|
|
- #include <glm/gtc/round.hpp>
- #include <glm/gtc/type_precision.hpp>
- #include <glm/gtc/vec1.hpp>
- #include <glm/gtc/epsilon.hpp>
- #include <vector>
- #include <ctime>
- #include <cstdio>
-
- namespace isPowerOfTwo
- {
- template<typename genType>
- struct type
- {
- genType Value;
- bool Return;
- };
-
- int test_int16()
- {
- type<glm::int16> const Data[] =
- {
- {0x0001, true},
- {0x0002, true},
- {0x0004, true},
- {0x0080, true},
- {0x0000, true},
- {0x0003, false}
- };
-
- int Error(0);
-
- for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i)
- {
- bool Result = glm::isPowerOfTwo(Data[i].Value);
- Error += Data[i].Return == Result ? 0 : 1;
- }
-
- return Error;
- }
-
- int test_uint16()
- {
- type<glm::uint16> const Data[] =
- {
- {0x0001, true},
- {0x0002, true},
- {0x0004, true},
- {0x0000, true},
- {0x0000, true},
- {0x0003, false}
- };
-
- int Error(0);
-
- for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i)
- {
- bool Result = glm::isPowerOfTwo(Data[i].Value);
- Error += Data[i].Return == Result ? 0 : 1;
- }
-
- return Error;
- }
-
- int test_int32()
- {
- type<int> const Data[] =
- {
- {0x00000001, true},
- {0x00000002, true},
- {0x00000004, true},
- {0x0000000f, false},
- {0x00000000, true},
- {0x00000003, false}
- };
-
- int Error(0);
-
- for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
- {
- bool Result = glm::isPowerOfTwo(Data[i].Value);
- Error += Data[i].Return == Result ? 0 : 1;
- }
-
- for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
- {
- glm::bvec1 Result = glm::isPowerOfTwo(glm::ivec1(Data[i].Value));
- Error += glm::all(glm::equal(glm::bvec1(Data[i].Return), Result)) ? 0 : 1;
- }
-
- for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
- {
- glm::bvec2 Result = glm::isPowerOfTwo(glm::ivec2(Data[i].Value));
- Error += glm::all(glm::equal(glm::bvec2(Data[i].Return), Result)) ? 0 : 1;
- }
-
- for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
- {
- glm::bvec3 Result = glm::isPowerOfTwo(glm::ivec3(Data[i].Value));
- Error += glm::all(glm::equal(glm::bvec3(Data[i].Return), Result)) ? 0 : 1;
- }
-
- for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
- {
- glm::bvec4 Result = glm::isPowerOfTwo(glm::ivec4(Data[i].Value));
- Error += glm::all(glm::equal(glm::bvec4(Data[i].Return), Result)) ? 0 : 1;
- }
-
- return Error;
- }
-
- int test_uint32()
- {
- type<glm::uint> const Data[] =
- {
- {0x00000001, true},
- {0x00000002, true},
- {0x00000004, true},
- {0x80000000, true},
- {0x00000000, true},
- {0x00000003, false}
- };
-
- int Error(0);
-
- for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i)
- {
- bool Result = glm::isPowerOfTwo(Data[i].Value);
- Error += Data[i].Return == Result ? 0 : 1;
- }
-
- return Error;
- }
-
- int test()
- {
- int Error(0);
-
- Error += test_int16();
- Error += test_uint16();
- Error += test_int32();
- Error += test_uint32();
-
- return Error;
- }
- }//isPowerOfTwo
-
- namespace ceilPowerOfTwo_advanced
- {
- template<typename genIUType>
- GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value)
- {
- genIUType tmp = Value;
- genIUType result = genIUType(0);
- while(tmp)
- {
- result = (tmp & (~tmp + 1)); // grab lowest bit
- tmp &= ~result; // clear lowest bit
- }
- return result;
- }
-
- template<typename genType>
- GLM_FUNC_QUALIFIER genType ceilPowerOfTwo_loop(genType value)
- {
- return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1;
- }
-
- template<typename genType>
- struct type
- {
- genType Value;
- genType Return;
- };
-
- int test_int32()
- {
- type<glm::int32> const Data[] =
- {
- {0x0000ffff, 0x00010000},
- {-3, -4},
- {-8, -8},
- {0x00000001, 0x00000001},
- {0x00000002, 0x00000002},
- {0x00000004, 0x00000004},
- {0x00000007, 0x00000008},
- {0x0000fff0, 0x00010000},
- {0x0000f000, 0x00010000},
- {0x08000000, 0x08000000},
- {0x00000000, 0x00000000},
- {0x00000003, 0x00000004}
- };
-
- int Error(0);
-
- for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i)
- {
- glm::int32 Result = glm::ceilPowerOfTwo(Data[i].Value);
- Error += Data[i].Return == Result ? 0 : 1;
- }
-
- return Error;
- }
-
- int test_uint32()
- {
- type<glm::uint32> const Data[] =
- {
- {0x00000001, 0x00000001},
- {0x00000002, 0x00000002},
- {0x00000004, 0x00000004},
- {0x00000007, 0x00000008},
- {0x0000ffff, 0x00010000},
- {0x0000fff0, 0x00010000},
- {0x0000f000, 0x00010000},
- {0x80000000, 0x80000000},
- {0x00000000, 0x00000000},
- {0x00000003, 0x00000004}
- };
-
- int Error(0);
-
- for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i)
- {
- glm::uint32 Result = glm::ceilPowerOfTwo(Data[i].Value);
- Error += Data[i].Return == Result ? 0 : 1;
- }
-
- return Error;
- }
-
- int perf()
- {
- int Error(0);
-
- std::vector<glm::uint> v;
- v.resize(100000000);
-
- std::clock_t Timestramp0 = std::clock();
-
- for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
- v[i] = ceilPowerOfTwo_loop(i);
-
- std::clock_t Timestramp1 = std::clock();
-
- for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
- v[i] = glm::ceilPowerOfTwo(i);
-
- std::clock_t Timestramp2 = std::clock();
-
- std::printf("ceilPowerOfTwo_loop: %d clocks\n", static_cast<int>(Timestramp1 - Timestramp0));
- std::printf("glm::ceilPowerOfTwo: %d clocks\n", static_cast<int>(Timestramp2 - Timestramp1));
-
- return Error;
- }
-
- int test()
- {
- int Error(0);
-
- Error += test_int32();
- Error += test_uint32();
-
- return Error;
- }
- }//namespace ceilPowerOfTwo_advanced
-
- namespace roundPowerOfTwo
- {
- int test()
- {
- int Error = 0;
-
- glm::uint32 const A = glm::roundPowerOfTwo(7u);
- Error += A == 8u ? 0 : 1;
-
- glm::uint32 const B = glm::roundPowerOfTwo(15u);
- Error += B == 16u ? 0 : 1;
-
- glm::uint32 const C = glm::roundPowerOfTwo(31u);
- Error += C == 32u ? 0 : 1;
-
- glm::uint32 const D = glm::roundPowerOfTwo(9u);
- Error += D == 8u ? 0 : 1;
-
- glm::uint32 const E = glm::roundPowerOfTwo(17u);
- Error += E == 16u ? 0 : 1;
-
- glm::uint32 const F = glm::roundPowerOfTwo(33u);
- Error += F == 32u ? 0 : 1;
-
- return Error;
- }
- }//namespace roundPowerOfTwo
-
- namespace floorPowerOfTwo
- {
- int test()
- {
- int Error = 0;
-
- glm::uint32 const A = glm::floorPowerOfTwo(7u);
- Error += A == 4u ? 0 : 1;
-
- glm::uint32 const B = glm::floorPowerOfTwo(15u);
- Error += B == 8u ? 0 : 1;
-
- glm::uint32 const C = glm::floorPowerOfTwo(31u);
- Error += C == 16u ? 0 : 1;
-
- return Error;
- }
- }//namespace floorPowerOfTwo
-
- namespace ceilPowerOfTwo
- {
- int test()
- {
- int Error = 0;
-
- glm::uint32 const A = glm::ceilPowerOfTwo(7u);
- Error += A == 8u ? 0 : 1;
-
- glm::uint32 const B = glm::ceilPowerOfTwo(15u);
- Error += B == 16u ? 0 : 1;
-
- glm::uint32 const C = glm::ceilPowerOfTwo(31u);
- Error += C == 32u ? 0 : 1;
-
- return Error;
- }
- }//namespace ceilPowerOfTwo
-
- namespace floorMultiple
- {
- template<typename genType>
- struct type
- {
- genType Source;
- genType Multiple;
- genType Return;
- genType Epsilon;
- };
-
- int test_float()
- {
- type<glm::float64> const Data[] =
- {
- {3.4, 0.3, 3.3, 0.0001},
- {-1.4, 0.3, -1.5, 0.0001},
- };
-
- int Error(0);
-
- for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::float64>); i < n; ++i)
- {
- glm::float64 Result = glm::floorMultiple(Data[i].Source, Data[i].Multiple);
- Error += glm::epsilonEqual(Data[i].Return, Result, Data[i].Epsilon) ? 0 : 1;
- }
-
- return Error;
- }
-
- int test()
- {
- int Error(0);
-
- Error += test_float();
-
- return Error;
- }
- }//namespace floorMultiple
-
- namespace ceilMultiple
- {
- template<typename genType>
- struct type
- {
- genType Source;
- genType Multiple;
- genType Return;
- genType Epsilon;
- };
-
- int test_float()
- {
- type<glm::float64> const Data[] =
- {
- {3.4, 0.3, 3.6, 0.0001},
- {-1.4, 0.3, -1.2, 0.0001},
- };
-
- int Error(0);
-
- for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::float64>); i < n; ++i)
- {
- glm::float64 Result = glm::ceilMultiple(Data[i].Source, Data[i].Multiple);
- Error += glm::epsilonEqual(Data[i].Return, Result, Data[i].Epsilon) ? 0 : 1;
- }
-
- return Error;
- }
-
- int test_int()
- {
- type<int> const Data[] =
- {
- {3, 4, 4, 0},
- {7, 4, 8, 0},
- {5, 4, 8, 0},
- {1, 4, 4, 0},
- {1, 3, 3, 0},
- {4, 3, 6, 0},
- {4, 1, 4, 0},
- {1, 1, 1, 0},
- {7, 1, 7, 0},
- };
-
- int Error(0);
-
- for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
- {
- int Result = glm::ceilMultiple(Data[i].Source, Data[i].Multiple);
- Error += Data[i].Return == Result ? 0 : 1;
- }
-
- return Error;
- }
-
- int test()
- {
- int Error(0);
-
- Error += test_int();
- Error += test_float();
-
- return Error;
- }
- }//namespace ceilMultiple
-
- int main()
- {
- int Error(0);
-
- Error += isPowerOfTwo::test();
- Error += floorPowerOfTwo::test();
- Error += roundPowerOfTwo::test();
- Error += ceilPowerOfTwo::test();
- Error += ceilPowerOfTwo_advanced::test();
-
- # ifdef NDEBUG
- Error += ceilPowerOfTwo_advanced::perf();
- # endif//NDEBUG
-
- Error += floorMultiple::test();
- Error += ceilMultiple::test();
-
- return Error;
- }
|