|
|
- #version 330
-
- // Input vertex attributes (from vertex shader)
- in vec2 fragTexCoord;
-
- // Constant values
- const float PI = 3.14159265359;
- const uint MAX_SAMPLES = 1024u;
-
- // Output fragment color
- out vec4 finalColor;
-
- vec2 Hammersley(uint i, uint N);
- float RadicalInverseVdC(uint bits);
- float GeometrySchlickGGX(float NdotV, float roughness);
- float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness);
- vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness);
- vec2 IntegrateBRDF(float NdotV, float roughness);
-
- float RadicalInverseVdC(uint bits)
- {
- bits = (bits << 16u) | (bits >> 16u);
- bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
- bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
- bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
- bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
- return float(bits) * 2.3283064365386963e-10; // / 0x100000000
- }
-
- // Compute Hammersley coordinates
- vec2 Hammersley(uint i, uint N)
- {
- return vec2(float(i)/float(N), RadicalInverseVdC(i));
- }
-
- // Integrate number of importance samples for (roughness and NoV)
- vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness)
- {
- float a = roughness*roughness;
- float phi = 2.0 * PI * Xi.x;
- float cosTheta = sqrt((1.0 - Xi.y)/(1.0 + (a*a - 1.0)*Xi.y));
- float sinTheta = sqrt(1.0 - cosTheta*cosTheta);
-
- // Transform from spherical coordinates to cartesian coordinates (halfway vector)
- vec3 H = vec3(cos(phi)*sinTheta, sin(phi)*sinTheta, cosTheta);
-
- // Transform from tangent space H vector to world space sample vector
- vec3 up = ((abs(N.z) < 0.999) ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0));
- vec3 tangent = normalize(cross(up, N));
- vec3 bitangent = cross(N, tangent);
- vec3 sampleVec = tangent*H.x + bitangent*H.y + N*H.z;
-
- return normalize(sampleVec);
- }
-
- float GeometrySchlickGGX(float NdotV, float roughness)
- {
- // For IBL k is calculated different
- float k = (roughness*roughness)/2.0;
-
- float nom = NdotV;
- float denom = NdotV*(1.0 - k) + k;
-
- return nom/denom;
- }
-
- // Compute the geometry term for the BRDF given roughness squared, NoV, NoL
- float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
- {
- float NdotV = max(dot(N, V), 0.0);
- float NdotL = max(dot(N, L), 0.0);
- float ggx2 = GeometrySchlickGGX(NdotV, roughness);
- float ggx1 = GeometrySchlickGGX(NdotL, roughness);
-
- return ggx1*ggx2;
- }
-
- // Bidirectional reflectance distribution function
- // Ref: https://github.com/HectorMF/BRDFGenerator
- vec2 IntegrateBRDF(float NdotV, float roughness)
- {
- float A = 0.0;
- float B = 0.0;
- vec3 V = vec3(sqrt(1.0 - NdotV*NdotV), 0.0, NdotV);
- vec3 N = vec3(0.0, 0.0, 1.0);
-
- for (uint i = 0u; i < MAX_SAMPLES; i++)
- {
- // Generate a sample vector that's biased towards the preferred alignment direction (importance sampling)
-
- vec2 Xi = Hammersley(i, MAX_SAMPLES); // Compute a Hammersely coordinate
- vec3 H = ImportanceSampleGGX(Xi, N, roughness); // Integrate number of importance samples for (roughness and NoV)
- vec3 L = normalize(2.0*dot(V, H)*H - V); // Compute reflection vector L
-
- float NdotL = max(L.z, 0.0); // Compute normal dot light
- float NdotH = max(H.z, 0.0); // Compute normal dot half
- float VdotH = max(dot(V, H), 0.0); // Compute view dot half
-
- if (NdotL > 0.0)
- {
- float G = GeometrySmith(N, V, L, roughness); // Compute the geometry term for the BRDF given roughness squared, NoV, NoL
- float GVis = (G*VdotH)/(NdotH*NdotV); // Compute the visibility term given G, VoH, NoH, NoV, NoL
- float Fc = pow(1.0 - VdotH, 5.0); // Compute the fresnel term given VoH
-
- A += (1.0 - Fc)*GVis; // Sum the result given fresnel, geometry, visibility
- B += Fc*GVis;
- }
- }
-
- // Calculate brdf average sample
- A /= float(MAX_SAMPLES);
- B /= float(MAX_SAMPLES);
-
- return vec2(A, B);
- }
-
- void main()
- {
- // Calculate brdf based on texture coordinates
- vec2 brdf = IntegrateBRDF(fragTexCoord.x, fragTexCoord.y);
-
- // Calculate final fragment color
- finalColor = vec4(brdf.r, brdf.g, 0.0, 1.0);
- }
|