#define GLM_ENABLE_EXPERIMENTAL #define GLM_FORCE_INLINE #include #include #include #include #include #include #include #include #include #include #include #include #include namespace log2_ { int test() { int Error = 0; int A0 = static_cast(glm::log2(16.f)); glm::ivec1 B0(glm::log2(glm::vec1(16.f))); glm::ivec2 C0(glm::log2(glm::vec2(16.f))); glm::ivec3 D0(glm::log2(glm::vec3(16.f))); glm::ivec4 E0(glm::log2(glm::vec4(16.f))); int A1 = glm::log2(int(16)); glm::ivec1 B1 = glm::log2(glm::ivec1(16)); glm::ivec2 C1 = glm::log2(glm::ivec2(16)); glm::ivec3 D1 = glm::log2(glm::ivec3(16)); glm::ivec4 E1 = glm::log2(glm::ivec4(16)); Error += A0 == A1 ? 0 : 1; Error += glm::all(glm::equal(B0, B1)) ? 0 : 1; Error += glm::all(glm::equal(C0, C1)) ? 0 : 1; Error += glm::all(glm::equal(D0, D1)) ? 0 : 1; Error += glm::all(glm::equal(E0, E1)) ? 0 : 1; glm::uint64 A2 = glm::log2(glm::uint64(16)); glm::u64vec1 B2 = glm::log2(glm::u64vec1(16)); glm::u64vec2 C2 = glm::log2(glm::u64vec2(16)); glm::u64vec3 D2 = glm::log2(glm::u64vec3(16)); glm::u64vec4 E2 = glm::log2(glm::u64vec4(16)); Error += A2 == glm::uint64(4) ? 0 : 1; Error += glm::all(glm::equal(B2, glm::u64vec1(4))) ? 0 : 1; Error += glm::all(glm::equal(C2, glm::u64vec2(4))) ? 0 : 1; Error += glm::all(glm::equal(D2, glm::u64vec3(4))) ? 0 : 1; Error += glm::all(glm::equal(E2, glm::u64vec4(4))) ? 0 : 1; return Error; } int perf(std::size_t Count) { int Error = 0; { std::vector Result; Result.resize(Count); std::clock_t Begin = clock(); for(int i = 0; i < static_cast(Count); ++i) Result[i] = glm::log2(static_cast(i)); std::clock_t End = clock(); printf("glm::log2: %d clocks\n", static_cast(End - Begin)); } { std::vector Result; Result.resize(Count); std::clock_t Begin = clock(); for(int i = 0; i < static_cast(Count); ++i) Result[i] = glm::log2(glm::ivec4(i)); std::clock_t End = clock(); printf("glm::log2: %d clocks\n", static_cast(End - Begin)); } # if GLM_HAS_BITSCAN_WINDOWS { std::vector Result; Result.resize(Count); std::clock_t Begin = clock(); for(std::size_t i = 0; i < Count; ++i) { glm::vec<4, unsigned long, glm::defaultp> Tmp; _BitScanReverse(&Tmp.x, i); _BitScanReverse(&Tmp.y, i); _BitScanReverse(&Tmp.z, i); _BitScanReverse(&Tmp.w, i); Result[i] = glm::ivec4(Tmp); } std::clock_t End = clock(); printf("glm::log2 inlined: %d clocks\n", static_cast(End - Begin)); } { std::vector > Result; Result.resize(Count); std::clock_t Begin = clock(); for(std::size_t i = 0; i < Count; ++i) { _BitScanReverse(&Result[i].x, i); _BitScanReverse(&Result[i].y, i); _BitScanReverse(&Result[i].z, i); _BitScanReverse(&Result[i].w, i); } std::clock_t End = clock(); printf("glm::log2 inlined no cast: %d clocks\n", static_cast(End - Begin)); } { std::vector Result; Result.resize(Count); std::clock_t Begin = clock(); for(std::size_t i = 0; i < Count; ++i) { _BitScanReverse(reinterpret_cast(&Result[i].x), i); _BitScanReverse(reinterpret_cast(&Result[i].y), i); _BitScanReverse(reinterpret_cast(&Result[i].z), i); _BitScanReverse(reinterpret_cast(&Result[i].w), i); } std::clock_t End = clock(); printf("glm::log2 reinterpret: %d clocks\n", static_cast(End - Begin)); } # endif//GLM_HAS_BITSCAN_WINDOWS { std::vector Result; Result.resize(Count); std::clock_t Begin = clock(); for(std::size_t i = 0; i < Count; ++i) Result[i] = glm::log2(static_cast(i)); std::clock_t End = clock(); printf("glm::log2: %d clocks\n", static_cast(End - Begin)); } { std::vector Result; Result.resize(Count); std::clock_t Begin = clock(); for(int i = 0; i < static_cast(Count); ++i) Result[i] = glm::log2(glm::vec4(static_cast(i))); std::clock_t End = clock(); printf("glm::log2: %d clocks\n", static_cast(End - Begin)); } return Error; } }//namespace log2_ namespace iround { int test() { int Error = 0; for(float f = 0.0f; f < 3.1f; f += 0.05f) { int RoundFast = static_cast(glm::iround(f)); int RoundSTD = static_cast(glm::round(f)); Error += RoundFast == RoundSTD ? 0 : 1; assert(!Error); } return Error; } }//namespace iround namespace uround { int test() { int Error = 0; for(float f = 0.0f; f < 3.1f; f += 0.05f) { int RoundFast = static_cast(glm::uround(f)); int RoundSTD = static_cast(glm::round(f)); Error += RoundFast == RoundSTD ? 0 : 1; assert(!Error); } return Error; } }//namespace uround int main() { int Error(0); Error += ::log2_::test(); Error += ::iround::test(); Error += ::uround::test(); # ifdef NDEBUG std::size_t const Samples(1000); Error += ::log2_::perf(Samples); # endif//NDEBUG return Error; }