General Purpose library for Freestanding C++ and POSIX systems
Du kannst nicht mehr als 25 Themen auswählen Themen müssen entweder mit einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.
 
 

142 Zeilen
2.8 KiB

#pragma once
#include <stdint.h>
#include <stddef.h>
#include <gp/integer_math.hpp>
#include <algorithm>
#include <array>
template<typename word_t = uint32_t, size_t r = 20, size_t b = 128, word_t P = 0xb7e15163L, word_t Q = 0x9e3779b9L>
class RC6 {
static constexpr size_t word_size = 8*sizeof(word_t);
constexpr static word_t r_l(const word_t& w, size_t v) {
return (w << v) | ( w >> (word_size-v));
}
constexpr static word_t r_r(const word_t& w, size_t v) {
return (w >> v) | ( w << (word_size-v));
}
class RC6_KeySched {
using sched_t = std::array<word_t, 2*r+4>;
public:
static constexpr size_t c = (b+word_size-1)/word_size;
static constexpr size_t v_3 = std::max(c, 2*r+4);
static constexpr size_t v = v_3*3;
private:
sched_t S;
public:
constexpr RC6_KeySched(std::array<word_t, c> L)
{
assert(r_l(r_r(13,13),13) == 13);
auto it = S.begin();
*(it++) = P;
for(; it != S.end(); ++it)
{
*it = *(it-1) + Q;
}
word_t A = 0;
word_t B = 0;
word_t i = 0;
word_t j = 0;
for(size_t s = 0; s < v; ++s)
{
A = S[i] = r_l( S[i] + A + B, 3 );
B = L[j] = r_l( L[j] + A + B, (A + B)%(word_size));
i = s % S.size();
j = s % L.size();
}
}
const auto cbegin()
{
return S.cbegin();
}
const auto cend()
{
return S.cend();
}
const auto crbegin()
{
return S.crbegin();
}
const auto crend()
{
return S.crend();
}
};
RC6_KeySched S;
public:
typedef std::array<word_t, RC6_KeySched::c> key_type;
typedef std::array<word_t, 4> block_type;
constexpr RC6(const key_type& key)
: S(key)
{}
constexpr block_type encrypt(block_type plaintext) {
using namespace gp::math;
auto& A = plaintext[0];
auto& B = plaintext[1];
auto& C = plaintext[2];
auto& D = plaintext[3];
auto it = S.cbegin();
B += *(it++);
D += *(it++);
for(size_t i = 0; i < r; ++i)
{
auto u = r_l( D * ( 2 * D + 1 ), msb(word_size));
auto t = r_l( B * ( 2 * B + 1 ), msb(word_size));
A = r_l((A ^ t), u % word_size) + *(it++);
C = r_l((C ^ u), t % word_size) + *(it++);
std::rotate(plaintext.begin(), plaintext.begin()+1, plaintext.end());
}
A += *(it++);
C += *(it++);
assert(it == S.cend());
return plaintext;
}
constexpr block_type decrypt(block_type plaintext) {
using namespace gp::math;
auto& A = plaintext[0];
auto& B = plaintext[1];
auto& C = plaintext[2];
auto& D = plaintext[3];
auto it = S.crbegin();
C -= *(it++);
A -= *(it++);
for(size_t i = 0; i < r; ++i)
{
std::rotate(plaintext.begin(), plaintext.end()-1, plaintext.end());
auto u = r_l( D * ( 2 * D + 1 ), msb(word_size));
auto t = r_l( B * ( 2 * B + 1 ), msb(word_size));
C = r_r( (C - *(it++)) , t % word_size) ^ u ;
A = r_r( (A - *(it++)) , u % word_size) ^ t ;
}
D -= *(it++);
B -= *(it++);
assert(it == S.crend());
return plaintext;
}
};