|
|
@ -391,7 +391,7 @@ RMAPI Vector2 Vector2Divide(Vector2 v1, Vector2 v2) |
|
|
|
// Normalize provided vector |
|
|
|
RMAPI Vector2 Vector2Normalize(Vector2 v) |
|
|
|
{ |
|
|
|
Vector2 result = p">{ 0 }; |
|
|
|
Vector2 result = n">Vector2Zero(); |
|
|
|
float length = sqrtf((v.x*v.x) + (v.y*v.y)); |
|
|
|
|
|
|
|
if (length > 0) |
|
|
@ -407,7 +407,7 @@ RMAPI Vector2 Vector2Normalize(Vector2 v) |
|
|
|
// Transforms a Vector2 by a given Matrix |
|
|
|
RMAPI Vector2 Vector2Transform(Vector2 v, Matrix mat) |
|
|
|
{ |
|
|
|
Vector2 result = p">{ 0 }; |
|
|
|
Vector2 result = n">Vector2Zero(); |
|
|
|
|
|
|
|
float x = v.x; |
|
|
|
float y = v.y; |
|
|
@ -422,7 +422,7 @@ RMAPI Vector2 Vector2Transform(Vector2 v, Matrix mat) |
|
|
|
// Calculate linear interpolation between two vectors |
|
|
|
RMAPI Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount) |
|
|
|
{ |
|
|
|
Vector2 result = p">{ 0 }; |
|
|
|
Vector2 result = n">Vector2Zero(); |
|
|
|
|
|
|
|
result.x = v1.x + amount*(v2.x - v1.x); |
|
|
|
result.y = v1.y + amount*(v2.y - v1.y); |
|
|
@ -433,7 +433,7 @@ RMAPI Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount) |
|
|
|
// Calculate reflected vector to normal |
|
|
|
RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal) |
|
|
|
{ |
|
|
|
Vector2 result = p">{ 0 }; |
|
|
|
Vector2 result = n">Vector2Zero(); |
|
|
|
|
|
|
|
float dotProduct = (v.x*normal.x + v.y*normal.y); // Dot product |
|
|
|
|
|
|
@ -446,7 +446,7 @@ RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal) |
|
|
|
// Get min value for each pair of components |
|
|
|
RMAPI Vector2 Vector2Min(Vector2 v1, Vector2 v2) |
|
|
|
{ |
|
|
|
Vector2 result = p">{ 0 }; |
|
|
|
Vector2 result = n">Vector2Zero(); |
|
|
|
|
|
|
|
result.x = fminf(v1.x, v2.x); |
|
|
|
result.y = fminf(v1.y, v2.y); |
|
|
@ -457,7 +457,7 @@ RMAPI Vector2 Vector2Min(Vector2 v1, Vector2 v2) |
|
|
|
// Get max value for each pair of components |
|
|
|
RMAPI Vector2 Vector2Max(Vector2 v1, Vector2 v2) |
|
|
|
{ |
|
|
|
Vector2 result = p">{ 0 }; |
|
|
|
Vector2 result = n">Vector2Zero(); |
|
|
|
|
|
|
|
result.x = fmaxf(v1.x, v2.x); |
|
|
|
result.y = fmaxf(v1.y, v2.y); |
|
|
@ -468,7 +468,7 @@ RMAPI Vector2 Vector2Max(Vector2 v1, Vector2 v2) |
|
|
|
// Rotate vector by angle |
|
|
|
RMAPI Vector2 Vector2Rotate(Vector2 v, float angle) |
|
|
|
{ |
|
|
|
Vector2 result = p">{ 0 }; |
|
|
|
Vector2 result = n">Vector2Zero(); |
|
|
|
|
|
|
|
float cosres = cosf(angle); |
|
|
|
float sinres = sinf(angle); |
|
|
@ -482,7 +482,7 @@ RMAPI Vector2 Vector2Rotate(Vector2 v, float angle) |
|
|
|
// Move Vector towards target |
|
|
|
RMAPI Vector2 Vector2MoveTowards(Vector2 v, Vector2 target, float maxDistance) |
|
|
|
{ |
|
|
|
Vector2 result = p">{ 0 }; |
|
|
|
Vector2 result = n">Vector2Zero(); |
|
|
|
|
|
|
|
float dx = target.x - v.x; |
|
|
|
float dy = target.y - v.y; |
|
|
@ -510,7 +510,7 @@ RMAPI Vector2 Vector2Invert(Vector2 v) |
|
|
|
// min and max values specified by the given vectors |
|
|
|
RMAPI Vector2 Vector2Clamp(Vector2 v, Vector2 min, Vector2 max) |
|
|
|
{ |
|
|
|
Vector2 result = p">{ 0 }; |
|
|
|
Vector2 result = n">Vector2Zero(); |
|
|
|
|
|
|
|
result.x = fminf(max.x, fmaxf(min.x, v.x)); |
|
|
|
result.y = fminf(max.y, fmaxf(min.y, v.y)); |
|
|
@ -565,7 +565,7 @@ RMAPI int Vector2Equals(Vector2 p, Vector2 q) |
|
|
|
// to the refractive index of the medium on the other side of the surface |
|
|
|
RMAPI Vector2 Vector2Refract(Vector2 v, Vector2 n, float r) |
|
|
|
{ |
|
|
|
Vector2 result = p">{ 0 }; |
|
|
|
Vector2 result = n">Vector2Zero(); |
|
|
|
|
|
|
|
float dot = v.x*n.x + v.y*n.y; |
|
|
|
float d = 1.0f - r*r*(1.0f - dot*dot); |
|
|
@ -662,7 +662,7 @@ RMAPI Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2) |
|
|
|
// Calculate one vector perpendicular vector |
|
|
|
RMAPI Vector3 Vector3Perpendicular(Vector3 v) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
float min = fabsf(v.x); |
|
|
|
Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f}; |
|
|
@ -788,7 +788,7 @@ RMAPI Vector3 Vector3Normalize(Vector3 v) |
|
|
|
//Calculate the projection of the vector v1 on to v2 |
|
|
|
RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); |
|
|
|
float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z); |
|
|
@ -805,7 +805,7 @@ RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2) |
|
|
|
//Calculate the rejection of the vector v1 on to v2 |
|
|
|
RMAPI Vector3 Vector3Reject(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); |
|
|
|
float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z); |
|
|
@ -857,7 +857,7 @@ RMAPI void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2) |
|
|
|
// Transforms a Vector3 by a given Matrix |
|
|
|
RMAPI Vector3 Vector3Transform(Vector3 v, Matrix mat) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
float x = v.x; |
|
|
|
float y = v.y; |
|
|
@ -873,7 +873,7 @@ RMAPI Vector3 Vector3Transform(Vector3 v, Matrix mat) |
|
|
|
// Transform a vector by quaternion rotation |
|
|
|
RMAPI Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y); |
|
|
|
result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z); |
|
|
@ -937,7 +937,7 @@ RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle) |
|
|
|
// Move Vector towards target |
|
|
|
RMAPI Vector3 Vector3MoveTowards(Vector3 v, Vector3 target, float maxDistance) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
float dx = target.x - v.x; |
|
|
|
float dy = target.y - v.y; |
|
|
@ -958,7 +958,7 @@ RMAPI Vector3 Vector3MoveTowards(Vector3 v, Vector3 target, float maxDistance) |
|
|
|
// Calculate linear interpolation between two vectors |
|
|
|
RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
result.x = v1.x + amount*(v2.x - v1.x); |
|
|
|
result.y = v1.y + amount*(v2.y - v1.y); |
|
|
@ -971,7 +971,7 @@ RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount) |
|
|
|
// as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic |
|
|
|
RMAPI Vector3 Vector3CubicHermite(Vector3 v1, Vector3 tangent1, Vector3 v2, Vector3 tangent2, float amount) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
float amountPow2 = amount*amount; |
|
|
|
float amountPow3 = amount*amount*amount; |
|
|
@ -986,7 +986,7 @@ RMAPI Vector3 Vector3CubicHermite(Vector3 v1, Vector3 tangent1, Vector3 v2, Vect |
|
|
|
// Calculate reflected vector to normal |
|
|
|
RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
// I is the original vector |
|
|
|
// N is the normal of the incident plane |
|
|
@ -1004,7 +1004,7 @@ RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal) |
|
|
|
// Get min value for each pair of components |
|
|
|
RMAPI Vector3 Vector3Min(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
result.x = fminf(v1.x, v2.x); |
|
|
|
result.y = fminf(v1.y, v2.y); |
|
|
@ -1016,7 +1016,7 @@ RMAPI Vector3 Vector3Min(Vector3 v1, Vector3 v2) |
|
|
|
// Get max value for each pair of components |
|
|
|
RMAPI Vector3 Vector3Max(Vector3 v1, Vector3 v2) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
result.x = fmaxf(v1.x, v2.x); |
|
|
|
result.y = fmaxf(v1.y, v2.y); |
|
|
@ -1029,7 +1029,7 @@ RMAPI Vector3 Vector3Max(Vector3 v1, Vector3 v2) |
|
|
|
// NOTE: Assumes P is on the plane of the triangle |
|
|
|
RMAPI Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
Vector3 v0 = { b.x - a.x, b.y - a.y, b.z - a.z }; // Vector3Subtract(b, a) |
|
|
|
Vector3 v1 = { c.x - a.x, c.y - a.y, c.z - a.z }; // Vector3Subtract(c, a) |
|
|
@ -1053,7 +1053,7 @@ RMAPI Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c) |
|
|
|
// NOTE: We are avoiding calling other raymath functions despite available |
|
|
|
RMAPI Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
// Calculate unprojected matrix (multiply view matrix by projection matrix) and invert it |
|
|
|
Matrix matViewProj = { // MatrixMultiply(view, projection); |
|
|
@ -1136,7 +1136,7 @@ RMAPI Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view) |
|
|
|
// Get Vector3 as float array |
|
|
|
RMAPI float3 Vector3ToFloatV(Vector3 v) |
|
|
|
{ |
|
|
|
float3 buffer = { 0 }; |
|
|
|
float3 buffer = { 0, 0, 0 }; |
|
|
|
|
|
|
|
buffer.v[0] = v.x; |
|
|
|
buffer.v[1] = v.y; |
|
|
@ -1157,7 +1157,7 @@ RMAPI Vector3 Vector3Invert(Vector3 v) |
|
|
|
// min and max values specified by the given vectors |
|
|
|
RMAPI Vector3 Vector3Clamp(Vector3 v, Vector3 min, Vector3 max) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
result.x = fminf(max.x, fmaxf(min.x, v.x)); |
|
|
|
result.y = fminf(max.y, fmaxf(min.y, v.y)); |
|
|
@ -1215,7 +1215,7 @@ RMAPI int Vector3Equals(Vector3 p, Vector3 q) |
|
|
|
// to the refractive index of the medium on the other side of the surface |
|
|
|
RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r) |
|
|
|
{ |
|
|
|
Vector3 result = p">{ 0 }; |
|
|
|
Vector3 result = n">Vector3Zero(); |
|
|
|
|
|
|
|
float dot = v.x*n.x + v.y*n.y + v.z*n.z; |
|
|
|
float d = 1.0f - r*r*(1.0f - dot*dot); |
|
|
@ -1361,7 +1361,7 @@ RMAPI Vector4 Vector4Divide(Vector4 v1, Vector4 v2) |
|
|
|
// Normalize provided vector |
|
|
|
RMAPI Vector4 Vector4Normalize(Vector4 v) |
|
|
|
{ |
|
|
|
Vector4 result = p">{ 0 }; |
|
|
|
Vector4 result = n">Vector4Zero(); |
|
|
|
float length = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w)); |
|
|
|
|
|
|
|
if (length > 0) |
|
|
@ -1379,7 +1379,7 @@ RMAPI Vector4 Vector4Normalize(Vector4 v) |
|
|
|
// Get min value for each pair of components |
|
|
|
RMAPI Vector4 Vector4Min(Vector4 v1, Vector4 v2) |
|
|
|
{ |
|
|
|
Vector4 result = p">{ 0 }; |
|
|
|
Vector4 result = n">Vector4Zero(); |
|
|
|
|
|
|
|
result.x = fminf(v1.x, v2.x); |
|
|
|
result.y = fminf(v1.y, v2.y); |
|
|
@ -1392,7 +1392,7 @@ RMAPI Vector4 Vector4Min(Vector4 v1, Vector4 v2) |
|
|
|
// Get max value for each pair of components |
|
|
|
RMAPI Vector4 Vector4Max(Vector4 v1, Vector4 v2) |
|
|
|
{ |
|
|
|
Vector4 result = p">{ 0 }; |
|
|
|
Vector4 result = n">Vector4Zero(); |
|
|
|
|
|
|
|
result.x = fmaxf(v1.x, v2.x); |
|
|
|
result.y = fmaxf(v1.y, v2.y); |
|
|
@ -1405,7 +1405,7 @@ RMAPI Vector4 Vector4Max(Vector4 v1, Vector4 v2) |
|
|
|
// Calculate linear interpolation between two vectors |
|
|
|
RMAPI Vector4 Vector4Lerp(Vector4 v1, Vector4 v2, float amount) |
|
|
|
{ |
|
|
|
Vector4 result = p">{ 0 }; |
|
|
|
Vector4 result = n">Vector4Zero(); |
|
|
|
|
|
|
|
result.x = v1.x + amount*(v2.x - v1.x); |
|
|
|
result.y = v1.y + amount*(v2.y - v1.y); |
|
|
@ -1418,7 +1418,7 @@ RMAPI Vector4 Vector4Lerp(Vector4 v1, Vector4 v2, float amount) |
|
|
|
// Move Vector towards target |
|
|
|
RMAPI Vector4 Vector4MoveTowards(Vector4 v, Vector4 target, float maxDistance) |
|
|
|
{ |
|
|
|
Vector4 result = p">{ 0 }; |
|
|
|
Vector4 result = n">Vector4Zero(); |
|
|
|
|
|
|
|
float dx = target.x - v.x; |
|
|
|
float dy = target.y - v.y; |
|
|
@ -1464,6 +1464,16 @@ RMAPI int Vector4Equals(Vector4 p, Vector4 q) |
|
|
|
// Module Functions Definition - Matrix math |
|
|
|
//---------------------------------------------------------------------------------- |
|
|
|
|
|
|
|
// Matrix with components value 0.0f |
|
|
|
RMAPI Matrix MatrixZero(void) |
|
|
|
{ |
|
|
|
Matrix result = { 0.0f, 0.0f, 0.0f, 0.0f, |
|
|
|
0.0f, 0.0f, 0.0f, 0.0f, |
|
|
|
0.0f, 0.0f, 0.0f, 0.0f, |
|
|
|
0.0f, 0.0f, 0.0f, 0.0f }; |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Compute matrix determinant |
|
|
|
RMAPI float MatrixDeterminant(Matrix mat) |
|
|
|
{ |
|
|
@ -1512,7 +1522,7 @@ RMAPI float MatrixTrace(Matrix mat) |
|
|
|
// Transposes provided matrix |
|
|
|
RMAPI Matrix MatrixTranspose(Matrix mat) |
|
|
|
{ |
|
|
|
Matrix result = p">{ 0 }; |
|
|
|
Matrix result = n">MatrixZero(); |
|
|
|
|
|
|
|
result.m0 = mat.m0; |
|
|
|
result.m1 = mat.m4; |
|
|
@ -1537,7 +1547,7 @@ RMAPI Matrix MatrixTranspose(Matrix mat) |
|
|
|
// Invert provided matrix |
|
|
|
RMAPI Matrix MatrixInvert(Matrix mat) |
|
|
|
{ |
|
|
|
Matrix result = p">{ 0 }; |
|
|
|
Matrix result = n">MatrixZero(); |
|
|
|
|
|
|
|
// Cache the matrix values (speed optimization) |
|
|
|
float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; |
|
|
@ -1595,7 +1605,7 @@ RMAPI Matrix MatrixIdentity(void) |
|
|
|
// Add two matrices |
|
|
|
RMAPI Matrix MatrixAdd(Matrix left, Matrix right) |
|
|
|
{ |
|
|
|
Matrix result = p">{ 0 }; |
|
|
|
Matrix result = n">MatrixZero(); |
|
|
|
|
|
|
|
result.m0 = left.m0 + right.m0; |
|
|
|
result.m1 = left.m1 + right.m1; |
|
|
@ -1620,7 +1630,7 @@ RMAPI Matrix MatrixAdd(Matrix left, Matrix right) |
|
|
|
// Subtract two matrices (left - right) |
|
|
|
RMAPI Matrix MatrixSubtract(Matrix left, Matrix right) |
|
|
|
{ |
|
|
|
Matrix result = p">{ 0 }; |
|
|
|
Matrix result = n">MatrixZero(); |
|
|
|
|
|
|
|
result.m0 = left.m0 - right.m0; |
|
|
|
result.m1 = left.m1 - right.m1; |
|
|
@ -1646,7 +1656,7 @@ RMAPI Matrix MatrixSubtract(Matrix left, Matrix right) |
|
|
|
// NOTE: When multiplying matrices... the order matters! |
|
|
|
RMAPI Matrix MatrixMultiply(Matrix left, Matrix right) |
|
|
|
{ |
|
|
|
Matrix result = p">{ 0 }; |
|
|
|
Matrix result = n">MatrixZero(); |
|
|
|
|
|
|
|
result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12; |
|
|
|
result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13; |
|
|
@ -1683,7 +1693,7 @@ RMAPI Matrix MatrixTranslate(float x, float y, float z) |
|
|
|
// NOTE: Angle should be provided in radians |
|
|
|
RMAPI Matrix MatrixRotate(Vector3 axis, float angle) |
|
|
|
{ |
|
|
|
Matrix result = p">{ 0 }; |
|
|
|
Matrix result = n">MatrixZero(); |
|
|
|
|
|
|
|
float x = axis.x, y = axis.y, z = axis.z; |
|
|
|
|
|
|
@ -1820,7 +1830,7 @@ RMAPI Matrix MatrixRotateXYZ(Vector3 angle) |
|
|
|
// NOTE: Angle must be provided in radians |
|
|
|
RMAPI Matrix MatrixRotateZYX(Vector3 angle) |
|
|
|
{ |
|
|
|
Matrix result = p">{ 0 }; |
|
|
|
Matrix result = n">MatrixZero(); |
|
|
|
|
|
|
|
float cz = cosf(angle.z); |
|
|
|
float sz = sinf(angle.z); |
|
|
@ -1866,7 +1876,7 @@ RMAPI Matrix MatrixScale(float x, float y, float z) |
|
|
|
// Get perspective projection matrix |
|
|
|
RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double nearPlane, double farPlane) |
|
|
|
{ |
|
|
|
Matrix result = p">{ 0 }; |
|
|
|
Matrix result = n">MatrixZero(); |
|
|
|
|
|
|
|
float rl = (float)(right - left); |
|
|
|
float tb = (float)(top - bottom); |
|
|
@ -1899,7 +1909,7 @@ RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, |
|
|
|
// NOTE: Fovy angle must be provided in radians |
|
|
|
RMAPI Matrix MatrixPerspective(double fovY, double aspect, double nearPlane, double farPlane) |
|
|
|
{ |
|
|
|
Matrix result = p">{ 0 }; |
|
|
|
Matrix result = n">MatrixZero(); |
|
|
|
|
|
|
|
double top = nearPlane*tan(fovY*0.5); |
|
|
|
double bottom = -top; |
|
|
@ -1925,7 +1935,7 @@ RMAPI Matrix MatrixPerspective(double fovY, double aspect, double nearPlane, dou |
|
|
|
// Get orthographic projection matrix |
|
|
|
RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, double nearPlane, double farPlane) |
|
|
|
{ |
|
|
|
Matrix result = p">{ 0 }; |
|
|
|
Matrix result = n">MatrixZero(); |
|
|
|
|
|
|
|
float rl = (float)(right - left); |
|
|
|
float tb = (float)(top - bottom); |
|
|
@ -1954,7 +1964,7 @@ RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, d |
|
|
|
// Get camera look-at matrix (view matrix) |
|
|
|
RMAPI Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) |
|
|
|
{ |
|
|
|
Matrix result = p">{ 0 }; |
|
|
|
Matrix result = n">MatrixZero(); |
|
|
|
|
|
|
|
float length = 0.0f; |
|
|
|
float ilength = 0.0f; |
|
|
@ -2009,7 +2019,7 @@ RMAPI Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) |
|
|
|
// Get float array of matrix data |
|
|
|
RMAPI float16 MatrixToFloatV(Matrix mat) |
|
|
|
{ |
|
|
|
float16 result = { 0 }; |
|
|
|
float16 result; |
|
|
|
|
|
|
|
result.v[0] = mat.m0; |
|
|
|
result.v[1] = mat.m1; |
|
|
@ -2086,7 +2096,7 @@ RMAPI float QuaternionLength(Quaternion q) |
|
|
|
// Normalize provided quaternion |
|
|
|
RMAPI Quaternion QuaternionNormalize(Quaternion q) |
|
|
|
{ |
|
|
|
Quaternion result = p">{ 0 }; |
|
|
|
Quaternion result = n">QuaternionIdentity(); |
|
|
|
|
|
|
|
float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); |
|
|
|
if (length == 0.0f) length = 1.0f; |
|
|
@ -2123,7 +2133,7 @@ RMAPI Quaternion QuaternionInvert(Quaternion q) |
|
|
|
// Calculate two quaternion multiplication |
|
|
|
RMAPI Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2) |
|
|
|
{ |
|
|
|
Quaternion result = p">{ 0 }; |
|
|
|
Quaternion result = n">QuaternionIdentity(); |
|
|
|
|
|
|
|
float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w; |
|
|
|
float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w; |
|
|
@ -2139,7 +2149,7 @@ RMAPI Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2) |
|
|
|
// Scale quaternion by float value |
|
|
|
RMAPI Quaternion QuaternionScale(Quaternion q, float mul) |
|
|
|
{ |
|
|
|
Quaternion result = p">{ 0 }; |
|
|
|
Quaternion result = n">QuaternionIdentity(); |
|
|
|
|
|
|
|
result.x = q.x*mul; |
|
|
|
result.y = q.y*mul; |
|
|
@ -2160,7 +2170,7 @@ RMAPI Quaternion QuaternionDivide(Quaternion q1, Quaternion q2) |
|
|
|
// Calculate linear interpolation between two quaternions |
|
|
|
RMAPI Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount) |
|
|
|
{ |
|
|
|
Quaternion result = p">{ 0 }; |
|
|
|
Quaternion result = n">QuaternionIdentity(); |
|
|
|
|
|
|
|
result.x = q1.x + amount*(q2.x - q1.x); |
|
|
|
result.y = q1.y + amount*(q2.y - q1.y); |
|
|
@ -2173,7 +2183,7 @@ RMAPI Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount) |
|
|
|
// Calculate slerp-optimized interpolation between two quaternions |
|
|
|
RMAPI Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount) |
|
|
|
{ |
|
|
|
Quaternion result = p">{ 0 }; |
|
|
|
Quaternion result = n">QuaternionIdentity(); |
|
|
|
|
|
|
|
// QuaternionLerp(q1, q2, amount) |
|
|
|
result.x = q1.x + amount*(q2.x - q1.x); |
|
|
@ -2198,7 +2208,7 @@ RMAPI Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount) |
|
|
|
// Calculates spherical linear interpolation between two quaternions |
|
|
|
RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount) |
|
|
|
{ |
|
|
|
Quaternion result = p">{ 0 }; |
|
|
|
Quaternion result = n">QuaternionIdentity(); |
|
|
|
|
|
|
|
#if !defined(EPSILON) |
|
|
|
#define EPSILON 0.000001f |
|
|
@ -2257,7 +2267,7 @@ RMAPI Quaternion QuaternionCubicHermiteSpline(Quaternion q1, Quaternion outTange |
|
|
|
Quaternion p1 = QuaternionScale(q2, h01); |
|
|
|
Quaternion m1 = QuaternionScale(inTangent2, h11); |
|
|
|
|
|
|
|
Quaternion result = { 0 }; |
|
|
|
Quaternion result; |
|
|
|
|
|
|
|
result = QuaternionAdd(p0, m0); |
|
|
|
result = QuaternionAdd(result, p1); |
|
|
@ -2270,7 +2280,7 @@ RMAPI Quaternion QuaternionCubicHermiteSpline(Quaternion q1, Quaternion outTange |
|
|
|
// Calculate quaternion based on the rotation from one vector to another |
|
|
|
RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to) |
|
|
|
{ |
|
|
|
Quaternion result = { 0 }; |
|
|
|
Quaternion result; |
|
|
|
|
|
|
|
float cos2Theta = (from.x*to.x + from.y*to.y + from.z*to.z); // Vector3DotProduct(from, to) |
|
|
|
Vector3 cross = { from.y*to.z - from.z*to.y, from.z*to.x - from.x*to.z, from.x*to.y - from.y*to.x }; // Vector3CrossProduct(from, to) |
|
|
@ -2298,7 +2308,7 @@ RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to) |
|
|
|
// Get a quaternion for a given rotation matrix |
|
|
|
RMAPI Quaternion QuaternionFromMatrix(Matrix mat) |
|
|
|
{ |
|
|
|
Quaternion result = { 0 }; |
|
|
|
Quaternion result; |
|
|
|
|
|
|
|
float fourWSquaredMinus1 = mat.m0 + mat.m5 + mat.m10; |
|
|
|
float fourXSquaredMinus1 = mat.m0 - mat.m5 - mat.m10; |
|
|
@ -2478,7 +2488,7 @@ RMAPI void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle |
|
|
|
// NOTE: Rotation order is ZYX |
|
|
|
RMAPI Quaternion QuaternionFromEuler(float pitch, float yaw, float roll) |
|
|
|
{ |
|
|
|
Quaternion result = { 0 }; |
|
|
|
Quaternion result; |
|
|
|
|
|
|
|
float x0 = cosf(pitch*0.5f); |
|
|
|
float x1 = sinf(pitch*0.5f); |
|
|
@ -2499,7 +2509,7 @@ RMAPI Quaternion QuaternionFromEuler(float pitch, float yaw, float roll) |
|
|
|
// NOTE: Angles are returned in a Vector3 struct in radians |
|
|
|
RMAPI Vector3 QuaternionToEuler(Quaternion q) |
|
|
|
{ |
|
|
|
Vector3 result = { 0 }; |
|
|
|
Vector3 result; |
|
|
|
|
|
|
|
// Roll (x-axis rotation) |
|
|
|
float x0 = 2.0f*(q.w*q.x + q.y*q.z); |
|
|
@ -2523,7 +2533,7 @@ RMAPI Vector3 QuaternionToEuler(Quaternion q) |
|
|
|
// Transform a quaternion given a transformation matrix |
|
|
|
RMAPI Quaternion QuaternionTransform(Quaternion q, Matrix mat) |
|
|
|
{ |
|
|
|
Quaternion result = { 0 }; |
|
|
|
Quaternion result; |
|
|
|
|
|
|
|
result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w; |
|
|
|
result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w; |
|
|
|