No puede seleccionar más de 25 temas Los temas deben comenzar con una letra o número, pueden incluir guiones ('-') y pueden tener hasta 35 caracteres de largo.
 
 
 
 
 
 

630 líneas
23 KiB

/**********************************************************************************************
*
* rmem - raylib memory pool and objects pool
*
* A quick, efficient, and minimal free list and stack-based allocator
*
* PURPOSE:
* - Aquicker, efficient memory allocator alternative to 'malloc' and friends.
* - Reduce the possibilities of memory leaks for beginner developers using Raylib.
* - Being able to flexibly range check memory if necessary.
*
* CONFIGURATION:
*
* #define RMEM_IMPLEMENTATION
* Generates the implementation of the library into the included file.
* If not defined, the library is in header only mode and can be included in other headers
* or source files without problems. But only ONE file should hold the implementation.
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2019 Kevin 'Assyrianic' Yonan (@assyrianic) and reviewed by Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#ifndef RMEM_H
#define RMEM_H
#include <inttypes.h>
#include <stdbool.h>
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
#define RMEMAPI __declspec(dllexport) // We are building library as a Win32 shared library (.dll)
#elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
#define RMEMAPI __declspec(dllimport) // We are using library as a Win32 shared library (.dll)
#else
#define RMEMAPI // We are building or using library as a static library (or Linux shared library)
#endif
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// Memory Pool
typedef struct MemNode MemNode;
struct MemNode {
size_t size;
MemNode *next, *prev;
};
typedef struct AllocList {
MemNode *head, *tail;
size_t len, maxNodes;
bool autoDefrag : 1;
} AllocList;
typedef struct Stack {
uint8_t *mem, *base;
size_t size;
} Stack;
typedef struct MemPool {
AllocList freeList;
Stack stack;
} MemPool;
// Object Pool
typedef struct ObjPool {
Stack stack;
size_t objSize, freeBlocks;
} ObjPool;
#if defined(__cplusplus)
extern "C" { // Prevents name mangling of functions
#endif
//------------------------------------------------------------------------------------
// Functions Declaration - Memory Pool
//------------------------------------------------------------------------------------
RMEMAPI MemPool CreateMemPool(size_t bytes);
RMEMAPI MemPool CreateMemPoolFromBuffer(void *buf, size_t bytes);
RMEMAPI void DestroyMemPool(MemPool *mempool);
RMEMAPI void *MemPoolAlloc(MemPool *mempool, size_t bytes);
RMEMAPI void *MemPoolRealloc(MemPool *mempool, void *ptr, size_t bytes);
RMEMAPI void MemPoolFree(MemPool *mempool, void *ptr);
RMEMAPI void MemPoolCleanUp(MemPool *mempool, void **ptrref);
RMEMAPI bool MemPoolDefrag(MemPool *mempool);
RMEMAPI size_t GetMemPoolFreeMemory(const MemPool mempool);
RMEMAPI void ToggleMemPoolAutoDefrag(MemPool *mempool);
//------------------------------------------------------------------------------------
// Functions Declaration - Object Pool
//------------------------------------------------------------------------------------
RMEMAPI ObjPool CreateObjPool(size_t objsize, size_t len);
RMEMAPI ObjPool CreateObjPoolFromBuffer(void *buf, size_t objsize, size_t len);
RMEMAPI void DestroyObjPool(ObjPool *objpool);
RMEMAPI void *ObjPoolAlloc(ObjPool *objpool);
RMEMAPI void ObjPoolFree(ObjPool *objpool, void *ptr);
RMEMAPI void ObjPoolCleanUp(ObjPool *objpool, void **ptrref);
#ifdef __cplusplus
}
#endif
#endif // RMEM_H
/***********************************************************************************
*
* RMEM IMPLEMENTATION
*
************************************************************************************/
#if defined(RMEM_IMPLEMENTATION)
#include <stdio.h> // Required for:
#include <stdlib.h> // Required for:
#include <string.h> // Required for:
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
// Make sure restrict type qualifier for pointers is defined
// NOTE: Not supported by C++, it is a C only keyword
#if defined(_WIN32) || defined(_WIN64) || defined(__CYGWIN__) || defined(_MSC_VER)
#ifndef restrict
#define restrict __restrict
#endif
#endif
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static inline size_t __AlignSize(const size_t size, const size_t align)
{
return (size + (align - 1)) & -align;
}
static void __RemoveNode(MemNode **const node)
{
((*node)->prev != NULL)? ((*node)->prev->next = (*node)->next) : (*node = (*node)->next);
((*node)->next != NULL)? ((*node)->next->prev = (*node)->prev) : (*node = (*node)->prev);
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Memory Pool
//----------------------------------------------------------------------------------
MemPool CreateMemPool(const size_t size)
{
MemPool mempool = { 0 };
if (size == 0UL) return mempool;
else
{
// Align the mempool size to at least the size of an alloc node.
mempool.stack.size = size;
mempool.stack.mem = malloc(1 + mempool.stack.size*sizeof *mempool.stack.mem);
if (mempool.stack.mem==NULL)
{
mempool.stack.size = 0UL;
return mempool;
}
else
{
mempool.stack.base = mempool.stack.mem + mempool.stack.size;
return mempool;
}
}
}
MemPool CreateMemPoolFromBuffer(void *buf, const size_t size)
{
MemPool mempool = { 0 };
if ((size == 0UL) || (buf == NULL) || (size <= sizeof(MemNode))) return mempool;
else
{
mempool.stack.size = size;
mempool.stack.mem = buf;
mempool.stack.base = mempool.stack.mem + mempool.stack.size;
return mempool;
}
}
void DestroyMemPool(MemPool *const mempool)
{
if ((mempool == NULL) || (mempool->stack.mem == NULL)) return;
else
{
free(mempool->stack.mem);
*mempool = (MemPool){ 0 };
}
}
void *MemPoolAlloc(MemPool *const mempool, const size_t size)
{
if ((mempool == NULL) || (size == 0UL) || (size > mempool->stack.size)) return NULL;
else
{
MemNode *new_mem = NULL;
const size_t ALLOC_SIZE = __AlignSize(size + sizeof *new_mem, sizeof(intptr_t));
if (mempool->freeList.head != NULL)
{
const size_t MEM_SPLIT_THRESHOLD = 16;
// If the freelist is valid, let's allocate FROM the freelist then!
for (MemNode **inode = &mempool->freeList.head; *inode != NULL; inode = &(*inode)->next)
{
if ((*inode)->size < ALLOC_SIZE) continue;
else if ((*inode)->size <= (ALLOC_SIZE + MEM_SPLIT_THRESHOLD))
{
// Close in size - reduce fragmentation by not splitting.
new_mem = *inode;
__RemoveNode(inode);
mempool->freeList.len--;
new_mem->next = new_mem->prev = NULL;
break;
}
else
{
// Split the memory chunk.
new_mem = (MemNode *)((uint8_t *)*inode + ((*inode)->size - ALLOC_SIZE));
(*inode)->size -= ALLOC_SIZE;
new_mem->size = ALLOC_SIZE;
new_mem->next = new_mem->prev = NULL;
break;
}
}
}
if (new_mem == NULL)
{
// not enough memory to support the size!
if ((mempool->stack.base - ALLOC_SIZE) < mempool->stack.mem) return NULL;
else
{
// Couldn't allocate from a freelist, allocate from available mempool.
// Subtract allocation size from the mempool.
mempool->stack.base -= ALLOC_SIZE;
// Use the available mempool space as the new node.
new_mem = (MemNode *)mempool->stack.base;
new_mem->size = ALLOC_SIZE;
new_mem->next = new_mem->prev = NULL;
}
}
// Visual of the allocation block.
// --------------
// | mem size | lowest addr of block
// | next node |
// --------------
// | alloc'd |
// | memory |
// | space | highest addr of block
// --------------
uint8_t *const final_mem = (uint8_t *)new_mem + sizeof *new_mem;
memset(final_mem, 0, new_mem->size - sizeof *new_mem);
return final_mem;
}
}
void *MemPoolRealloc(MemPool *const restrict mempool, void *ptr, const size_t size)
{
if ((mempool == NULL) || (size > mempool->stack.size)) return NULL;
// NULL ptr should make this work like regular Allocation.
else if (ptr == NULL) return MemPoolAlloc(mempool, size);
else if ((uintptr_t)ptr <= (uintptr_t)mempool->stack.mem) return NULL;
else
{
MemNode *node = (MemNode *)((uint8_t *)ptr - sizeof *node);
const size_t NODE_SIZE = sizeof *node;
uint8_t *resized_block = MemPoolAlloc(mempool, size);
if (resized_block == NULL) return NULL;
else
{
MemNode *resized = (MemNode *)(resized_block - sizeof *resized);
memmove(resized_block, ptr, (node->size > resized->size)? (resized->size - NODE_SIZE) : (node->size - NODE_SIZE));
MemPoolFree(mempool, ptr);
return resized_block;
}
}
}
void MemPoolFree(MemPool *const restrict mempool, void *ptr)
{
if ((mempool == NULL) || (ptr == NULL) || ((uintptr_t)ptr <= (uintptr_t)mempool->stack.mem)) return;
else
{
// Behind the actual pointer data is the allocation info.
MemNode *mem_node = (MemNode *)((uint8_t *)ptr - sizeof *mem_node);
// Make sure the pointer data is valid.
if (((uintptr_t)mem_node < (uintptr_t)mempool->stack.base) ||
(((uintptr_t)mem_node - (uintptr_t)mempool->stack.mem) > mempool->stack.size) ||
(mem_node->size == 0UL) ||
(mem_node->size > mempool->stack.size)) return;
// If the mem_node is right at the stack base ptr, then add it to the stack.
else if ((uintptr_t)mem_node == (uintptr_t)mempool->stack.base)
{
mempool->stack.base += mem_node->size;
}
// Otherwise, we add it to the free list.
// We also check if the freelist already has the pointer so we can prevent double frees.
else if ((mempool->freeList.len == 0UL) || ((uintptr_t)mempool->freeList.head >= (uintptr_t)mempool->stack.mem && (uintptr_t)mempool->freeList.head - (uintptr_t)mempool->stack.mem < mempool->stack.size))
{
for (MemNode *n = mempool->freeList.head; n != NULL; n = n->next) if (n == mem_node) return;
// This code inserts at head.
/*
( mempool->freeList.head==NULL)? (mempool->freeList.tail = mem_node) : (mempool->freeList.head->prev = mem_node);
mem_node->next = mempool->freeList.head;
mempool->freeList.head = mem_node;
mempool->freeList.len++;
*/
// This code insertion sorts where largest size is first.
if (mempool->freeList.head == NULL)
{
mempool->freeList.head = mempool->freeList.tail = mem_node;
mempool->freeList.len++;
}
else if (mempool->freeList.head->size <= mem_node->size)
{
mem_node->next = mempool->freeList.head;
mem_node->next->prev = mem_node;
mempool->freeList.head = mem_node;
mempool->freeList.len++;
}
else if (mempool->freeList.tail->size > mem_node->size)
{
mem_node->prev = mempool->freeList.tail;
mempool->freeList.tail->next = mem_node;
mempool->freeList.tail = mem_node;
mempool->freeList.len++;
}
else
{
MemNode *n = mempool->freeList.head;
while ((n->next != NULL) && (n->next->size > mem_node->size)) n = n->next;
mem_node->next = n->next;
if (n->next != NULL) mem_node->next->prev = mem_node;
n->next = mem_node;
mem_node->prev = n;
mempool->freeList.len++;
}
if (mempool->freeList.autoDefrag && (mempool->freeList.maxNodes != 0UL) && (mempool->freeList.len > mempool->freeList.maxNodes)) MemPoolDefrag(mempool);
}
}
}
void MemPoolCleanUp(MemPool *const restrict mempool, void **ptrref)
{
if ((mempool == NULL) || (ptrref == NULL) || (*ptrref == NULL)) return;
else
{
MemPoolFree(mempool, *ptrref);
*ptrref = NULL;
}
}
size_t GetMemPoolFreeMemory(const MemPool mempool)
{
size_t total_remaining = (uintptr_t)mempool.stack.base - (uintptr_t)mempool.stack.mem;
for (MemNode *n=mempool.freeList.head; n != NULL; n = n->next) total_remaining += n->size;
return total_remaining;
}
bool MemPoolDefrag(MemPool *const mempool)
{
if (mempool == NULL) return false;
else
{
// If the memory pool has been entirely released, fully defrag it.
if (mempool->stack.size == GetMemPoolFreeMemory(*mempool))
{
memset(&mempool->freeList, 0, sizeof mempool->freeList);
mempool->stack.base = mempool->stack.mem + mempool->stack.size;
return true;
}
else
{
const size_t PRE_DEFRAG_LEN = mempool->freeList.len;
MemNode **node = &mempool->freeList.head;
while (*node != NULL)
{
if ((uintptr_t)*node == (uintptr_t)mempool->stack.base)
{
// If node is right at the stack, merge it back into the stack.
mempool->stack.base += (*node)->size;
(*node)->size = 0UL;
__RemoveNode(node);
mempool->freeList.len--;
node = &mempool->freeList.head;
}
else if (((uintptr_t)*node + (*node)->size) == (uintptr_t)(*node)->next)
{
// Next node is at a higher address.
(*node)->size += (*node)->next->size;
(*node)->next->size = 0UL;
// <-[P Curr N]-> <-[P Next N]-> <-[P NextNext N]->
//
// |--------------------|
// <-[P Curr N]-> <-[P Next N]-> [P NextNext N]->
if ((*node)->next->next != NULL) (*node)->next->next->prev = *node;
// <-[P Curr N]-> <-[P NextNext N]->
(*node)->next = (*node)->next->next;
mempool->freeList.len--;
node = &mempool->freeList.head;
}
else if ((((uintptr_t)*node + (*node)->size) == (uintptr_t)(*node)->prev) && ((*node)->prev->prev != NULL))
{
// Prev node is at a higher address.
(*node)->size += (*node)->prev->size;
(*node)->prev->size = 0UL;
// <-[P PrevPrev N]-> <-[P Prev N]-> <-[P Curr N]->
//
// |--------------------|
// <-[P PrevPrev N] <-[P Prev N]-> <-[P Curr N]->
(*node)->prev->prev->next = *node;
// <-[P PrevPrev N]-> <-[P Curr N]->
(*node)->prev = (*node)->prev->prev;
mempool->freeList.len--;
node = &mempool->freeList.head;
}
else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->next->size == (uintptr_t)(*node)->next)
{
// Next node is at a lower address.
(*node)->next->size += (*node)->size;
(*node)->size = 0UL;
(*node)->next->prev = (*node)->prev;
(*node)->prev->next = (*node)->next;
mempool->freeList.len--;
node = &mempool->freeList.head;
}
else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->prev->size == (uintptr_t)(*node)->prev)
{
// Prev node is at a lower address.
(*node)->prev->size += (*node)->size;
(*node)->size = 0UL;
(*node)->next->prev = (*node)->prev;
(*node)->prev->next = (*node)->next;
mempool->freeList.len--;
node = &mempool->freeList.head;
}
else
{
node = &(*node)->next;
}
}
return PRE_DEFRAG_LEN > mempool->freeList.len;
}
}
}
void ToggleMemPoolAutoDefrag(MemPool *const mempool)
{
if (mempool == NULL) return;
else mempool->freeList.autoDefrag ^= true;
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Object Pool
//----------------------------------------------------------------------------------
union ObjInfo {
uint8_t *const byte;
size_t *const size;
};
ObjPool CreateObjPool(const size_t objsize, const size_t len)
{
ObjPool objpool = { 0 };
if ((len == 0UL) || (objsize == 0UL)) return objpool;
else
{
objpool.objSize = __AlignSize(objsize, sizeof(size_t));
objpool.stack.size = objpool.freeBlocks = len;
objpool.stack.mem = calloc(objpool.stack.size, objpool.objSize);
if (objpool.stack.mem == NULL)
{
objpool.stack.size = 0UL;
return objpool;
}
else
{
for (size_t i=0; i<objpool.freeBlocks; i++)
{
union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
*block.size = i + 1;
}
objpool.stack.base = objpool.stack.mem;
return objpool;
}
}
}
ObjPool CreateObjPoolFromBuffer(void *const buf, const size_t objsize, const size_t len)
{
ObjPool objpool = { 0 };
// If the object size isn't large enough to align to a size_t, then we can't use it.
if ((buf == NULL) || (len == 0UL) || (objsize < sizeof(size_t)) || (objsize*len != __AlignSize(objsize, sizeof(size_t))*len)) return objpool;
else
{
objpool.objSize = __AlignSize(objsize, sizeof(size_t));
objpool.stack.size = objpool.freeBlocks = len;
objpool.stack.mem = buf;
for (size_t i=0; i<objpool.freeBlocks; i++)
{
union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
*block.size = i + 1;
}
objpool.stack.base = objpool.stack.mem;
return objpool;
}
}
void DestroyObjPool(ObjPool *const objpool)
{
if ((objpool == NULL) || (objpool->stack.mem == NULL)) return;
else
{
free(objpool->stack.mem);
*objpool = (ObjPool){0};
}
}
void *ObjPoolAlloc(ObjPool *const objpool)
{
if (objpool == NULL) return NULL;
else
{
if (objpool->freeBlocks > 0UL)
{
// For first allocation, head points to the very first index.
// Head = &pool[0];
// ret = Head == ret = &pool[0];
union ObjInfo ret = { .byte = objpool->stack.base };
objpool->freeBlocks--;
// after allocating, we set head to the address of the index that *Head holds.
// Head = &pool[*Head * pool.objsize];
objpool->stack.base = (objpool->freeBlocks != 0UL)? objpool->stack.mem + (*ret.size*objpool->objSize) : NULL;
memset(ret.byte, 0, objpool->objSize);
return ret.byte;
}
else return NULL;
}
}
void ObjPoolFree(ObjPool *const restrict objpool, void *ptr)
{
union ObjInfo p = { .byte = ptr };
if ((objpool == NULL) || (ptr == NULL) || (p.byte < objpool->stack.mem) || (p.byte > objpool->stack.mem + objpool->stack.size*objpool->objSize)) return;
else
{
// When we free our pointer, we recycle the pointer space to store the previous index and then we push it as our new head.
// *p = index of Head in relation to the buffer;
// Head = p;
*p.size = (objpool->stack.base != NULL)? (objpool->stack.base - objpool->stack.mem)/objpool->objSize : objpool->stack.size;
objpool->stack.base = p.byte;
objpool->freeBlocks++;
}
}
void ObjPoolCleanUp(ObjPool *const restrict objpool, void **ptrref)
{
if ((objpool == NULL) || (ptrref == NULL) || (*ptrref == NULL)) return;
else
{
ObjPoolFree(objpool, *ptrref);
*ptrref = NULL;
}
}
#endif // RMEM_IMPLEMENTATION