------------------------------------------------------------------------------------
|
|
// Functions Declaration - Memory Pool
|
|
//------------------------------------------------------------------------------------
|
|
RMEMAPI MemPool CreateMemPool(size_t bytes);
|
|
RMEMAPI MemPool CreateMemPoolFromBuffer(void *buf, size_t bytes);
|
|
RMEMAPI void DestroyMemPool(MemPool *mempool);
|
|
|
|
RMEMAPI void *MemPoolAlloc(MemPool *mempool, size_t bytes);
|
|
RMEMAPI void *MemPoolRealloc(MemPool *mempool, void *ptr, size_t bytes);
|
|
RMEMAPI void MemPoolFree(MemPool *mempool, void *ptr);
|
|
RMEMAPI void MemPoolCleanUp(MemPool *mempool, void **ptrref);
|
|
RMEMAPI bool MemPoolDefrag(MemPool *mempool);
|
|
|
|
RMEMAPI size_t GetMemPoolFreeMemory(const MemPool mempool);
|
|
RMEMAPI void ToggleMemPoolAutoDefrag(MemPool *mempool);
|
|
|
|
//------------------------------------------------------------------------------------
|
|
// Functions Declaration - Object Pool
|
|
//------------------------------------------------------------------------------------
|
|
RMEMAPI ObjPool CreateObjPool(size_t objsize, size_t len);
|
|
RMEMAPI ObjPool CreateObjPoolFromBuffer(void *buf, size_t objsize, size_t len);
|
|
RMEMAPI void DestroyObjPool(ObjPool *objpool);
|
|
|
|
RMEMAPI void *ObjPoolAlloc(ObjPool *objpool);
|
|
RMEMAPI void ObjPoolFree(ObjPool *objpool, void *ptr);
|
|
RMEMAPI void ObjPoolCleanUp(ObjPool *objpool, void **ptrref);
|
|
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif // RMEM_H
|
|
|
|
/***********************************************************************************
|
|
*
|
|
* RMEM IMPLEMENTATION
|
|
*
|
|
************************************************************************************/
|
|
|
|
#if defined(RMEM_IMPLEMENTATION)
|
|
|
|
#include <stdio.h> // Required for:
|
|
#include <stdlib.h> // Required for:
|
|
#include <string.h> // Required for:
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Defines and Macros
|
|
//----------------------------------------------------------------------------------
|
|
|
|
// Make sure restrict type qualifier for pointers is defined
|
|
// NOTE: Not supported by C++, it is a C only keyword
|
|
#if defined(_WIN32) || defined(_WIN64) || defined(__CYGWIN__) || defined(_MSC_VER)
|
|
#ifndef restrict
|
|
#define restrict __restrict
|
|
#endif
|
|
#endif
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Global Variables Definition
|
|
//----------------------------------------------------------------------------------
|
|
// ...
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module specific Functions Declaration
|
|
//----------------------------------------------------------------------------------
|
|
static inline size_t __AlignSize(const size_t size, const size_t align)
|
|
{
|
|
return (size + (align - 1)) & -align;
|
|
}
|
|
|
|
static void __RemoveNode(MemNode **const node)
|
|
{
|
|
((*node)->prev != NULL)? ((*node)->prev->next = (*node)->next) : (*node = (*node)->next);
|
|
((*node)->next != NULL)? ((*node)->next->prev = (*node)->prev) : (*node = (*node)->prev);
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Functions Definition - Memory Pool
|
|
//----------------------------------------------------------------------------------
|
|
|
|
MemPool CreateMemPool(const size_t size)
|
|
{
|
|
MemPool mempool = { 0 };
|
|
|
|
if (size == 0UL) return mempool;
|
|
else
|
|
{
|
|
// Align the mempool size to at least the size of an alloc node.
|
|
mempool.stack.size = size;
|
|
mempool.stack.mem = malloc(1 + mempool.stack.size*sizeof *mempool.stack.mem);
|
|
|
|
if (mempool.stack.mem==NULL)
|
|
{
|
|
mempool.stack.size = 0UL;
|
|
return mempool;
|
|
}
|
|
else
|
|
{
|
|
mempool.stack.base = mempool.stack.mem + mempool.stack.size;
|
|
return mempool;
|
|
}
|
|
}
|
|
}
|
|
|
|
MemPool CreateMemPoolFromBuffer(void *buf, const size_t size)
|
|
{
|
|
MemPool mempool = { 0 };
|
|
|
|
if ((size == 0UL) || (buf == NULL) || (size <= sizeof(MemNode))) return mempool;
|
|
else
|
|
{
|
|
mempool.stack.size = size;
|
|
mempool.stack.mem = buf;
|
|
mempool.stack.base = mempool.stack.mem + mempool.stack.size;
|
|
return mempool;
|
|
}
|
|
}
|
|
|
|
void DestroyMemPool(MemPool *const mempool)
|
|
{
|
|
if ((mempool == NULL) || (mempool->stack.mem == NULL)) return;
|
|
else
|
|
{
|
|
free(mempool->stack.mem);
|
|
*mempool = (MemPool){ 0 };
|
|
}
|
|
}
|
|
|
|
void *MemPoolAlloc(MemPool *const mempool, const size_t size)
|
|
{
|
|
if ((mempool == NULL) || (size == 0UL) || (size > mempool->stack.size)) return NULL;
|
|
else
|
|
{
|
|
MemNode *new_mem = NULL;
|
|
const size_t ALLOC_SIZE = __AlignSize(size + sizeof *new_mem, sizeof(intptr_t));
|
|
|
|
if (mempool->freeList.head != NULL)
|
|
{
|
|
const size_t MEM_SPLIT_THRESHOLD = 16;
|
|
|
|
// If the freelist is valid, let's allocate FROM the freelist then!
|
|
for (MemNode **inode = &mempool->freeList.head; *inode != NULL; inode = &(*inode)->next)
|
|
{
|
|
if ((*inode)->size < ALLOC_SIZE) continue;
|
|
else if ((*inode)->size <= (ALLOC_SIZE + MEM_SPLIT_THRESHOLD))
|
|
{
|
|
// Close in size - reduce fragmentation by not splitting.
|
|
new_mem = *inode;
|
|
__RemoveNode(inode);
|
|
mempool->freeList.len--;
|
|
new_mem->next = new_mem->prev = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
// Split the memory chunk.
|
|
new_mem = (MemNode *)((uint8_t *)*inode + ((*inode)->size - ALLOC_SIZE));
|
|
(*inode)->size -= ALLOC_SIZE;
|
|
new_mem->size = ALLOC_SIZE;
|
|
new_mem->next = new_mem->prev = NULL;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (new_mem == NULL)
|
|
{
|
|
// not enough memory to support the size!
|
|
if ((mempool->stack.base - ALLOC_SIZE) < mempool->stack.mem) return NULL;
|
|
else
|
|
{
|
|
// Couldn't allocate from a freelist, allocate from available mempool.
|
|
// Subtract allocation size from the mempool.
|
|
mempool->stack.base -= ALLOC_SIZE;
|
|
|
|
// Use the available mempool space as the new node.
|
|
new_mem = (MemNode *)mempool->stack.base;
|
|
new_mem->size = ALLOC_SIZE;
|
|
new_mem->next = new_mem->prev = NULL;
|
|
}
|
|
}
|
|
|
|
// Visual of the allocation block.
|
|
// --------------
|
|
// | mem size | lowest addr of block
|
|
// | next node |
|
|
// --------------
|
|
// | alloc'd |
|
|
// | memory |
|
|
// | space | highest addr of block
|
|
// --------------
|
|
uint8_t *const final_mem = (uint8_t *)new_mem + sizeof *new_mem;
|
|
memset(final_mem, 0, new_mem->size - sizeof *new_mem);
|
|
return final_mem;
|
|
}
|
|
}
|
|
|
|
void *MemPoolRealloc(MemPool *const restrict mempool, void *ptr, const size_t size)
|
|
{
|
|
if ((mempool == NULL) || (size > mempool->stack.size)) return NULL;
|
|
// NULL ptr should make this work like regular Allocation.
|
|
else if (ptr == NULL) return MemPoolAlloc(mempool, size);
|
|
else if ((uintptr_t)ptr <= (uintptr_t)mempool->stack.mem) return NULL;
|
|
else
|
|
{
|
|
MemNode *node = (MemNode *)((uint8_t *)ptr - sizeof *node);
|
|
const size_t NODE_SIZE = sizeof *node;
|
|
uint8_t *resized_block = MemPoolAlloc(mempool, size);
|
|
|
|
if (resized_block == NULL) return NULL;
|
|
else
|
|
{
|
|
MemNode *resized = (MemNode *)(resized_block - sizeof *resized);
|
|
memmove(resized_block, ptr, (node->size > resized->size)? (resized->size - NODE_SIZE) : (node->size - NODE_SIZE));
|
|
MemPoolFree(mempool, ptr);
|
|
return resized_block;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MemPoolFree(MemPool *const restrict mempool, void *ptr)
|
|
{
|
|
if ((mempool == NULL) || (ptr == NULL) || ((uintptr_t)ptr <= (uintptr_t)mempool->stack.mem)) return;
|
|
else
|
|
{
|
|
// Behind the actual pointer data is the allocation info.
|
|
MemNode *mem_node = (MemNode *)((uint8_t *)ptr - sizeof *mem_node);
|
|
|
|
// Make sure the pointer data is valid.
|
|
if (((uintptr_t)mem_node < (uintptr_t)mempool->stack.base) ||
|
|
(((uintptr_t)mem_node - (uintptr_t)mempool->stack.mem) > mempool->stack.size) ||
|
|
(mem_node->size == 0UL) ||
|
|
(mem_node->size > mempool->stack.size)) return;
|
|
// If the mem_node is right at the stack base ptr, then add it to the stack.
|
|
else if ((uintptr_t)mem_node == (uintptr_t)mempool->stack.base)
|
|
{
|
|
mempool->stack.base += mem_node->size;
|
|
}
|
|
// Otherwise, we add it to the free list.
|
|
// We also check if the freelist already has the pointer so we can prevent double frees.
|
|
else if ((mempool->freeList.len == 0UL) || ((uintptr_t)mempool->freeList.head >= (uintptr_t)mempool->stack.mem && (uintptr_t)mempool->freeList.head - (uintptr_t)mempool->stack.mem < mempool->stack.size))
|
|
{
|
|
for (MemNode *n = mempool->freeList.head; n != NULL; n = n->next) if (n == mem_node) return;
|
|
|
|
// This code inserts at head.
|
|
/*
|
|
( mempool->freeList.head==NULL)? (mempool->freeList.tail = mem_node) : (mempool->freeList.head->prev = mem_node);
|
|
mem_node->next = mempool->freeList.head;
|
|
mempool->freeList.head = mem_node;
|
|
mempool->freeList.len++;
|
|
*/
|
|
|
|
// This code insertion sorts where largest size is first.
|
|
if (mempool->freeList.head == NULL)
|
|
{
|
|
mempool->freeList.head = mempool->freeList.tail = mem_node;
|
|
mempool->freeList.len++;
|
|
}
|
|
else if (mempool->freeList.head->size <= mem_node->size)
|
|
{
|
|
mem_node->next = mempool->freeList.head;
|
|
mem_node->next->prev = mem_node;
|
|
mempool->freeList.head = mem_node;
|
|
mempool->freeList.len++;
|
|
}
|
|
else if (mempool->freeList.tail->size > mem_node->size)
|
|
{
|
|
mem_node->prev = mempool->freeList.tail;
|
|
mempool->freeList.tail->next = mem_node;
|
|
mempool->freeList.tail = mem_node;
|
|
mempool->freeList.len++;
|
|
}
|
|
else
|
|
{
|
|
MemNode *n = mempool->freeList.head;
|
|
while ((n->next != NULL) && (n->next->size > mem_node->size)) n = n->next;
|
|
|
|
mem_node->next = n->next;
|
|
if (n->next != NULL) mem_node->next->prev = mem_node;
|
|
|
|
n->next = mem_node;
|
|
mem_node->prev = n;
|
|
mempool->freeList.len++;
|
|
}
|
|
|
|
if (mempool->freeList.autoDefrag && (mempool->freeList.maxNodes != 0UL) && (mempool->freeList.len > mempool->freeList.maxNodes)) MemPoolDefrag(mempool);
|
|
}
|
|
}
|
|
}
|
|
|
|
void MemPoolCleanUp(MemPool *const restrict mempool, void **ptrref)
|
|
{
|
|
if ((mempool == NULL) || (ptrref == NULL) || (*ptrref == NULL)) return;
|
|
else
|
|
{
|
|
MemPoolFree(mempool, *ptrref);
|
|
*ptrref = NULL;
|
|
}
|
|
}
|
|
|
|
size_t GetMemPoolFreeMemory(const MemPool mempool)
|
|
{
|
|
size_t total_remaining = (uintptr_t)mempool.stack.base - (uintptr_t)mempool.stack.mem;
|
|
|
|
for (MemNode *n=mempool.freeList.head; n != NULL; n = n->next) total_remaining += n->size;
|
|
|
|
return total_remaining;
|
|
}
|
|
|
|
bool MemPoolDefrag(MemPool *const mempool)
|
|
{
|
|
if (mempool == NULL) return false;
|
|
else
|
|
{
|
|
// If the memory pool has been entirely released, fully defrag it.
|
|
if (mempool->stack.size == GetMemPoolFreeMemory(*mempool))
|
|
{
|
|
memset(&mempool->freeList, 0, sizeof mempool->freeList);
|
|
mempool->stack.base = mempool->stack.mem + mempool->stack.size;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
const size_t PRE_DEFRAG_LEN = mempool->freeList.len;
|
|
MemNode **node = &mempool->freeList.head;
|
|
|
|
while (*node != NULL)
|
|
{
|
|
if ((uintptr_t)*node == (uintptr_t)mempool->stack.base)
|
|
{
|
|
// If node is right at the stack, merge it back into the stack.
|
|
mempool->stack.base += (*node)->size;
|
|
(*node)->size = 0UL;
|
|
__RemoveNode(node);
|
|
mempool->freeList.len--;
|
|
node = &mempool->freeList.head;
|
|
}
|
|
else if (((uintptr_t)*node + (*node)->size) == (uintptr_t)(*node)->next)
|
|
{
|
|
// Next node is at a higher address.
|
|
(*node)->size += (*node)->next->size;
|
|
(*node)->next->size = 0UL;
|
|
|
|
// <-[P Curr N]-> <-[P Next N]-> <-[P NextNext N]->
|
|
//
|
|
// |--------------------|
|
|
// <-[P Curr N]-> <-[P Next N]-> [P NextNext N]->
|
|
if ((*node)->next->next != NULL) (*node)->next->next->prev = *node;
|
|
|
|
// <-[P Curr N]-> <-[P NextNext N]->
|
|
(*node)->next = (*node)->next->next;
|
|
|
|
mempool->freeList.len--;
|
|
node = &mempool->freeList.head;
|
|
}
|
|
else if ((((uintptr_t)*node + (*node)->size) == (uintptr_t)(*node)->prev) && ((*node)->prev->prev != NULL))
|
|
{
|
|
// Prev node is at a higher address.
|
|
(*node)->size += (*node)->prev->size;
|
|
(*node)->prev->size = 0UL;
|
|
|
|
// <-[P PrevPrev N]-> <-[P Prev N]-> <-[P Curr N]->
|
|
//
|
|
// |--------------------|
|
|
// <-[P PrevPrev N] <-[P Prev N]-> <-[P Curr N]->
|
|
(*node)->prev->prev->next = *node;
|
|
|
|
// <-[P PrevPrev N]-> <-[P Curr N]->
|
|
(*node)->prev = (*node)->prev->prev;
|
|
|
|
mempool->freeList.len--;
|
|
node = &mempool->freeList.head;
|
|
}
|
|
else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->next->size == (uintptr_t)(*node)->next)
|
|
{
|
|
// Next node is at a lower address.
|
|
(*node)->next->size += (*node)->size;
|
|
|
|
(*node)->size = 0UL;
|
|
(*node)->next->prev = (*node)->prev;
|
|
(*node)->prev->next = (*node)->next;
|
|
|
|
mempool->freeList.len--;
|
|
node = &mempool->freeList.head;
|
|
}
|
|
else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->prev->size == (uintptr_t)(*node)->prev)
|
|
{
|
|
// Prev node is at a lower address.
|
|
(*node)->prev->size += (*node)->size;
|
|
|
|
(*node)->size = 0UL;
|
|
(*node)->next->prev = (*node)->prev;
|
|
(*node)->prev->next = (*node)->next;
|
|
|
|
mempool->freeList.len--;
|
|
node = &mempool->freeList.head;
|
|
}
|
|
else
|
|
{
|
|
node = &(*node)->next;
|
|
}
|
|
}
|
|
|
|
return PRE_DEFRAG_LEN > mempool->freeList.len;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ToggleMemPoolAutoDefrag(MemPool *const mempool)
|
|
{
|
|
if (mempool == NULL) return;
|
|
else mempool->freeList.autoDefrag ^= true;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Functions Definition - Object Pool
|
|
//----------------------------------------------------------------------------------
|
|
union ObjInfo {
|
|
uint8_t *const byte;
|
|
size_t *const size;
|
|
};
|
|
|
|
ObjPool CreateObjPool(const size_t objsize, const size_t len)
|
|
{
|
|
ObjPool objpool = { 0 };
|
|
|
|
if ((len == 0UL) || (objsize == 0UL)) return objpool;
|
|
else
|
|
{
|
|
objpool.objSize = __AlignSize(objsize, sizeof(size_t));
|
|
objpool.stack.size = objpool.freeBlocks = len;
|
|
objpool.stack.mem = calloc(objpool.stack.size, objpool.objSize);
|
|
|
|
if (objpool.stack.mem == NULL)
|
|
{
|
|
objpool.stack.size = 0UL;
|
|
return objpool;
|
|
}
|
|
else
|
|
{
|
|
for (size_t i=0; i<objpool.freeBlocks; i++)
|
|
{
|
|
union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
|
|
*block.size = i + 1;
|
|
}
|
|
|
|
objpool.stack.base = objpool.stack.mem;
|
|
return objpool;
|
|
}
|
|
}
|
|
}
|
|
|
|
ObjPool CreateObjPoolFromBuffer(void *const buf, const size_t objsize, const size_t len)
|
|
{
|
|
ObjPool objpool = { 0 };
|
|
|
|
// If the object size isn't large enough to align to a size_t, then we can't use it.
|
|
if ((buf == NULL) || (len == 0UL) || (objsize < sizeof(size_t)) || (objsize*len != __AlignSize(objsize, sizeof(size_t))*len)) return objpool;
|
|
else
|
|
{
|
|
objpool.objSize = __AlignSize(objsize, sizeof(size_t));
|
|
objpool.stack.size = objpool.freeBlocks = len;
|
|
objpool.stack.mem = buf;
|
|
|
|
for (size_t i=0; i<objpool.freeBlocks; i++)
|
|
{
|
|
union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
|
|
*block.size = i + 1;
|
|
}
|
|
|
|
objpool.stack.base = objpool.stack.mem;
|
|
return objpool;
|
|
}
|
|
}
|
|
|
|
void DestroyObjPool(ObjPool *const objpool)
|
|
{
|
|
if ((objpool == NULL) || (objpool->stack.mem == NULL)) return;
|
|
else
|
|
{
|
|
free(objpool->stack.mem);
|
|
*objpool = (ObjPool){0};
|
|
}
|
|
}
|
|
|
|
void *ObjPoolAlloc(ObjPool *const objpool)
|
|
{
|
|
if (objpool == NULL) return NULL;
|
|
else
|
|
{
|
|
if (objpool->freeBlocks > 0UL)
|
|
{
|
|
// For first allocation, head points to the very first index.
|
|
// Head = &pool[0];
|
|
// ret = Head == ret = &pool[0];
|
|
union ObjInfo ret = { .byte = objpool->stack.base };
|
|
objpool->freeBlocks--;
|
|
|
|
// after allocating, we set head to the address of the index that *Head holds.
|
|
// Head = &pool[*Head * pool.objsize];
|
|
objpool->stack.base = (objpool->freeBlocks != 0UL)? objpool->stack.mem + (*ret.size*objpool->objSize) : NULL;
|
|
memset(ret.byte, 0, objpool->objSize);
|
|
return ret.byte;
|
|
}
|
|
else return NULL;
|
|
}
|
|
}
|
|
|
|
void ObjPoolFree(ObjPool *const restrict objpool, void *ptr)
|
|
{
|
|
union ObjInfo p = { .byte = ptr };
|
|
if ((objpool == NULL) || (ptr == NULL) || (p.byte < objpool->stack.mem) || (p.byte > objpool->stack.mem + objpool->stack.size*objpool->objSize)) return;
|
|
else
|
|
{
|
|
// When we free our pointer, we recycle the pointer space to store the previous index and then we push it as our new head.
|
|
// *p = index of Head in relation to the buffer;
|
|
// Head = p;
|
|
*p.size = (objpool->stack.base != NULL)? (objpool->stack.base - objpool->stack.mem)/objpool->objSize : objpool->stack.size;
|
|
objpool->stack.base = p.byte;
|
|
objpool->freeBlocks++;
|
|
}
|
|
}
|
|
|
|
void ObjPoolCleanUp(ObjPool *const restrict objpool, void **ptrref)
|
|
{
|
|
if ((objpool == NULL) || (ptrref == NULL) || (*ptrref == NULL)) return;
|
|
else
|
|
{
|
|
ObjPoolFree(objpool, *ptrref);
|
|
*ptrref = NULL;
|
|
}
|
|
}
|
|
|
|
#endif // RMEM_IMPLEMENTATION
|