#pragma once
|
|
|
|
#include "gp_config.hpp"
|
|
|
|
#include "gp/algorithms/min_max.hpp"
|
|
#include "gp/algorithms/repeat.hpp"
|
|
#include "gp/math.hpp"
|
|
|
|
namespace gp{
|
|
namespace math {
|
|
template<typename T = gp_config::rendering::default_type>
|
|
struct vec2_g {
|
|
T x;
|
|
T y;
|
|
|
|
vec2_g()
|
|
: x{}
|
|
, y{}
|
|
{}
|
|
|
|
vec2_g(
|
|
T _x,
|
|
T _y
|
|
)
|
|
: x{_x}
|
|
, y{_y}
|
|
{}
|
|
|
|
vec2_g operator/(vec2_g rhs) {
|
|
return {
|
|
x / rhs.x,
|
|
y / rhs.y
|
|
};
|
|
}
|
|
|
|
vec2_g operator*(vec2_g rhs) {
|
|
return {
|
|
x * rhs.x,
|
|
y * rhs.y
|
|
};
|
|
}
|
|
|
|
vec2_g operator+(vec2_g oth) {
|
|
return {x+oth.x, y+oth.y};
|
|
}
|
|
|
|
vec2_g operator-(vec2_g oth) {
|
|
return {x-oth.x, y-oth.y};
|
|
}
|
|
|
|
vec2_g normalize() {
|
|
T ilen = fast_isqrt(x*x+y*y);
|
|
return {x*ilen, y*ilen};
|
|
}
|
|
|
|
T length() {
|
|
return fixed_sqrt(x*x+y*y);
|
|
}
|
|
};
|
|
|
|
template<typename T = gp_config::rendering::default_type>
|
|
struct vec3_g {
|
|
T x;
|
|
T y;
|
|
T z;
|
|
|
|
T& r(){
|
|
return x;
|
|
}
|
|
T& g(){
|
|
return y;
|
|
}
|
|
T& b(){
|
|
return z;
|
|
}
|
|
|
|
vec3_g()
|
|
: x{}
|
|
, y{}
|
|
, z{}
|
|
{}
|
|
|
|
vec3_g(
|
|
T _x,
|
|
T _y,
|
|
T _z
|
|
)
|
|
: x{_x}
|
|
, y{_y}
|
|
, z{_z}
|
|
{}
|
|
|
|
vec3_g(vec2_g<T> left, T right)
|
|
: x{left.x}
|
|
, y{left.y}
|
|
, z{right}
|
|
{}
|
|
|
|
vec3_g(T left, vec2_g<T> right)
|
|
: x{left}
|
|
, y{right.x}
|
|
, z{right.y}
|
|
{}
|
|
|
|
vec3_g operator/(vec3_g rhs) {
|
|
return {
|
|
x / rhs.x,
|
|
y / rhs.y,
|
|
z / rhs.z
|
|
};
|
|
}
|
|
|
|
vec3_g operator*(vec3_g rhs) {
|
|
return {
|
|
x * rhs.x,
|
|
y * rhs.y,
|
|
z * rhs.z
|
|
};
|
|
}
|
|
|
|
vec3_g operator+(vec3_g oth) {
|
|
return {x+oth.x, y+oth.y, z+oth.z};
|
|
}
|
|
|
|
vec3_g operator-(vec3_g oth) {
|
|
return {x-oth.x, y-oth.y, z-oth.z};
|
|
}
|
|
|
|
vec3_g normalize() {
|
|
T ilen = fast_isqrt(x*x+y*y+z*z);
|
|
return {x*ilen, y*ilen, z*ilen};
|
|
}
|
|
|
|
T length() {
|
|
return fixed_sqrt(x*x+y*y+z*z);
|
|
}
|
|
};
|
|
|
|
template<typename T = gp_config::rendering::default_type>
|
|
struct vec4_g {
|
|
T x;
|
|
T y;
|
|
T z;
|
|
T w;
|
|
|
|
T& r(){
|
|
return x;
|
|
}
|
|
T& g(){
|
|
return y;
|
|
}
|
|
T& b(){
|
|
return z;
|
|
}
|
|
T& a(){
|
|
return w;
|
|
}
|
|
|
|
vec4_g()
|
|
: x{}
|
|
, y{}
|
|
, z{}
|
|
, w{}
|
|
{}
|
|
|
|
vec4_g(
|
|
T _x,
|
|
T _y,
|
|
T _z,
|
|
T _w
|
|
)
|
|
: x{_x}
|
|
, y{_y}
|
|
, z{_z}
|
|
, w{_w}
|
|
{}
|
|
|
|
vec4_g(T left, vec3_g<> right)
|
|
: x{left}
|
|
, y{right.x}
|
|
, z{right.y}
|
|
, w{right.z}
|
|
{}
|
|
|
|
vec4_g(vec3_g<> left, T right)
|
|
: x{left.x}
|
|
, y{left.y}
|
|
, z{left.z}
|
|
, w{right}
|
|
{}
|
|
|
|
vec4_g operator/(vec4_g rhs) {
|
|
return {
|
|
x / rhs.x,
|
|
y / rhs.y,
|
|
z / rhs.z,
|
|
w / rhs.w
|
|
};
|
|
}
|
|
|
|
vec4_g operator*(vec4_g rhs) {
|
|
return {
|
|
x * rhs.x,
|
|
y * rhs.y,
|
|
z * rhs.z,
|
|
w * rhs.w
|
|
};
|
|
}
|
|
|
|
vec4_g operator+(vec4_g oth) {
|
|
return {x+oth.x, y+oth.y, z+oth.z, w+oth.w};
|
|
}
|
|
|
|
vec4_g operator-(vec4_g oth) {
|
|
return {x-oth.x, y-oth.y, z-oth.w, z-oth.w};
|
|
}
|
|
|
|
vec4_g normalize() {
|
|
T ilen = fast_isqrt(x*x+y*y+z*z+w*w);
|
|
return {x*ilen, y*ilen, z*ilen, w*ilen};
|
|
}
|
|
|
|
T length() {
|
|
return fixed_sqrt(x*x+y*y+z*z+w*w);
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
auto sphere_sdf(vec3_g<T> center, T radius) {
|
|
return [=](vec3_g<T> position) -> T const {
|
|
auto p = position - center;
|
|
return p.length() - radius;
|
|
};
|
|
}
|
|
|
|
template<typename T, typename lhs, typename rhs>
|
|
auto union_sdf(lhs _l, rhs _r) {
|
|
return [=](vec3_g<T> position) -> T const {
|
|
return gp::min(_l(position), _r(position));
|
|
};
|
|
}
|
|
|
|
template<typename T, typename lhs, typename rhs>
|
|
auto intersect_sdf(lhs _l, rhs _r) {
|
|
return [=](vec3_g<T> position) -> T const {
|
|
return gp::max(_l(position), _r(position));
|
|
};
|
|
}
|
|
|
|
template<typename T, typename lhs, typename rhs>
|
|
auto difference_sdf(lhs _l, rhs _r) {
|
|
return [=](vec3_g<T> position) -> T const {
|
|
return gp::max(_l(position), -_r(position));
|
|
};
|
|
}
|
|
|
|
template<typename T>
|
|
vec2_g<T> operator*(vec2_g<T> p, T v) {
|
|
return {p.x*v, p.y*v};
|
|
}
|
|
|
|
template<typename T>
|
|
vec3_g<T> operator*(vec3_g<T> p, T v) {
|
|
return {p.x*v, p.y*v, p.z*v};
|
|
}
|
|
|
|
template<typename T>
|
|
vec4_g<T> operator*(vec4_g<T> p, T v) {
|
|
return {p.x*v, p.y*v, p.z*v, p.w*v};
|
|
}
|
|
|
|
template<typename T>
|
|
vec2_g<T> operator*(T v, vec2_g<T> p) {
|
|
return p*v;
|
|
}
|
|
|
|
template<typename T>
|
|
vec3_g<T> operator*(T v, vec3_g<T> p) {
|
|
return p*v;
|
|
}
|
|
|
|
template<typename T>
|
|
vec4_g<T> operator*(T v, vec4_g<T> p) {
|
|
return p*v;
|
|
}
|
|
}
|
|
}
|
|
|
|
static_assert(sizeof(gp::math::vec3_g<int>) == sizeof(int)*3, "vec3_g has strange alignment");
|
|
static_assert(sizeof(gp::math::vec4_g<int>) == sizeof(int)*4, "vec4_g has strange alignment");
|