| @ -0,0 +1,80 @@ | |||
| #version 120 | |||
| // Input vertex attributes (from vertex shader) | |||
| varying vec2 fragTexCoord; | |||
| varying vec4 fragColor; | |||
| uniform vec2 c; // c.x = real, c.y = imaginary component. Equation done is z^2 + c | |||
| uniform vec2 offset; // Offset of the scale. | |||
| uniform float zoom; // Zoom of the scale. | |||
| // NOTE: Maximum number of shader for-loop iterations depend on GPU, | |||
| // for example, on RasperryPi for this examply only supports up to 60 | |||
| const int maxIterations = 255; // Max iterations to do. | |||
| const float colorCycles = 1.0; // Number of times the color palette repeats. | |||
| // Square a complex number | |||
| vec2 ComplexSquare(vec2 z) | |||
| { | |||
| return vec2(z.x*z.x - z.y*z.y, z.x*z.y*2.0); | |||
| } | |||
| // Convert Hue Saturation Value (HSV) color into RGB | |||
| vec3 Hsv2rgb(vec3 c) | |||
| { | |||
| vec4 K = vec4(1.0, 2.0/3.0, 1.0/3.0, 3.0); | |||
| vec3 p = abs(fract(c.xxx + K.xyz)*6.0 - K.www); | |||
| return c.z*mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y); | |||
| } | |||
| void main() | |||
| { | |||
| /********************************************************************************************** | |||
| Julia sets use a function z^2 + c, where c is a constant. | |||
| This function is iterated until the nature of the point is determined. | |||
| If the magnitude of the number becomes greater than 2, then from that point onward | |||
| the number will get bigger and bigger, and will never get smaller (tends towards infinity). | |||
| 2^2 = 4, 4^2 = 8 and so on. | |||
| So at 2 we stop iterating. | |||
| If the number is below 2, we keep iterating. | |||
| But when do we stop iterating if the number is always below 2 (it converges)? | |||
| That is what maxIterations is for. | |||
| Then we can divide the iterations by the maxIterations value to get a normalized value that we can | |||
| then map to a color. | |||
| We use dot product (z.x * z.x + z.y * z.y) to determine the magnitude (length) squared. | |||
| And once the magnitude squared is > 4, then magnitude > 2 is also true (saves computational power). | |||
| *************************************************************************************************/ | |||
| // The pixel coordinates are scaled so they are on the mandelbrot scale | |||
| // NOTE: fragTexCoord already comes as normalized screen coordinates but offset must be normalized before scaling and zoom | |||
| vec2 z = vec2((fragTexCoord.x - 0.5)*2.5, (fragTexCoord.y - 0.5)*1.5)/zoom; | |||
| z.x += offset.x; | |||
| z.y += offset.y; | |||
| int iter = 0; | |||
| for (int iterations = 0; iterations < maxIterations; iterations++) | |||
| { | |||
| z = ComplexSquare(z) + c; // Iterate function | |||
| if (dot(z, z) > 4.0) break; | |||
| iter = iterations; | |||
| } | |||
| // Another few iterations decreases errors in the smoothing calculation. | |||
| // See http://linas.org/art-gallery/escape/escape.html for more information. | |||
| z = ComplexSquare(z) + c; | |||
| z = ComplexSquare(z) + c; | |||
| // This last part smooths the color (again see link above). | |||
| float smoothVal = float(iter) + 1.0 - (log(log(length(z)))/log(2.0)); | |||
| // Normalize the value so it is between 0 and 1. | |||
| float norm = smoothVal/float(maxIterations); | |||
| // If in set, color black. 0.999 allows for some float accuracy error. | |||
| if (norm > 0.999) gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0); | |||
| else gl_FragColor = vec4(Hsv2rgb(vec3(norm*colorCycles, 1.0, 1.0)), 1.0); | |||
| } | |||