General Purpose library for Freestanding C++ and POSIX systems
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

98 rader
2.3 KiB

4 år sedan
4 år sedan
4 år sedan
4 år sedan
  1. #pragma once
  2. #include "gp_config.hpp"
  3. #include "gp/math.hpp"
  4. #include "gp/function.hpp"
  5. #include "gp/algorithm/min_of.hpp"
  6. #include "gp/indexed_array.hpp"
  7. using vec2 = gp::vec2_g<>;
  8. using vec3 = gp::vec3_g<>;
  9. using vec4 = gp::vec4_g<>;
  10. struct camera{
  11. vec3 position;
  12. vec3 normal;
  13. };
  14. using index_t = size_t;
  15. using distance_t = gp_config::rendering::default_type;
  16. using color_t = GP_CONFIG__RENDERING__COLOR_T;
  17. struct render_point{
  18. distance_t distance;
  19. index_t material;
  20. bool operator<(const render_point& rhs) {
  21. return distance < rhs.distance;
  22. }
  23. };
  24. using sdf_t = gp::function<render_point(vec3)>;
  25. using material_t = gp::function<color_t(vec3)>;
  26. class renderer {
  27. using g_t = gp_config::rendering::default_type;
  28. constexpr static auto epsilon = gp_config::rendering::epsilon;
  29. public:
  30. gp::indexed_array<sdf_t, 4096> scene_elements;
  31. gp::indexed_array<material_t, 4096> materials;
  32. material_t sky_box = [](vec3) -> color_t { return vec4{0,0,0,0};};
  33. vec2 _resolution{128,64};
  34. camera _camera{{0, 0, -1}, {0, 0, 0}};
  35. vec2 _fov{90, 45};
  36. distance_t projection_start = 1;
  37. distance_t projection_end = 50;
  38. size_t passes = 12;
  39. renderer() = default;
  40. render_point sdf(vec3 render_target) {
  41. return gp::min_of(
  42. scene_elements.begin(),
  43. scene_elements.end(),
  44. [&](auto& p){
  45. return p(render_target);
  46. }
  47. );
  48. }
  49. color_t render(vec2 pixel) {
  50. g_t depth = projection_start;
  51. vec3 target = _camera.normal;
  52. auto half_res = _resolution/vec2{2.0, 2.0};
  53. pixel = pixel - half_res;
  54. pixel = pixel / half_res;
  55. pixel = pixel * _fov;
  56. pixel = pixel / vec2{180, 180} * vec2{gp::pi<g_t>,gp::pi<g_t>};
  57. // Y-rot (adjusts x)
  58. target = vec3{
  59. target.x*gp::cos(pixel.x) + target.z*gp::sin(pixel.x),
  60. target.y,
  61. -target.x*gp::sin(pixel.x)+target.z*gp::cos(pixel.x)
  62. };
  63. // X-rot (adjusts y)
  64. target = vec3{
  65. target.x,
  66. target.y*gp::cos(pixel.y) - target.z*gp::sin(pixel.y),
  67. target.y*gp::sin(pixel.y) + target.z*gp::cos(pixel.y)
  68. };
  69. vec3 render_target{_camera.position};
  70. for(int i = 1; i < passes; ++i) {
  71. render_point distance = sdf(render_target);
  72. if(distance.distance < epsilon) {
  73. return materials[distance.material](render_target);
  74. }
  75. depth += distance.distance;
  76. if(depth >= projection_end) {
  77. break;
  78. }
  79. render_target = _camera.position+depth*target;
  80. }
  81. return sky_box(render_target);
  82. }
  83. };